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Abstract

Of several existing designs for Local Area Networks, the Buffer Insertion Ring has been shown to
provide higher throughputs, lower mean delays and greater spatial reuse than competing designs
such as the Token Ring and Slotted Ring networks. However, one disadvantage is that the normally
unregulated access scheme of the Insertion Ring allows for the phenomenon of “starvation” - when
a network node has to wait too long before it can access the ring. In our work, we demonstrate
that starvation is a serious problem and present a protocol to prevent it. It is shown that the new
protocol is correct, stable and does not substantially degrade the otherwise efficient operation of
the ring.

'This work was done while the author was working at IBM in the summer of 1988.



1. Introduction

As the demands of network users grow in magnitude and complexity, there is a corresponding
need to provide efficient architectures and access mechanisms for Local Area Networks [5]. A special
class of such networks, ring networks [10], has been the subject of several research efforts in the
past decade [5,10]. In this paper, we focus on the Buffer Insertion Ring [6] and examine the issue
of “fair” access to the network.

Buffer Insertion rings offer certain advantages: the atomic operations of the ring are essentially
asynchronous and distributed; there is no need for a complicated clocking mechanism and hence it
is suitable for large distances. In addition, the buffers allow for concurrent access to the ring and
hence provide spatial reuse. In terms of disadvantages, there is a synchronization overhead with
every packet and there may be delays caused by packets travelling through several buffers. We
note, however, that several studies of ring networks have consistently concluded that the Bulffer
Insertion Ring exihibits higher throughputs and lower mean packet delays than other designs of ring
networks as well as alternative LAN architectures {1,7,10,11,17]. However, in contrast to designs
such as the Token Ring, which inherently provide fair access to the medium, the architecture and
access mechanism of the Buffer Insertion Ring allows for the phenomenon of starvation. This occurs
when a network node is prevented from accessing the medium due to heavy usage by other nodes.
We note that, in the literature, this phenomenon is also known as lock-out and is occasionally
alluded to by its antonym, hogging.

In this paper, we argue that starvation is indeed a serious drawback that can occur in large
magnitudes with the type of message traffic found in LANs. We present a media-access protocol for
a full-duplex buffer insertion ring that prevents starvation. We prove the correctness and stability
of the protocol and show that it provides a minimum guaranteed throughput. The protocol has
several attractive properties: it is decentralized, uses only local information and makes efficient
use of the architecture. Furthermore, the protocol operates, providing fair access to the medium,
during certain types of failures.

The organization of this paper is as follows. In the next section, we present a brief outline of the
operation of the basic unidirectional buffer insertion ring and then, in more detail, we describe the
architecture of a full-duplex system with separation of control and transport. Section 3 contains a
discussion on the phenomenon of starvation and our access protocol. Section 5 contains a discussion
of the important properties of the protocol and following that, in Section 6, we present simulation
results. Finally, Section 7 contains our concluding remarks.

2. Principles of Operation

In this section we describe the architecture and basic operation of a full-duplex buffer insertion
ring. We assume that the reader is familiar with the essential principles of a buffer insertion ring
(see [5,6,10] for details) and we restrict ourselves to a simple description below. We focus, instead,

on the full-duplex operation and our mechanism for the exchange of control information between



network nodes.

In a unidirectional buffer insertion ring [6], cach node has only a single transmitter and receiver
and the nodes are connected, cach transmitter to the next node’s receiver, in the form of a ring.
To communicate with another node on the ring, a node packetizes a message and transmits the
message on the ring asynchronously provided that there is no possibility of collision with another
message. This is achieved through the use of a buffer (or register, as it is sometimes known) at
each node, in the following manner.

Consider a node which has a message  to transmit. If the buffer at the node contains a message
y then y is transmitted. When the buffer has been emptied of y, i.e. y has been transmitted, then
the node begins the transmission of message z on the ring, provided that, earlier, during the
transmission of y, there was no incoming traffic. Note that if, during the transmission of z, there
is any incoming traffic then that traffic is switched into the buffer while the transmission of z
continues concurrently. Also, if a node has no messages to transmit, then messages that have to
travel through the node bypass (or cut through) the insertion buffer and, consequently, do not
experience any delay introduced by buffering.

