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Symmetry Inference in Planning Assembly

By G.Dakin Y.Liu S.Nair R.J.Popplestone R.Weiss

Abstract

Symmetry of a body is important in assembly both for planning and for sensing during execution.
In the past we have presented a theoretical framework for simplifying the complexity of computing the
interaction of multiple symmetric features. Here we describe the implementation of this framework
and extend it to include finite rotational symmetries.

1 Introduction

Any statement about a feature of a body can only tell us about the location of the body modulo the
symmetry group of the feature. Thus when planning or describing an assembly, statements about how
features should (or might) relate spatially can be expressed in terms of the symmetry groups of the
features. The same is true of the interpretation of sense data.

In this paper we show how to associate symmetry groups with features of body models created by the
PADL2 system, and how to perform reasoning about spatial relationships between features of bodies
occurring in an assembly in this group-theoretic context.

We take the view that a feature is a subset of the entities forming the boundary model of an object[15].
These will in general be infinite entities, such as planes, or cylindrical surfaces. We denote the Euclidean
Group of all combinations of rotations and translations in 3-space by £. A symmetry group of a feature
is that subset G C € each of whose members maps the feature into itself.

It is important to be able to compute the intersection of symmetry groups, since when we consider
combinations of features of a single body, they have a symmetry which is the intersection of their individual
symmetry groups. In our previous work [12] we showed how to compute the intersection of certain
important continuous groups using a method of characleristic invariants. The characteristic spatial
invariants can be planes, lines, points. The characteristic rotational invariants are vectors. For example
the group SO(2) of rotations about the k axis is characterised by a spatial invariant which is the point
(0,0,0), and by a rotational invariant which is the k vector.

In the present paper we show how to extend the descriptive apparatus to allow us to reason about
subgroups of £ isomorphic to O(2), and about the finite cyclic C, and dihedral D,, subgroups of £.

1.1 Shapes

Constructive Solid Geometry is used to represent shapes as Prolog terms using the following primitives:-

block(X,Y, Z) denotes a cuboid, centroid at the origin, with the stated dimensions along the coordinate
axes.

cyl(L, R) denotes a finite cylinder of length L and radius R, centroid at the origin, axis along the Z-axis,
and

cone(H, R) denotes a cone of height H and radius R, base centre at the origin, axis along the Z-axis.



sph(R) denotes a sphere of radius R, centre at the origin.

tor(R1, R2) denotes a torus of minor radius R1 and major radius R2, centroid at the origin, axis of radial
symmetry along the z-axis.

screw(H, R, P) denotes a cylinder, of length L and radius R, with a screw thread, of pitch P, ‘cut’ in its
curved surface.

gear(H, R, N) denotes a cylinder, of length L and radius R, with N gear teeth ‘cut’ in its curved surface.

These primitives are combined with the boolean operations \/ and /\ for union and intersection, and
with \ denoting set subtraction. The term Shape®Loc denotes a Shape relocated by the location Loc.

It is a convenience to allow Shape@Vec to denote the Shape translated by the vector Vec.

2 Labelling a solid model with the feature symmetry groups

In order to apply the theory to actual robotic reasoning, we have made use of the PADL2 [16] modeller
to provide us with a boundaery representation of solids. Solid shapes, specified as Prolog terms in the
formalisin defined above are input to PADL2, and processed by that system into boundary models. For
example:

cyl(4,1) \/ (cyl(4,1)0trans(4,0,0)) \/
(block(1,2,6)0trans(-1,-1,1)@rot(jj,1.670796)) )

denotes an object, consisting of two cylinders “stuck” on to a block with the union operation \/. A draw
predicate is provided which “prints” the Prolog term as a string in PADL2 syntax, and then calls PADL2
to form and display a boundary model of the object. The PADL? internal representation of the boundary
model is extracted using FORTRAN subroutines linked into POPLOG [5,14] as external procedures;
POP-11 objects expressing the face-edge-vertex structure of a body are built from the information thus
extracted. These objects correspond quite closely with the structures that PADL2 uses internally.

