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Abstract

In previous work, we identified a method for automatically deriving possible rules of plausible
inference from a set of relations, and determined that the transitivity of underlying characteris-
tics of the relations was a significant factor in predicting the plausibility of inferences generated
from these rules. Recent work by other researchers has also focused on identifying these kinds
of characteristics and examining their role in the ability to predict plausibility. We examine
these sets of characteristics and conclude that those factors that preserve transitivity provide
most of the power of these systems. We then show how inferences can be used to determine the
intended semantics, and thus the appropriate set of representational features, of a relation.

*This research is funded by the Office of Naval Research, under a University Research Initiative Grant, Contract
#N00014-86-K-0764.
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1 Introduction

One important aspect of research on semantic relations is understanding their behavior in inferences.
Studying inferences forces us to examine how we reason with these relations. Of particular interest
are common sense or plausible inferences, inferences whose rules suggest conclusions that are not
guaranteed to be true but are true often enough to be useful. Unlike deductive inference where,
given the truth values of the premises, the truth value of the conclusion is determined by the syntax
of the inference rule alone, plausible inference requires that we also know something of the semantic
- content of the inference rule. We have shown that by identifying characteristics of the relations
used in inference rules, we can predict the plausibility of their conclusions.

Several recent papers [4,2,3] have focused on binary relations used in inferences of the form

Given A R;BandB R;C
conclude either A R; cora R;c.

These efforts analyze relations in terms of more “primitive” elements, which are used to predict
the plausibility of these kinds of inferences. This paper will review these results and discuss their
contributions, noting especially those factors that seem to provide most of the power behind the
ability to predict plausibility. We then examine the role of a relation’s interpretation and show
that knowing the precise meaning of a relation is crucial to predicting plausibility. We conclude by
discussing our current research, which explores how the meaning of a relation, defined to be the
assignment of these more primitive elements, can be determined from the behavior of the relation
in inferences.

2 Generating Rules of Plausible Inference

Cohen and Loiselle [2] showed how the structure of property inheritance over isa, a common rule
of plausible inference, could be generalized to generate other possible plausible inference rules.
Figure 1 shows that property inheritance can be drawn as a triangle where the legs represent
the known statements (premises) and the hypotenuse represents the conclusion. The left triangle

has-part R;
WING n2

7 7
/ -/
isa / has-part isa / R;

/ /

/ /

CANARY n

BIRD

Figure 1: The triangular structure of property inheritance over isa

illustrates a specific instantiation of property inheritance: the concept CANARY inherits the property
“has-part WING” from its superclass BIRD. The right triangle shows the general form of property
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inheritance over isa: if n, is related to ny by isa, and n, is related to nz by any arbitrary relation
R;, we can infer that n, is also related to n3 by R;.

Property inheritance requires that the first premise be isa and that inheritance occurs only over
this isa link. By relaxing these requirements we can generate many other possible inference rules
with the same triangular structure (Figure 2). Again, the left triangle gives a specific instantiation

causes R;
INTOXICATION n2 > T3

7 : 7
/ /
has-ingredient // causes R; / R;or R;
/ /
/ /

COUGH-SYRUP L3

ALCOHOL

Figure 2: Extending the structure of property inheritance

of one such inference rule while the right triangle shows the corresponding general structure. Since
we no longer restrict which link can be “inherited over” we are free to infer either R; or R; in the
conclusion. So this structure can be used to form two rules:

n1 R; ny, ny Rj ng — n; R; ng
ny Ri ng, ny Rjnz — ny Rj ng

Clearly, although we can use this structure to combine any two relations to yield two possible
plausible inference rules, not all the resulting rules will produce plausible conclusions. But if we are
able to identify characteristics of these rules that will allow us to predict which rules will produce
predominantly plausible conclusions, then this triangular structure is potentially a powerful source
of inference rules. The research discussed in the next three sections describes our attempts and
those of other researchers to find the characteristics of inference rules that are highly correlated
with plausibility.

3 Transitivity

Our initial experiments with these kinds of plausible inference rules identified two relation charac-
teristics [2]. We studied a set of nine relations and determined that all had either an underlying
sense of hierarchical inclusion, temporal ordering, or both. For example, the relation component-
of conveys a sense of hierarchical inclusion since a whole includes its parts. Similarly, caused-by
imposes a temporal order on the concepts it connects. When a relation has more than one interpre-
tation both underlying senses may apply. For example, a mechanism may be either an instrument
required prior to pursuing some activity, such as needing a key to unlock a door, or a subprocess
subsumed by a superior process, as in respiration being a mechanism of maintaining life; therefore
mechanism-of admits both a sense of hierarchical inclusion and temporal ordering.