Observe that each node operates in a completely asynchronous and distributed fashion, a prop-
erty we preserve in our protocol. In addition, several concurrent transmissions can take place
independently, a feature not found in several other architectures {3,13,15]. Below, we describe our
full-duplex architecture and the method of transmitting control information.

2.1 Full-duplex Operation

In our full-duplex version of the basic buffer insertion ring (see [14] for further details), each
node possesses two transmitters and two receivers. Figure 1 shows the arrangement of the nodes
in the system. The nodes are connected by full-duplex links and thus, logically, we say that there
are two independent rings and every node has a transmitter-receiver pair in each of the two rings.
The two rings, which we call the I-ring (or Inner ring) and the O-ring (or Outer ring) for simplicity,
carry messages in opposite directions. We note the following distinguishing features of the system:

o Both rings are used at all times, in contrast to some other designs [15] where a second ring is
used as as backup ring.

e The routing is assumed to be fixed, shortest-hop routing; thus, each node transmits to half
the nodes on the I-ring and the other half using the O-ring. For example, in figure 1, node 4

uses the I-ring to transmit to nodes 3,2,1 and 9, whereas the O-ring is used for transmissions
to 5,6,7 and 8.

o Messages are removed from the ring by the destination node.

e Each message packet, in addition to the information and synchronization fields, contains the
source and destination addresses and a special field called the Reservation field to be used in
the protocol, which is described in a later section.

o



Figure 1: A full-duplex buffer insertion ring

o We assume that the packets are of a fixed, constant size. Later, modifications are suggested
for variable-sized packets.

We define a node 7 to be upstream of node j on the I-ring if 7 transmits messages on the I-ring that
reach j or that must pass through j to some other node. Node j is said to be downstream of node
i on the I-ring. Upstream and downstream on the O-ring are similarly defined.

2.2 Control Messages

We now describe the manner in which control information is despatched around the network. In
contrast to several other designs, wherein control information is imbedded in regular messages into
space reserved specifically for it [9,13], in our full-duplex buffer insertion ring, control information
is propagated in separate control messages. We observe the following salient points:

e A control message is a short sequence of bits containing a special sequence of bits, the sending
node’s identity and when necessary, synchronization bits.

e A control message has preemptively higher priority over regular messages and thus, if a regular
message is in transmission, the transmission is interrupted and the control message is sent.
Following the sending of the control message, the transmission of the interrupted regular
message is resumed. At the receiving end, when a message is being sent through the node or
being switched into the buffer, the occurence of the special sequence of bits mentioned above
(a sequence of bits that does not appear in regular messages) causes the control message to

be routed into a control message bulfer. Note that the special sequence is required only when



the transmission of a regular is interrupted, in which case the control message imbeds itself

into a regular message.

e Control messages are sent in the same direction along the ring as regular traffic. We note that,
just as with regular messages, a fixed, shortest-hop routing is used for the control messages.
Thus, for a node on the I-ring to send a control message to its nearest upstream neighbour
(upstream on the I-ring), the node sends the control message on the O-ring. Therefore, control
messages follow the same path as regular messages.

e Although extra hardware is required to support such separation of control and transport, we
believe that the benefits incurred outweigh the additional hardware cost:

- The propagation of control information, sometimes extremely critical, is very fast and does
not depend on the flow of regular message traffic. Thus, in the event of any failure or
system anomaly (such as starvation), the anomaly is swiftly isolated and information
regarding the anomalous situation is rapidly propagated through the system.

- Anomalies such as starvation are caused by upstream nodes and, quite often, by the nearby
upstream nodes. The control messages travel upstream on the opposite ring and thus,
reach the upstream nodes quickly.

- We note that in systems wherein control information is transmitted in a field of a regular
message, space for the field is usually reserved in every message for this information.
Thus, when there is no information to be carried, bandwidth is wasted. If the frequency
with which control information is required to be disbursed is small, then any additional
overhead incurred in separate control messages is recovered in bandwidth gained by not
having to reserve space in regular messages.

