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Abstract

The specification of interprocess communication for massively parallel compu-
tation requires the support of sophisticated programming tools. As part of a
parallel programming environment for MIMD, non-shared memory message-
passing architectures, we are building a graph editor that supports the use
of process structure graphs in programming and a graphical interface that
supports the use of a new programming abstraction for interprocess communi-
cation. Both tools will require the automatic identification of subgraphs. We

report here on heuristics that perform such identification.



1 Introduction

Massively parallel programming is much more difficult than sequential programming, and
it will require the development of sophisticated programming tools. For MIMD non-shared
memory message-passing architectures, these tools must support the specification of inter-

process communication structures which is both tedious and error-prone.

The availability of low-cost workstations with a bit-mapped display and mouse has
made the widespread use of graphics software possible. Visual display of communication
structures has been adopted by several programming environments|1,2,3]. These environ-
ments allow the user to draw a graph. But because it is tedious to draw a large graph
manually, and because parallel programs should be scalable, specifications of entire graph
families are required. We are currently building a grammer-based graph editor[5,6,7],
which allows the user to generate a large graph by applying transformations to a small
graph in the same family. As part of this editor, we must identify subgraphs that form the
domain of a transformation and we must identify subgraphs called itineraries that provide

a path for abstract messages. This subgraph identification is the focus of this project.

In the next two sections, we describe the use of subgraph identification in specifying
transformation domains and in specifying itineraries. We discuss possible extensions in the

last section.

2 Subgraph Characterization and Recognition in the

Graph Editor

The program we developed solves the problem of subgraph characterization and recogniza-
tion. We will first explain its role in the graph editor, and then discuss some issues in its

implementation.



2.1 Requirements from the Graph Editor

Nodes in a communication graph represent processes, and edges represent their intercom-
munications. Both nodes and edges can be labeled with a set of attributes. Attributes can

be roughly classified as follows:

system-defined: Attributes in this class can be display related or graph-theoretic. Dis-
play related attributes — such as position coordinates — provide information about
the display of the graph on the screen. Graph-theoretic attributes — such as the

degree of a node — provide information on the structural characteristics of the graph.

user-defined: For a specific graph family, more attributes can be introduced by the user.
Most of these are structure related. For a mesh, the row and column numbers are
two obvious choices. For a tree, a node is often labeled with its level number. User-
defined attributes can also be code related. They can be used for process labeling
(assigning code to a process) or as parameters in a generic code body. There is a
close relationship between structure related attributes and code 1"e1ated attributes.
The same Acode is usually assigned to the nodes with the same structure features.
For example, usually the same code is assigned to the leaf nodes in a tree which are
labeled with the maximum level number. Code related attributes are essential for the
processes to work correctly. Structure related attributes usually carry more specific

information about a node. Their presence helps to characterize sets of related nodes.

The graph editor provides support for specifying labeled graph families based
on aggregate rewriting graph grammars [5,6]. To describe a graph family, the user first
constructs a start graph which is often the smallest instance of the family and then defines
the transformations needed to modify that start graph into the next larger family member.

The transformations are then automatically iterated to form all remaining family members.

In specifying a transformation, the user must be able to define its domain — that

is, the set of nodes to which it should be applied. He can do this directly, by providing a



predicate describing the domain, or he can do it by example: he selects a set of nodes from
a sample graph and have the system automatically generates a closed-form expression that
describes the selected subset. The predicates are over the set of user- and system-defined

graph attributes. This problem is called subgraph characterization.

When a transformation is applied to a larger graph, the domain of the transfor-
mation must be identified. With the predicate describing this domain, the editor must be

able to identify it in this larger graph. We refer to this problem as subgraph recognization.

We have developed an subgraph characterization and recognition package to solve

these problems. It is described in the next subsection.

2.2 Subgraph Package

There are several issues involved in the implementation of the subgraph package. First, the
format of predicates must be determined and the algorithm for predicate deduction must
be designed.. Second, the predicate deduced from a specific (usually small) graph must be
generalized to be applied to larger graphs in the family. Third, if there are multiple results

of the characterization, they should be ranked according to generality and simplicity.
The format of predicates is defined as follows:
® A base predicate is a positive predicate of the form name = value or a negative

predicate of the form name # value, where name is an attribute name and value is

a value in the domain of that attribute.

e A predicate is a base predicate or a conjunctive or disjunctive composition of two

base predicates.