In order to represent bodies such as gears and screws concisely, we have extended the CSG formalism
to encompass them, as described above. They are presented to PADL2 as circumscribing cylinders,
however. Having passed through PADL2 we then identify those surfaces in the boundary model which
had originally been specified as gears and screws, and relabel them as such. In effect, we are treating
these forms, of great functional importance in Mechanical Engineering, as ‘texture’ on a surface. This is
of course an approximation, but one without very gerious consequences, since shape is required:

o For predicting clearance between parts: For this purpose the cylindrical approximation is very
adequate, since in almost all designs it is sufficient to plan to keep the cylindrical approximations
clear of each other.

e For determining mating relations: Gears and screws (the actual formed surfaces that is) hardly
ever interact with other features in a way that demands detailed knowledge of form save when they
interact with other gears and screws respectively, and in this case the legality of the interaction can
be determined from the form parameters, such as pitch and pressure angle.

e For visualisation: in most cases we are concerned with, the approximation is adequate.



Next, each face F of the model is labelled with its symmetry group, each group being considered as the
image f~'G.anonf of a canonical subgroup of £ under an inner automorphism. A token denoting the
canonical subgroup Gcqnon is obtained by table lookup from the surface type of the face, using a property
procedure gr.canon. E.g. if F is a conical face gr.canon(F) is a token denoting the group S0(2) of all
rotations about the Z-axis. The f for the inner-automorphism is the location (transformation matrix) of
the face in body coordinates as given by PADL?2.

It is possible to use this location because the way in which coordinate systems are embedded in features
by PADL2 permits a coherent and consistent choice of canonical groups — largely this is because the
Z-axis is chosen by PADL2 to be the axis of symmetry. To put this another way, PADL2 boundary model
entities are relocated instances of entities whose symmetry group is one of our canonical set.

Using these group-labelled models, we have implemented the technique described in [12] The transformed
canonical groups are themselves held as pairs (Geanon, f), where Ganos is the token representing the
canonical symmetry group of the face, and f is the location of the face. The characteristic invariants
called for in [12] are obtained from G 4,.,. by table lookup, and are relocated by f to give the characteristic
invariants of the group f~1Gf.

3 Relating Bodies in an Assembly

When bodies are mated togethér in an assembly, certain relationships are established between their
features. These relationships can be classified as either fitting or against relationships, where fitting
implies an areal contact, which means that the features, over the area of contact, have the same symmetry
group. Now, if we are using a modeller like PADL2, which has the property that any area of a model
face determines the symmeiry group of the face surface then we can conclude the following:

If the two bodies are B, and B, and the features are F; and F,, with locations f1 and f2 in body
coordinates, then p;, the location of B; in world-coordinates is given in terms of p;, the location of B,
by

p2 € pfiGf ! (1)

where G is the common symmetry group!. In cases where a convex feature derived from a positive
occurrence of a primitive in the CSG fits a concave feature derived from a negative occurrence, we have
fi = f1. However, in the case of mating plane faces, which, having zero gaussian curvature, can play the
role of being both concave and convex, f] = firot(i, r), since the outward-pointing normals of the two
surfaces will point in opposite directions.

If all of the relationships between a pair of bodies are fitting relationships, then we can regard this as a
single fitting relationship between a compound feature on each body. A compound feature is just a set
of geometric entities occurring in the boundary model. The symmetry group of the compound feature
is obtained by intersecting the symmetry groups of its component features (compound features have less
symmetry than simple features)[12]. This analysis supposes that the features making up a compound
feature are to be distinguished. The case where some of the features making up a compound feature can
be identified as for example when we have equi-spaced parallel holes, equidistant from a common axis, is
not covered in this paper.

! Note that in contrast with carlier work {3](8](10] we are now using a convention of pre-multiplying column vectors by
location matrices, and also using a the Z-axis as the axis of symmetry.