In the ensuing section we identify the problem of starvation and, following that, describe a fair
protocol that makes efficient use of the control message separation discussed above.

3. Starvation

3.1 The Phenomenon of Starvation

We now demonstrate that for message traffic that characterizes typical LAN traffic, there can
be starvation of high magnitude. Our result, that starvation can occur in large magnitudes, is
obtained through simulation. While several analytical results are available on buffer insertion rings
[2,7,11,19], these are mostly approximations for metrics such as the mean packet delay. For the

quantities of interest here, an exact analysis appears to be extremely difficult, and hence we use
simulation results.

As described in the above section on the operation of the ring, a node with a message to transmit
has to wait till its insertion buffer is empty. We say that a node is starved if the node has to wait
“too long” for its insertion buffer to be empty, i.e., upstream nodes send too many messages past



Figure 2: Starvation

the given node in quick succession. For example, in figure 2, node A is continuously transmitting
tonode C. As a result, node B finds its insertion buffer always full with an upstream message and
is unable to transmit (for the purposes of the protocol, a precise definition of “too long” is needed
and this is presented in the next section). It might appear that starvation occurs as a pathological
situation that the algebra of the system permits. In the above example, it seems likely that node
A will eventually finish transmitting and node B can then start sending messages. It might also
be reasonably argued that, at moderate loads and Poisson type traffic, the possibility of node A
transmitting several such messages is indeed low. While that is certainly the case, we argue that
under more realistic traffic conditions, the period of waiting can be extremely long.

We observe that LAN traffic is bursty and characterized by transfers of blocks of data - files,
disk sectors, memory pages etc. We consider the following simple model of such traffic: there are
bulk arrivals of fixed size B to each node in the system and destinations are chosen uniformly at
random. The bulk size, B, is in terms of the number of messages constituting the block of data.

Next, let wgk) be the number of messages from upstream that node 7 must wait to pass through

its insertion buffer before being able to transmit the k" message while the k** message is at the
(k)

head of the queue at node 7 (on the I-ring). In other words, w;”’ counts the number of upstream

messages that fill the insertion buffer of node 7 in succession before the buffer empties. Thus, we

(k)

see that, w;"’ is an estimate of the wailing time before successful transmission once a packet is

ready to be transmitted.

In table | we show max‘-‘kiﬁ—{wfk)} for finite K = 50,000 in a system of 10 nodes. The values
are tabulated for different loads and bulk sizes. Observe that with a bulk size of B = 1, the
maximum waiting time is low as expected. This corresponds, roughly, to Poisson type arrivals.
With a relatively small bulk size of 10 messages, the maximum waiting time is already high and
with B = 100, a reasonable unit of file transfer, the waiting time is inordinately high - even at

moderate loads.

In the next section we present a protocol that removes this problem and ensures [air access to

e
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Load max; j w; i

[ B=T]B-10 [ B-100

To2 | o 1w] o |
0.6 2 20 101
1.0 3 26 300
14 3 30 300
1.8 1 40 300
2.2 7 100 300
2.6 8 68 300
3.0 9 89 390
3.4 Il 119 456

3.8 12 130 426
4.2 22 118 849
4.6 20 147 663
5.0 17 124 691
5.4 19 158 900
5.8 19 157 1700
6.2 26 175 2114

Table 1: Existence of starvation

the ring. We note that there are other definitions and measures of fairness that are concerned with
prioritized traffic or users [18]. While it is important to provide mechanisms for handling messages

with a range of priorities, in this paper we do not consider such traffic and focus instead on the
basic access to the medium.

3.2 A Starvation-free Protocol

We now present a protocol for regulated, starvation-free access to our full-duplex buffer insertion
ring. We have argued that the buffer insertion in its full-duplex version offers several advantages
and is an attractive alternative to other LAN designs. It is, therefore, desirable that the protocol
preserve these advantages and, in addition, exploit the control message architecture. We list below
some of the goals in designing our protocol:

e The protocol should make efficient use of the full-duplex architecture and control message
separation.

o The new access mechanism should operate in a distributed manner and require only local
information.