Our experience indicates that this simple format is sufficient for most of the useful sub-

gfaphé.



All the predicates applicable to a subgraph are generated. In order to avoid du-
plication, we order the attributes and then order the two base predicates in a composite

predicate by their attributes. The algorithm has 4 phases:

1. Get all the positive base predicates for the subgraph.
2. Get all the predicates which are compositions of two positive base predicates.

3. Get all the predicates which are compositions of two base predicates where the first

is positive and the second is negative.

4. Complement the subgraph; repeat the three phases above; negate the predicates; and

transform them into standard format.

The last phase reduces the complexity of the algorithm and increases the number

of applicable predicates generated.

Example 2.1 Let’s use the mesh shown in Figure 1 to illustrate how predicates
are generated. The nodes in the mesh are labeled with two user-defined attributes row

and column.

e For subgraph {(0,0), (0,1), (0,2)}, the predicate (row = 0) is generated in phase 1.

e Forsubgraph {(0,0), (0,1), (0,2), (1,2), (2,2)}, the predicate (row = 0 or column = 2)

is generated in phase 2.

e For subgraph {(0,0), (0,1)}, the predicate (row = 0 and column # 2) is generated

in phase 3.

e For subgraph {(0,0), (0,1), (1,0), (1,1)}, nothing is generated in phase 1-3. In phase
4 the predicate (row = 2 or column = 2) is generated for the complement of the
subgraph. Then the predicate is negated, and we have (row # 2 and column # 2)
which describes the original subgraph.
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Figure 1: an annotated 3 x 3 mesh

After we get the list of predicates, we have to generalize them so that they
can be applied to other graphs in the same family. We need to replace specific values
with general values like MAX or MIN where MAX (MIN) is the maximum (mini-
mum) value for a given attribute in the graph. We use max(attname,graphname) and
min(attname, graphname) to represent the maximum and minimum values of the attribute
attname in the graph graphname. The generalization process is as follows for a graph

named graphname:

¢ Transform base predicates: Suppose the predicate has a base predicate attname =
value or attname # value.
Replace value by MAX if value = max(attname, graphname).

Replace value by MIN if value = min(attname, graphname).

o Coordinate two base predicates in a predicate: Suppose the predicate has two base
predicates and both have attname as the attribute portion.
If after the first step one value portion is M AX, another is val, and
max(attname, graphname) — val < val — min(attname, graphname),
replace val by MAX — (max(attname, graphname) — val).
If after the first step one value portion is MIN, another is val, and
val — min(attname, graphname) < max(attname, graphname) — val,

replace val by MIN + (val — min(attname, graphname)).



Example 2.2 Here we generalize the predicates given in Example 2.1. Let’s call
the 3 x 3 mesh shown in Figure 1 meshs. min(row, meshs) = 0, max(row, meshs) = 2,
min(column, meshs) = 0, min(column, meshs) = 2. The four predicates are generalized

as follows:

e row=0=row=MIN

e row =0 or column =2 = row = MIN or column = MAX

row = 0 and column # 2 = row = MIN and column # MAX

row # 2 and column # 2 = row # MAX and column # MAX

There are often several predicates applicable to one subgraph. The predicates
are ranked based on the simplicity first and then the generality. A predicate with one
attribute is simpler than a predicate with two attributes. A base predicate is simpler than
a composition of two base predicates. If two predicates have the same number of base
~ predicates, the one with less negations is the simpler. The generality increases whenever
a specific attribﬁte value is replaced by a general value. The predicates are presented to

the user in the order of the rank. Our experience shows that this ranking works well.