These underlying interpretations were used to determine the “deep structure” of the inference rule
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(Figure 3) where ng A n indicates that n3 hierarchically includes n, and n, - ny indicates that
ny precedes nj.

mechanism-of ¢
Ny ‘————; ng Mo \ 7 //Tl3
/ 4
causes // mechanism-of t h//t
/ 4
/ »

n n
Figure 3: A plausible inference rule and its deep structure

We noted that some of our inference rules’ deep structures preserved transitivity, that is, the same
ordering, either temporal or hierarchical, was maintained between n; and n3 in both the premises
and the conclusion. The deep structure in Figure 3 is transitive because the temporal (t) links in
both the premises and the conclusion indicate that n, comes before n. (The premises in intransitive
rules do not imply any particular order between n; and nz nor is any required by the conclusion.)
We also identified another characteristic of deep structures called conststency. Note that in Figure 3
some of the legs of the triangles are labeled with both temporal and hierarchical links, but only one
of these forms a consistent interpretation, that is, we can choose between these two interpretations
in such a way that allows us to label all three sides of the triangle with t-links (the consistent
interpretation) but not with h-links. When a deep structure has multiple interpretations we use
the consistent interpretation to determine transitivity. When no such consistent labeling is possible
we call the structure (and its corresponding rule) inconsistent.

Our experiments with human subjects, who collectively viewed over 3000 inferences, showed that
transitivity could be used to predict the plausibility of conclusions suggested by these inference
rules with a fair degree of accuracy. Transitive rules yielded conclusions that were judged to be
plausible in 77.4% of the inferences. For intransitive rules this figure was 38.8% and for rules
having no consistent interpretation the results were near chance at 57.3%.! Thus with very little
information about the specific inferences we are able to make modestly accurate predictions about
the plausibility of their conclusions simply by knowing whether or not the rule is transitive.

It may be possible to improve the accuracy of our predictions by including additional information
in our analysis. For example, knowing just the deep structure of a rule allows us to determine the
rule’s transitivity; seeing the transitive deep structure in Figure 3 lets us predict that approximately
77% of the inferences produced by this rule will be judged plausible. Knowledge about the specific
relations used in this rule can improve this estimate, however. In this case, our data showed
that only 73.6% of the inferences produced by the rule n; causes na, ny mechanism-of nzg — n,
mechanism-of n3 are judged plausible. If, instead, we knew that our transitive deep structure
was derived from the rule n, causes n,, n, has-product ng — n; has-product nz we could predict
a higher number of plausible conclusions because 87.9% of the resulting inferences were judged
plausible in our experiment. Similarly, knowing the specific concepts that instantiate an inference
rule also allows us to make more accurate predictions. The rule n; has-ingredient n,, ns causes ns

!The three classes of rules identified here do not account for all the data. See.[2] for a complete analysis. _
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— n, causes nz shown in Figure 2 seems generally plausible as does the instantiation shown there,
but if we substituted AIR for COUGH-SYRUP the conclusion would certainly be judged unacceptable
since the concentration of alcohol in air is too low to make us intoxicated.

The above discussion identifies a trade-off. With additional information about the relations in the
rules, or the particular nodes used to instantiate the inferences, we could improve the accuracy of our
predictions of plausibility. But acquiring and representing this additional information necessarily
incurs additional costs. Therefore it is important to identify the amount and kinds of information
required to achieve an acceptable level of predictability.

4 Relation Element Theory

Relation element theory {1} provides some of this additional information. By focusing on character-
istics of the relations rather than on specific inference rules or instantiations, Chaffin and Herrmann
are able to maintain a high degree of generality and incur little additional cost. Relation element
theory holds that semantic relations should not be viewed as unitary semantic entities but rather
as compositions of a set of simpler relation elements. Originally used to gauge the similarity of
two semantic relations, relation element theory can also be used to predict the plausibility of an
inference rule’s conclusions.

Winston, Chaffin and Herrmann [4] explore inferences based on the part-whole relation. They first
note that although we ordinarily expect this relation to establish a strict partial ordering and thus
be transitive many such inferences fail to produce plausible conclusions. For example, given the
premises “Simpson’s arm is part of Simpson,” and “Simpson is part of the Philosophy department,”
it is not appropriate to conclude that Simpson’s arm is part of the Philosophy Department [4]. This
apparent intransitivity is due to the use of two distinct senses of the relation part-of in the premises
of the inference. The first statement expresses the relation between a component and the ob ject
to which it belongs whereas the second expresses the relation between a collection and one of its
members.

The essence of this distinction is captured by relation element theory, which identifies three charac-
teristic properties of the part-whole relation: whether the relation of part to the whole is functional,
whether the parts are homeomerous, and whether the part can be, in principle, separated from its
whole. According to the theory, all part-whole relations share the common element of connection
between part and whole, this connection being modified by the values for the elements functional,
homeomerous, and separable. Winston, Chaffin and Herrmann identify six kinds of part-whole
relations and conclude that an inference is valid only if the same kind of part-of occurs in both
premises as in the conclusion. This ensures that both the premises and the conclusion will have
the identical set of relation elements. It also ensures transitivity.