¢ The protocol should be stable and provide a minimum guaranteed throughput.



o The execution of the protocol should not cause the throughput to fall nor should the mean
message delay increase.

® The protocol should be as resilient to failures as possible.

In order to present the criterion by which starvation is determined as well as the access protocol,
we introduce some definitions and notation. Since the operation of the two rings, the I-ring and
the O-ring, are identical, for simplicity the description that follows pertains to only one ring (the
I-ring, for example). We distinguish between the following two terms:

o Transmit. We say that a node transmits a message if the node either transmits a message

originating at the node or transmits onto the ring a message from upstream that is present
in its buffer.

o Insert. We say that a node inserts into the ring when a message locally originating at the
node is at the head of the queue, finds the insertion buffer empty and is able to transmit onto
the ring successfully.

Next, let

n = the number of nodes in the system.

wgk) = the number of upstream messages that the kt* message (arriving to the head of the queue)
at node i must wait for, without being able to transmit.
tSk) = the time of arrival of the k'* message to head of the queue at node i.

T,-(k)(m) = the time at which m upstream messages (and no local messages) are transmitted from

node i after tsk), i.e., after the arrival of the k** message to the head of the queue at node .

‘ri(k)(m) = the time at which m messages (both upstream or local) are transmitted from i after
T (n).

Next we define a cycle:

o Cycle. A cycle is the period between the pairs T‘-(k)(ln) and -ri(k)((l + 1)n) for each n and
1=1,2,3,...etc.

Finally, let

Ii(k)(l) = the number of inserts that node i makes in the cycle delimited by Tl-(k)(ln) and 'ri(k)((l‘ +

)n).
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Figure 3: An example

The above notation is better explained using figure 3. Here i = 2.k = 1l and m =n = [ = 5. We

1th

see that tg“) occurs when the 11'" message generated at node 2 arrives at the head of the queue,

1 115 Sy
Tél )(5) occurs when 5 upstream messages have gone by and T-E, )(:)) occurs when b transmissions

take place from node 7 thereafter.
We define two nodal states: normal and starved with transitions taking place between these two
states as follows:

e normal— starved: when wl(k) = n for any &, i.e., when a message is made to wait for at least
n upstream messages to go by. Thus, a node is declared starved when there is a message at
the head of its transmit queue and the insertion buffer successively fills up with n consecutive

upstream messages.

o starved—normal: Assume that a node has moved into the starved state, i.e., at tgk)(n). Then

the node returns to normal at 'r‘-(k)((L + 1)n) where L is such that L = min,{l|1§k)(l) 2 2},

i.e., at the end of the first cycle in which the node is able to make two inserts.

The state transitions are illustrated through the example in figure 3. We see that in the third cycle,
node 2 is able to insert twice and hence returns to the normal state. We note that, in the above
definitions and example, the superscript k is maintained inspite of higher-numbered messages being
inserted. The emphasis is that the notation is associated with the starvation of the kt? message.
At this juncture, it is important to observe that the state transitions are made asynchronously
and independently based on locally observed phenomena. There is no information that is used

from other nodes or messages in the ring. We now describe the exact mechanism for countering
starvation.



3.2.1 Request messages

The mechanism for countering starvation is based on the following fundamentally simple idea:
when a node is starved, the node sends control messages (called REQuest messages) upstream in
order to cause the upstream nodes to suspend their insertions long enough for node i to insert into
the ring. Equivalently, node i requests the upstream nodes to send it an “empty” or “dummy”
message, which node 7 can then write over and thus, in this fashion, insert its pending message into
the ring.

Node i, when starved, sends a REQ message upstream (and hence on the other ring) at time

tgk)(n) and at times ri(k)(n),ri(k)(2n),...,Ti(k)(Ln), where L is defined as before. Two comments
may be made here. First, we will establish later that no matter how many of the other (n-1)
nodes in the system are requesting for empty messages, an empty message destined for node i will
arrive from upstream no later than n messages after it made the request. For example, in the case

of the request message sent at tgk)(n), an empty message reserved for node ¢ will arrive at i no later

than 'r,-(k)(n). Secondly, bandwidth savings are obtained through the spatial reuse permitted by the
explicit reservation; this is discussed in section 5.