This treatment of relationships in terms of the symmetry groups of compound features is substantially
more concise than that used in [9], where O(n*) cases have to be considered, where n is the number
of distinct surface types. For the cases covered by [12], we have had to implement the proz functions
described in that paper. Since there are 3 spatial invariants, there are 9 cases to be considered for
the spatial invariants, usually with some sub-cases derived from parallelism. There is one case to be
considered for vector invariants. Our present approach also generalises to features with finite symmetries.
In addition, as discussed in section 5, it provides a good basis or planning assemblies where the features
to be mated are not identified by the user.

4 Cycles and chains of spatial relationships

We are using this approach to produce a concise implementation of much of the spatial relation inference
mechanism underlying the RAPT language[3]. 2-cycles of fits relationships (where the plane against
plane relationships are now re-classified as fitting, since they involve areal contact) can be dealt with as
relationships between compound features. However, RAPT also requires us to deal with larger cycles.
Cases of these, important for assembly, can be treated by using a kind of transitivity that holds among
spatial relationships when certain alignments exist. For example, if a block Bj is placed on a block B,
which itself is placed on a block B;, then B3 can be regarded as being placed on an imaginary surface of
B; placed at a height equal to the thickness of B; above the actual top surface of B;.

Within the group-theoretic framework this appears generally as follows:

Suppose we have two bodies B; and B; each of which has features F; and F7; and these features fit
each other. Suppose also Bj is related to B; because a feature Fz; of B fits a feature F3 of Bs. Then,
using condition 1

p2 € pLf1G1f5! (2)

P3 € p2f22Gaf5! (3)

Where as before, the f’s are the locations of the corresponding F features, possibly combined with an
interface element. Hence combining these conditions:

p3 € P1fiG1f5! f22G2f5! (4)

In general this is not of the form corresponding to a simple fits relation between B and B;. However
as in the brick example above, in some cases of practical importance it will be so. Let f = f21 f22. Let
S C € be the subset:

5=GifG;

If S is a coset of some subgroup of £ then we will have a simple fits relationship between B, and Bj.

An important case in which we can obtain a simple relationship between B; and Bj is when there is a
commautation condition between f and one of the groups G, or Gz. Suppose we have Gy f = f'G;. Then
we obtain:



P3 € p1f1f'G1Gafy ! (5)

In our brick example, the members of G, are of the form trans(0, y, z)rot(k,8), and f is of the form
rot(i, v)trans(0, 0, c), where c is the thickness of the brick B;. We have

trans(0, y, z)rot(k, 6)rot(i, v)trans(0, 0, c)

= rot(i, 7)trans(0, 0, c)trans(0, —y, —z)rot(k, —0) € G,
so that the commutation is exact, i.e. ' = f,

The product G;G2 may itself be a subgroup, as for example when G; = G,. Otherwise let G be the
group-theoretic join 2 G; U G, of the two groups G; and G;. Then we can weaken 5 to the following:

ps € pfiGfy! (6)

This condition is in general weaker than 4 because the product of subgroups and elements is not necessarily
equal to the group theoretic join. Nevertheless it does provide useful constraints between B, and B;.

The approach described in this section is being used to implement the operations associated with Table
2 of the RAPT implementation described in [3].

5 Planning what body features to relate

In specifying assemblies it is often the case that the actual mating features of bodies are not specified
— only the fact that bodies themselves are to be mated. Therefore we have studied how to infer sets of
possible mating features of two bodies. Given the combinatorics of this problem, we have explored one
approach which is the identification of compound features of a body which are instances of compound
features appearing in a library.

Some of the library features are quite specific such as: countersink, counterbore, keyway and certain
cases of spline. More generic assembly-relevant features are insertors, containers, multi-insertors and
multi-containers, which are in effect general protrusions, concavities, and combinations of these. Feature
definitions refer to the faces of the features of a single body and relationships between them, such as
being adjacent, perpendicular, parallel etc..