Example 2.3 A binary tree is shown in Figure 2. Each node is labeled with an
attribute level. The root is on level 0, and the leaf nodes are on level 2. A node also has an
attribute degree whose value is automatically derived by the system. If the nodes on level

1 are selected, six predicates will be presented for this subgraph in the following order:

1. degree= MAX
2. level =1
3. level # MAX and level # MIN

4. degree # MIN and degree # MIN +1
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Figure 2: a 3 level binary tree

5. level # MIN and degree # MIN

6. level # MAX and degree # 2

Predicate 1 is simplest and most general. Predicate 2 is simple but less general. All the
other predicates are compositions of two base predicates and are more complex than 1
and 2. Predicates 3 and 4 are ranked the same, their order depends on the order of the
attributes. If level is in front of degree, the predicates in terms of level will be generated
first. The predicates are sorted by a stable sorting algorithm, so predicate 3 remains to be
ahead of predicate 4. Predicates 4 and 5 are both general, but predicate 4 has only one
attribute (degree) involved while predicate 5 has two attributes (level,degree) involved.
Predicate 6 also has two attributes involved and is less general than predicate 5, so it is

the last in the list.

Next we give two examples to illustrate how subgraph characterization is used in

defining the domain of a transformation.

Example 2.4 To describe the family of butterfly graphs, we begin with a four node graph
annotated by a user-defined attribute rank and system-defined attribute degree. Three

transformations are needed to generate the next butterfly: the first begins a new rank by



making a copy of the nodes along the top rank; the second copies the original butterfly,
and the third completes the graph by adding a copy of the top rank [7]. The second
transformation must be applied only to nodes of the original butterfly; the user indicates

this by circling the desired domain in the first instance of the graph:

rank=0 rank=0
degree=1 D ? degree=1

Our heuristics then generate the description degree # MIN. This predicate can be used

to identify the domain of the transformation when it is later applied to other graphs.

Example 2.5 Another example is given in [7) where domain restrictions are used. A tree
resulted from the combination of two binary trees at the leaves is called a database tree. To
specify the family of database t.rees we start with a four node graph and a transformation
is applied on tﬁe leaf nodes. The user can simply circle the leaf nodes as shown in the
graph. The description of the domain of this transformation is code = Lea f.

code=Upper
degree=2

ode-Leaf code-Leaf
degree—Z degree—

ode=Lower
degree=2

The problem of subgraph recognition is straightforward once the internal repre-
sentation for predicates has been determined. Given a graph and a predicate, each node

in the graph is tested. The subgraph consists of the nodes satisfying the predicate.



3 A Graphical Interface for Canister Communication

In addition to process graph specifications, the graph editor supports the specification of
global communication patterns. In this section, we discuss the role of subgraph identifica-
tion in a programming abstraction, called canister communication [8]. We first introduce
some basic concepts about canister communication and then discuss the implementation

of a graphical interface.

3.1 Canister Communication

Massively parallel algorithms usually have regular communication patterns. Canister com-
munication supports the recognition of these patterns. A canister is a logical container of
a message which traverses a directed subgraph called an itinerary. On the itinerary nodes
represent processes and edges represent communication channels. The type of data a can-
ister can carry is declared and each node on the itinerary has a set of access rights to that
data. Message passing primitives are replaced by logical operations on cé,nisters which are
used in a manner consistent with the itinerary. A canister is created in association with
an itinerary. It is filled with data and transmitted along the itinerary. Eventually it is
emptied and destroyed. Detailed definitions of itineraries and canister operations are given
in [8]. Here we will present some examples of meaningful itineraries which are supported

by the graphic interface to be discussed in the next subsection.

Example 3.1(a) In the band matrix multiplication algorithm|[10], data from
the two input matrices A and B enter a processor along two paths. The path for matrix
A is from left to right. The path for matrix B is from top to bottom. When the data
along path A and path B are available, a process reads the a and b values and computes
¢ = c+a x b. The ¢ value moves along path C, that is, diagonally from bottom right to
top left. There are three itineraries corresponding to these three paths. A node can only
have fead access to data in canisters traversing on itineraries A and B. It has read and

write access to data in canisters traversing on itinerary C.

9
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Figure 3: communication paths in band matrix multiplication

In this example an itinerary is simply a subgraph consisting of straight paths which
do not intersect. The next example we will present has a more complex itinerary where

paths are merged at some points.