3.2.2 Responding to REQuests

We now describe how the upstream nodes respond to requests made by downstream nodes. In
order to do this, we need the following definition:

o Fi(i): Denote by Fy(i) the farthest upstream node that can send messages to node i along
the I-ring.

Thus, in figure 1, F(9) = 4. Note that Fp(i) is similarly defined for the O-ring. We note that, due

to the routing scheme, Fi(i) is no further than 3 nodes away from node i.

The manner in which an upstream node j responds to requests from a downstream node i
is presented in two categories: one for all upstream nodes j such that j # Fy(i) and the other,
remaining case, j = Fy(i). We denote the request message from node i as REQ(i).

Node j, j # Fi(i), receives REQ(i)

if (node j’s insertion buffer is empty)
and (node j is not starved)
and (node j is not committed to sending an empty message)
then
node j pulls the REQ(i) message off the ring;
node j commits to sending node i an empty message;



node j prepares to send an empty message reserved for node i
else
node j forwards the REQ(i) message upstream
endif

Thus, a node j,j # F(i), sends an empty message to i if and only if it is in a position to do
s0, i.e., if node j itself is not starved, its insertion buffer is empty and it has no other reservation
commitments made. The purpose here is to satisfy a request message as early as possible in its
travel upstream while ensuring that there can be no instability. Note that the empty message is
reserved for node i by using the reservation field described earlier.

Node j, j = Fi(t) receives REQ(i)

The REQ(i) is pulled off the ring and a flag is set indicating
a pending empty message to be sent to node :.
repeat
if (node j’s buffer is empty)
and (no commitment has been made)
then
node j commits to send an empty message reserved
for node i;
node j prepares to send an empty
message reserved for node i

elseif (the message in the buffer is not reserved already)
then

the message in the buffer is reserved for node i
else
node j waits for the message currently in the
buffer to be transmitted
endif
endif

until reserved empty message can be sent to i;

Note that Fy(i) is the last node to see a request message from node i. Clearly, if the insertion buffer
is empty then an empty message reserved for i can be sent to node i immediately. However, the
insertion buffer may contain a message from further upstream. In this case, the upstream message
must be destined for a node that is upstream of node i, from our routing arrangement (also, from
the definition of Fy(z), any node upstream of Fy(i) transmits only to nodes upstream of i). Thus, if
this upstream message is not already reserved, then it can be reserved for node i's use after it has
reached its destination. If node Fy(i)’s insertion buffer contains a message that is already reserved,

then node Fy(i) repeats the algorithm after that message is transmitted, i.e. it waits to reserve an
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empty message for ¢ at the next possible opportunity. In the next section we show that this waiting
period is bounded.

We note that when the starved node, i, finally receives the empty message reserved for it, node i
marks the empty message as ‘not reserved’ if it has no commitments to make, otherwise the empty
message is reserved for a node downstream of i. Then, if node i has a message to be inserted, it is
copied into the empty message and transmitted.

3.2.3 Some Fairness Theorems

Thus far, we have only presented and described the protocol. It is important to be able to
prove some fairness properties about the protocol. Under the mitigating assumption that, due to
the high priority and short lengths of control messages, control messages require negligible time to
propagate compared to regular messages, we show the following:

o A correctness property. A node waits no longer than n messages after making a request to
receive its reserved empty message.

o A stability property. E(rery node is guaranteed to be able to transmit, on the average, once
every n messages. Note that, in the worst possible situation where all nodes have messages
to transmit, this implies that each ring performs no worse than a Token Ring network.

THEOREM 1: A node waits no longer than n messages (that pass through its insertion buffer)
after sending a request REQ) to receive its reserved empty message.