Having identified these standard compound features in two bodies, the symmetry groups of the compound
features are calculated. Candidate mating features will have the same symmetry group.

Dimensional consistency of candidate mating features is also required. There are two kinds of dimensions
involved.

® The parameters of each PADL2 surface that is a component of one compound feature should be
consistent with the parameters of the corresponding surface component of the other compound
feature.

‘e Sets of characteristic invariants used in calculating the intersection groups have intrinsic dimensions
(e.g. the length of the common perpendicular between line invariants and the angle between them):
these dimensions should be consistent between corresponding compound features.

2That is the closure under the group operations of the set-theoretic union



6 The characteristic invariants for the Euclidean Group

As discussed earlier, the symmetry group of compound features is the intersection of the symmetry
groups of the components. By using characteristic invariants as in [12), this has already been solved for
an important class of the subgroups of the Euclidean group, viz. the translational groups, T*,72, 73,
the rotation groups SO(2), SO(3), the group of the plane Gpian., the group of the cylinder Gy, and the
identity group. This section discusses the extension of the work to certain discrete subgroups of these
groups, in particular, the finite rotation groups and to the orthogonal group O(2). Note that an element of
O(2) can be written as a three-dimensional rotation. The finite rotation groups considered are the cyclic
subgroups Cy, of SO(2) and the dihedral subgroups Dz, of O(2). The general approach that is taken here is
that the intersection of these discrete groups can be computed from the intersection of the corresponding
continuous groups which contain them. Thus, if H, C Gy, H; C G3, then HiN H, C G1 NG,

6.1 Cyclic groups

A cyclic group of finite order n can be considered as subgroup of 50(2), and can be represented as
2
rot (17, -%EM: € Z)

Thus, it has a rotational invariant which is a vector v pointing along the axis of rotation, and an integer
n. The intersection of two cyclic groups is the set of solutions to the equation:

. 2k ~ 2k
rot (ul, lr) = rot (vz, 2”)
n; n2

This set is just the trivial group unless vy = v2. If v, = v3, then the intersection is also a cyclic group
having the same axis of rotation, and the order of this group is the greatest common divisor of n; and
nz. As a result, if n = maz(ny,n3), then the intersection of two such subgroups can be computed in
O(log(n)) time (8]. This analysis also applies to subgroups of the group of the cylinder and the group of
the plane, since the quotients by the translations are cyclic rotation groups.

6.2 The orthogonal group

The group O(2) is the smallest group which includes all rotations about the Z-axis together with a
rolation of 7 about an axis in the X-Y plane. This means that O(2) contains an infinite number of
subgroups of order two. We define its rotational characteristic set to be the set of two vectors that lie
along the principal axis and are negatives of each other, {k, —k}. This makes it possible to intersect 0(2)
with other O(2) and SO(2) groups and their finite subgroups. For example, two copies of O(2) whose
principal axes are orthogonal intersect in a dihedral group of order 4, Ds. A copy of O(2) will intersect
an orthogonal SO(2) in a cyclic group Cz.

The dihedral groups are finite subgroups of O(2), each of which is a semi-direct product of a cyclic group
of order n with a rotation by w radians about an orthogonal axis. The order of such a dihedral group is
2n, and can be represented as a subgroup of O(2) by a pair of vectors {k, Zk} together with n, half the
order of the group. The only ambiguity arises when n = 2, and this can be handled as a special case.



7 From Relations to Actions

Supposing now that our robotic system desires to achieve a world state characterised by a ‘goal graph’ of
relations, we see that each relationship expressed in the ‘goal graph’ has to be achieved by executing an
action. Since, in general, relationships are not achieved simultaneously by a single action, some actions
will be done before others, and consequently some actions must preserve relations already established
by other actions. This, of course, corresponds to the pre-condition/post-condition treatment of actions
and conditions of planning work in AI. However, in assembly, the interaction of actions and relations is
strongly dependent upon geometry. Moreover, as we shall see, the need to preserve an existing rclation
can actually modify behavior during an action to achieve another.