5 Extended Composition

Huhns and Stephens (3] continue this line of research, identifying ten relation primitives, including
several identified in [2] and [4]. For each relation these primitives are assigned a value of +, meaning
the characteristic is present, —, not present, or 0, if the primitive does not apply to the relation.
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Thus each relation can be represented by a vector of values for these ten primitives. Plausible
inference rules are generated by the technique described in Section 2. (Huhns and Stephens call
this technique “extended composition.”) A corresponding algebra uses an operator table for each
primitive to determine how the two vectors for R; and R; may be combined to yield a result vector
for the conclusion (Figure 4). A match of the result vector to either or both of the premise relations’

R; = component-of, V; = (+ + = + — 0 + + =)

Composable Intrinsic
R; ¥ R;
R;y|- 0 + R; - 0 + _ .
~ [P 0 P T = 0 7= R=E - 004 - )
00 0 O 0 0 0 0
+|P 0 + + | +/- 0 +

R; = contained-in, V; = (+ — — + —= 00 + — =)
Figure 4: The algebra of extended composition.

vectors is interpreted to mean the corresponding inference is plausible, provided the domain and
range requirements of the relations are also met. For example, in Figure 4, Vg matches V; so
we predict that the inference rule n; component-of ny, ny contained-in ng — n; contained-in n3
would produce predominantly plausible conclusions. The results of this composition may be further
pruned if the relations have incompatible domains and ranges. For example, although the algebra
may permit the composition of subfield-of and subprocess-of, the inference will be disallowed
because it makes no sense to talk about a subfield of a process.

Huhns and Stephens apply their technique to a set of 21 relations (having a total of 861 possible
compositions) to yield a composition matrix of 103 entries where the result vector matches the vec-
tor for either R; or R; and the corresponding inferred relation also satisfies the domain and range
requirements established by the premise relations. That is, their algebra predicts that at least 103
out of 861 inference rules will produce predominantly plausible conclusions. (Since their algebra
was designed for “correctness instead of completeness,” {3, p. 17) it is possible that some compo-
sitions not included the matrix might also produce plausible conclusions.) Huhns and Stephens

claim validity for their results based on the plausibility of selected example inferences from the
composition matrix.

6 Transitivity Revisited

Three of the primitives in Huhns and Stephens’ work indicate an ordering along a single dimension:
structural indicates a hierarchical relationship in terms of physical structure, temporal indicates
an ordering in time, and intangible indicates a hierarchical relationship in terms of ownership or
mental inclusion. Since relations that indicate an ordering-along a single dimension can be used
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transitively, these primitives capture the same kinds of underlying interpretations as our t-links and
h-links [2]. Huhns and Stephens’ temporal primitive corresponds to our t-link, whereas the structural
and intangible primitives distinguish physical from mental inclusion, which are both represented by
our h-link. This correspondence is also borne out by the operator tables for these primitives
(Figure 5). These tables preserve the ordering of the concepts when both premises have the same

Structural Temporal Intangible
R; R; R;
R;j|- 0 + R;y|- 0 + R;1— 0 +
-}{- 0 P -{- 0 P -|- 0 P
010 0 O 0(0 0 O 00 0 O
+{P 0 4+ + P 0 + + 1P 0 +

Figure 5: Operator tables for the transitivity-preserving primitives.

value (indicate the same ordering) and prohibit inferences when the premises have incompatible
orderings (the value “P” means the inference is prohibited). Thus these operator tables ensure that
only those inference rules that preserve transitivity will be generated by the algebra.

Since transitivity alone was shown to predict pretty well the plausibility of inferences in [2], we
were interested in how much the three transitivity-preserving primitives contributed to the power
of Huhns and Stephens’ method. To evaluate this, we implemented their algebra and used it to
determine the number of matrix entries produced by every subset of three of the ten primitives. Any
subset of the original primitives is guaranteed to produce at least the original 103 entries; fewer
additional entries indicated that that particular subset of primitives came closer to reproducing
Huhns and Stephens’ original composition matrix and thus contributed more power to the algebra.