Example 3.2(a) A pipelined tree summation algorithm can be used to perform
parallel summation of vectors. Each process gets the values from the child processes, per-
forms the summation, and passes the value to the parent process. All the communications
support the same logical operation. The resultant itinerary is the whole tree. Let’s call
this itinerary TreePath and the canister SumCan. Code for the processes can be written as

follows|[4]:

int sumfun(a, b) { return a+b; }

tree() {

CanTypeDecl(int, SumCan) ;

sumfun(CanGet (TreePath),SumCan) :

CanPut (SumCan)

10
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Figure 4: communication paths in tree summation

Fan-in results when two or more paths join at a node; we propose two functions
for merging values at such nodes: CanSelectAny which returns message chosen at random
from those channels with messages available; and CanSelectAll which returns a set of
messages, one from each incoming channel. sumfun is a user-supplied merge function

which sums the messages in such a set and returns the value in its second parameter.

In the tree summation algorithm, both inbound channels of a process are involved
in the same logical operation. They are logically undistinguishable. In the next example
processes appear in different places on the itinerary. The inbound channels associated with

a process are involved in different logical operations and should be distinguished.

Example 3.3(a) In a LU-decomposition algorithm implemented on a mesh
[11,12], data needs to be routed diagonally through a vertical and a horizontal channel
as shown in Figure 5. There are three processes on a path. A process can be in three
different positions on three different paths. Aliases are introduced to distinguish the po-
sitions of the process on the itinerary. The alias Shift is used for the first and the third
positions, Pass is used for the second position. CanGet( Pass) then returns the canister
sent by the neighbor below, and CanGet (Shift) returns the canister sent by the neighbor

to the right. The two outbound channels are distinguished by aliases Pass and Shift in a

similar way.

11
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Figure 5: communication paths in LU-decomposition

3.2 Implementation of the Graphic Interface

Itineraries can be specified textually by a programmer, but it will be easier for him to use
a graphic interface. We wﬂl describe the work we have done on such an interface in this
subsection. Currently, the itineraries that the interface supports can not be cyclic. Fan-in
or fan-out in the itineraries is supported separately. It is not allowed that both fan-in and

- fan-out exist in the same itinerary.

Again, the user specifies his itinerary on a small graph and our system generalizes
the description to all graphs within the family. The user specifies a set of start nodes for
the paths on his itinerary and gives a sample list of nodes for a complete path within a
small graph. The system will generate an expression describing the itinerary which can
be applied to the set of start nodes to identify the complete itinerary. During this process
the user may be prompted for aljases when needed. The relevant information about the
itinerary will be stored so a program using canister operations can be translated into one

using standard message-passing mechanisms by the compiler.

Our approach is based on the use of local names for communication channels which

may be thought of as ports. The graph editor supports the labeling of ports,

Given a path on an itinerary, the system will generate an expression for the names

12



of the exit ports on the path. Two types of expressions are currently used

e simple path expression: pi1,Pz,...Pn

o transitive path ezpression: (p1,P2,...Pn)"

where p; is the name of an exit port. To identify the path expression, the list of exit ports
is first extracted from the path. The result can be considered as a simple path expression.
This expression will be contracted into a transitive path expression if the list is a nontrivial
repetition of a sublist. For example, suppose a list of exit ports east, east,east,east is
extracted from a path. This list is a repetition of a sublist east, and is contracted into
a transitive path expression (east)’. To be more precise, we define (p1, P2, ---Pn)* (k> 1)
to be the list gained by repeating py,ps,...pn k times, and call py,p2,...pn 2 base list. The
result of the contraction of a simple path expression is (p1, p2,..-Pn)* Where p1,p2,...Pn is

the shortest base list.

Once the path expression is identified, it will be used with the set of start nodes
to identify the itinerary. For each start node we identify a path by following the exit
ports in the path expression and add the path into the itinerary. If the path expression is

transitive, the base list is used repeatedly until it is not applicable.

Example 3.1(b) Consider the band matrix multiplication algorithm. A node
in Figure 3 has six ports: north, south, east, west, northwest, and southeast.
There are three itineraries in this communication graph. For itinerary A, the user selects
the first column to be the set of start nodes. He can specify one of the five rows to be a
sample path on the itinerary. The list of exit ports east, east, east, east is extracted from
the path, and it is transformed into a transitive path expression (east)*. If we start from
a node in the first column and follow the exit port east repeatedly, a complete row can
be identified and added to the itinerary. The resultant itinerary is a directed subgraph
consisting of all the nodes and all the horizontal edges. For itinerary C, a node on the last

row or column is a start node, and a diagonal path is a sample path on the itinerary. The
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path expression is (northwest)*. With this path expression, all the diagonal paths can be

identified even though they have different lengths.