We say that an action preserves a relationship if, when the relationship holds before the action it holds
after. This can be regarded as a kind of commutativity condition. There are two ways in which an action
may preserve a relationship.

o Passively: the relationship is maintained by existing forces (friction, gravity), and the action applies
no forces which can disturb the relationship. For example, the action may be the insertion of a part
remote from the parts between which the relationship holds.

o Actively: The action may affect bodies between which the relationship holds. For example, we may
have achieved a relationship in which the hub of a wheel fits a shaft, and be attempting to slide
the wheel along the shaft until the side of the hub is against a face that provides lateral location.

Of course it is also the case that some actions cannot preserve a relationship, or cannot be executed if a
relationship holds. E.g., you cannot put an object in a box if you have already put the lid on.

Passive preservation has no implications for the lower level controller— deciding that an action passively
preserves a relation is a matter of verifying the stability of the relation and the clearance of the chosen
trajectories.

Active preservation gives rise to most of the variety of control required for an assembly task. Given that
a relation holds between two bodies, then a relative movement of the bodies in a certain subspace of twist
space will preserve the relation.

In the case of fits relations, where body features of the same geometric form have areal contact, the two
features have a common symmetry group, and the relation preserving subspace can readily be derived
from the canonical invariants of the group, which are described in (12].

However, given uncertainty in body shape, robot location, etc., there will be a difference between the
nominal relational preserving subspace of twist space as calculated by the planner, and the actual as
present to the robot. It will be necessary to use force sensing to enable the robot to comply with the
actual subspace.

Following the approach described in [4], a quasi-static behavior of the robot is defined using a stiffness
matrix. The stiffness matrix for a given action which preserves a fits relation should be chosen so that
the stiffness will be high along the directions in which a twist preserves the relation, and low along
complementary directions in which compliance is desired.

In some cases this will he sufficient to maintain the existing relationship, while a twist is applied in
the direction which, while preserving the existing relationship, brings the consummation of the desired
relationship nearer. This is the case when a cylindrical shaft fits a cylindrical hole — wrenches can
be exerled in directions orthogonal to those in which twists can be achieved. However, in general,



the situation is more complicated, and depends on the geometry of the contacting features, and not
just on their symmetry group(s), because certain wrenches will cause the related surfaces to separate.
In these cases it will be necessary to apply a bias wrench, which is in the opposite direction to the
separating wrenches, and whose magnitude is determined by the magnitude of the uncertainties in the
force measuring system.

The analysis of the conditions under which separation can occur depends on the finite extent of the
contacting surfaces. In general it is difficult to compute the conditions under which the separation of the
surfaces can occur. However there are some simple cases it should be possible to treat, for example:

e To maintain contact between plane surfaces, the bias wrench should be along the outward normal
of the plane surface of the manipulated body, with a line of action contained within the convex hull
of the contacting area.

e Where we have fitting surfaces with a single continuous rotational symmetry (the SO(2) or O(2)
group), it is possible to determine that separation cannot occur in a given relative location by
projecting the contact surface onto a one-dimensional space which is a parameter for the continuous
symmetry. If the projection covers more than , then separation cannot occur.

8 Conclusion and future work

The algorithms described in our previous paper [12] have been implemented in the POP-11 language
[5,14). The PADL-2 modeller is linked in as a package of external procedures, and the group labelling
algorithms implemented. An inference enginc, modelled on that of RAPT[3] has been implemented, using
the group-theoretic method, and providing treatment of multiple bodies and situations. The theory of
section 4 is currently being implemented, and we expect to extend our implementation of [12] to include
the additional groups described in Section 6 during the coming year. In addition, we plan to investigate
cases in which finite symmetries are created by multiple features that are interchangeable, e.g. equally-
spaced, parallel, identically-shaped holes.
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