The most powerful set of three primitives, structural, temporal and composable, produced 198 matrix
entries. The set of three transitivity-preserving primitives ranked third with 213 entries, tied with
the set temporal, intangible and composable. Huhns and Stephens note that the composable Pprimi-
tive, designed to identify relations that cannot be meaningfully composed with other relations due
to their “fundamental characteristics,” is also closely tied to transitivity. They state, “Assignment
of values for this property can be guided by consideration of the transitivity of the relation, i.e.,
if a relation is not tramsitive (cannot be composed with itself), then it often cannot be composed
with any other relation” (3, p. 5]. The remaining set of three of these four primitives, structural,
intangible and composable, produced 238 entries, ranking 22nd out of 120. For comparison, the least
powerful set of primitives, near, connected and intrinsic, produced 351 entries, while considerations
of domain and range incompatibilities alone yields 444 entries. Based on these rankings we conclude
that the transitivity component represented by the primitives structural, temporal, intangible and
composable contributes the largest share of the power of Huhns and Stephens’ representation and

algebra, and that the cost of assigning values to the remaining primitives may often outweigh the.
slight increase in power they provide.
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7 Ontology Maintenance: Using Inferences to Determine Rela-
tion Semantics

The work by Winston, Chaffin and Herrmann on the part-whole relation discussed in Section 4
makes it clear that often what we consider to be a single semantic relation may be used in several
different ways with corresponding differences in meaning. Furthermore, it shows that the plausibil-
ity of inferences using such a relation cannot be reliably determined unless the intended meaning
is known. We cannot say whether the rule n; part-of n,, ny part-of nz — n; part-of ng will
produce plausible conclusions unless we know whether both premises use the same type of part-
whole relation. While relation element theory, and its extension in Huhns and Stephens’ set of
relation primitives, gives us a representation for specifying these intended meanings, it doesn’t tell
us how to determine the correct definition (assignment of primitive values) of a relation. Ontology
maintenance offers a solution for this problem.

Ontology maintenance is concerned with assuring that the definitions of relations are correct. “Cor-
rect” means that we are able to accurately predict the plausibility of inferences using these relations.
Thus, when we add a definition of a new relation to knowledge base, or modify an existing one, we
can check whether the definition is correct by generating inferences we expect to be plausible.

We are currently developing an ontology of semantic relations based on their behavior in inferences.
This ontology includes a hierarchy of relations determined by their primitive assignments (Figure 6).
Relations inherit primitive values from their parents, therefore their placement in the hierarchy

INCLUDED-BY
(intangible = -)

INCLUDED- SPATIALLY PART-OF INCLUDED-DESCRIPTIVELY

structural (connected = +) structural =0)
temporal = 0) temporal = 0)
/ \ / / |
CONTENTS-OF PHYSICAL-PART-OF A-KIND-OF  HAS-DESCRIPTION
r
COMPONENT-OF HAS-PROPERTY

Figure 6: A partial hierarchy of relations with prinﬁtive values.

determines the kinds of inferences predicted to be plausible for each relation. Evaluating these
inferences thus evaluates the (possibly partial) definition of a relation suggested by its placement in
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the hierarchy. The following example illustrates how inferences were used to determine placement
in the hierarchy, and thus the correct assignment of primitive values, to the relation material-of,
which indicates the main substance of which an object is made.

At first glance, material-of seems to be a kind of part-of relation, indeed, Winston, Chaffin and
Herrmann claim that the “stuff-object” relation is a type of part-whole relation [4]. Therefore
we begin by placing material-of under physical-part-of in the relation hierarchy. This results in
material-of inheriting the primitive assignments structural = —, temporal = 0, intangible = —, and
connected = 4. We then generate inferences predicted to be plausible. For our experiments these
were derived from a knowledge base we are developing to represent common sense information
about a house. One such inference is

WOOD material-of AXE-HANDLE, and
AXE-HANDLE component-of AXE ‘
WOOD material-of AXE.

Immediately we see that to evaluate the inference we must know more precisely the intended
meaning of material-of. Will we allow it to indicate a substance in any area of an object or do
we require it to refer to the entire object? If we had intended the former then this would seem a
reasonable inference, but since we intended the latter the inference is unacceptable.

Examining the hierarchy, again we decide that ,perhaps a material is more like a property of an
object than it is part of an object. This suggests placing has-material (the inverse of material-of )
under has-description in the relation hierarchy. Now has-material inherits the primitive values
structural = 0, temporal = 0, and intangible = — and we generate inferences like

BOARD has-material WoOOD, and
wWoOoD  has-property FLAMMABLE
BOARD has-property FLAMMABLE.

This time the inference is acceptable and we keep has-material under has-description.

8 Conclusion

Certainly the more information we have about an inference, the better we will be able to Jjudge the
plausibility of its conclusion. But for tasks that do not require a high degree of accuracy in such
judgments we may realize a savings by placing ourselves relatively low on the information/accuracy
trade-off. The cost of assigning values to many different primitives for a large number of relations
may cause us to want to limit the set of primitives used. Therefore, it is important to examine the
sources of power in our representations. The results presented here suggest that primitives that
represent different kinds of transitivity contribute most of the power in predicting plausibility.

Our ability to predict the plausibility of inferences is determined by our ability to define relations
correctly. Our research in ontology maintenance explores how we can verify a relation’s definition
by examining inferences we expect to be plausible.
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