After the itinerary is identified the nodes will be classified according to its list of
ports. The nodes in the same class have the same exit ports and entry ports. Associated
with a class is a predicate describing it. The function in the subgraph package is used to
identify the predicate for a class. The information is needed to translate a program using
canister operations into one using standard message-passing mechanisms. For itinerary A

in the example above, the following information is stored:

classl: predicate: column = MIN
exit ports: east
entry ports: west(dangling)
class2: predicate: column # MIN and column # MAX
exit ports: | east
entry ports: 1lchild, rchild
class3: predicate: column = MAX
exit ports: east(dangling)

entry ports: west

In the example above the itinerary consists of straight lines which do not intersect.
When they do intersect, the user is prompted for aliases. Aliases are needed to distinguish
the different local roles a node plays. When aliases are used a port is virtually a pair of
a port name and an alias. The user does not have to provide aliases if the node supports

the same logical operation on different paths.

Example 3.2(b) To specify the itinerary for the tree summation algorithm
shown in Figure 4, the user selects the leaf nodes to be the start nodes and specify a
path from a leaf to the root. Each node has three ports: 1child, rchild, and parent.
A sample path is described by the transitive path expression (parent)*. A node may
be on several paths from a leaf to the root, but it supports the same logical operation

“summation”. No aliases are needed.
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The information stored by the system is:

classl: predicate: level=MIN (root)
exit ports: parent(dangling)
entry ports: lchild, rchild
class2: predicate: degree=MAX (interior)
exit ports: parent
entry ports: lchild, rchild
class3: predicate: level=MAX (leaf)
exit ports: parent

entry ports: lchild(dangling), rchild(dangling)

For a interior process, a CanGet operation is translated into getting data from ports 1child
and rchild, performing the computation specified by the merge function. A CanPut
operation is translated into sending data through port parent. The leaf and root nodes
have dangling ports. If the external I/O interface supports canister communication, the

canister operations can be translated into I/O operations.

Example 3.3(b) Consider the itinerary for the LU-decomposition algorithm
shown in Figure 5. Each node has four ports: north, south, east, and west. The
predicate describing the set of start nodes is (row # MIN and column # MIN). If
we use (7,7) to denote the node on row 7 and column j as shown, a sample path on the
itinerary is (7,7), (¢ — 1,7), (¢ — 1,7 — 1). The path expression is north, west. A node can
be at different points on the itinerary. For example, node (2,2) is the first on path (2,2),
(1,2), (1,1), the second on path (3,2), (2,2), (2,1), and the third on path (3,3), (2,3),
(2,2). When a node is encountered twice the user is requested to provide aliases. In this
case he can provide a list of aliases (Shift, Pass, Shift) to distinguish the three positions.

The usage of these aliases in a code body has been discussed in Example 3.3(a}).

The nodes on the itinerary are divided into several classes based on the ports

and aliases. Here we give the description of one class(the interior nodes in the mesh) to
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demonstrate the information the system stores.

predicate: degree=MAX
exit ports: (north, Shift), (west, Pass)

entry ports: (south, Pass), (east, Shift)

For a node in this class, a CanGet operation is translated into a read on port south if the

alias is Pass, or a read on port east if the alias is Shift. CanPut is translated similarly.

4 Future Work

In some communication graphs such as n-cubes and butterfly networks, the patterns of the
connections are described in terms of the bits of the id numbers of the nodes. The format
of the predicates used in the subgraph package is being extended so that bit patterns can
be described. We are also considering using display related attributes such as position
coordinates to characterize subgraphs. New reQuirements may appear as tﬁe graph editor
becomes sophisticated and new functions have to be provided by the subgraph package

correspondingly.

The types of itineraries supported by the graphic interface is currently limited.
Basically it supports the specification of simple communication paths with no cycle and

broadcast. We are considering extensions to support more complex itineraries.
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