PROOF: Consider a node i, on the I-ring, that sends a REQ(i) message upstream. If the request
can be satisfied along the way by some node j,j # Fi(i), then, clearly, the empty message
arrives at node ¢ no later than } messages later. However, in the worst case, the REQ(i)
message will travel all the way to node Fy(i). In this case the 3 insertion buffers between
Fi(i) and i are full and thus, node i will see at most all of these 3 messages pass through
its insertion buffer. Now, node F(i) may have to wait for at most 2 messages, each already
reserved, to pass through its insertion buffer, in order to reserve an empty message for node
i. This is an additional } messages that node i might have to wait for before receiving its
empty message. Thus, node i waits no more than § + } = n messages. Note that F(i) does
not wait for more than 3 messages above because, according to the protocol, the nodes ]
between ¢ and Fy(i) cannot request again until the times Ti(n), 75(2n), ...ete, i.e., until they

have transmitted n messages themselves.

We note that, in the worst case, all nodes are starved and are continually making requests.
Then nearly every message inserted is copied onto a reserved empty message. Since, cvery message
travels only half way around the ring, cach message is used by two nodes in one cycle. Thus, on the
average, each node transmits twice in every cycle on each ring. Therefore, we see that the capacity
of the full-duplex system is four times that of a single Token ring.

11



THEOREM 2: Each node is guaranteed to be able to insert, on the average, once every n mes-
sages.

PROOF: From Theorem I, a node waits no longer than n messages with each request. Thus, when

a node returns to the normal state, it will have made a fraction of at least YTZ’_-IF = ,‘—‘
insertions on the average. If the node never returns to the normal state, then it makes one
insertion every n messages except for the first message inserted after going into the starved
state. This first insertion might require a wait period of at most 2n messages. Thus, the long

term average is still once every n messages.

In regular traffic, the performance is much better. This conclusion is amply borne out by simulation
results: in the section on performance results, we will see that the average latency (time it takes
for the reserved empty message to arrive) is actually much smaller than n.

(k) Wt

;= n. In practice,

In the above protocol, we have set w can be varied within limits.

A large value of w;k) indicates an optimistic policy in which starvation is not declared too early,

whereas, a small value of wsk) might cause a premature transition into the starved state. The
advantage of an optimistic threshold, as will be evidenced later, is that in waiting longer, an empty

message might arrive due to randomness in traffic and thus, no bandwidth need be wasted in
reservation.

Clearly, wgk) can be larger than n, but there is some question as to how small it could be made

with introducing potential instability into the system. We now show that it is possible to take

wgk) = [3]. There is, however, a small addition required in the protocol: a node moves to the

starved state if it cannot insert or make a reservation for || messages.

THEOREM 3: Each node can send requests after every [ 3] messages and inserts at the minimum

rate of at least once every [3] messages.

PROOF: We consider the case when n is even. For odd n, the behavior is no worse than the
corresponding even ring of size n + 1. In the case that n is even, i = Fy(Fy(7)). Consider the

case that node ¢ is starved and requests empty messages periodically every 3 messages (i.e.

at T‘-(k)('f), Ti(k)('i')...etc). In the worst case, F(7) is also starved and requests empty messages
from 7. Since there are n — 2 remaining nodes and n buffers, Fj(i) receives an empty message
within a finite amount of time. This is used by Fj(7) but reserved for node i. Note that this
can be done at Fy(i) because the message itself is reserved for Fy(i) when it arrives at node
Fr(i). When node 7 receives this message it can be reserved for Fi(i) and this both i and
Fy(i) receive empty messages every 2 messages.

Thus we see that each node inserts into each ring at least once cvery § messages transmitted.

We observe that, in the worst case situation, where every node wishes to insert, the throughput

12



at every node (on each of the two rings) is twice that of corresponding nodes on a ‘Token ring.

Therefore, the total throughput at each node, in this case, is four times that of a similarly loaded
Token ring.

4. Properties of the Protocol

In this section, we outline some of the salient features of the protocol, some of which make the

usage of this protocol together with the full-duplex architecture an attractive alternative to other
LAN designs:

o Decentralized operation. A node determines starvation independently and sends requests
asynchronously. There is no central scheduler and thus the system is more failure resistant.

o Local information. A node only observes variables local to the node in order to determine
starvation and also to determine the times at which requests are despatched. Furthermore,
there are only a few variables - a counter to count upstream messages and local insertions,
and some state variables.

o Correctness and stability. The protocol was shown to be correct and to provide a relatively
high minimum throughput.

o Efficiency. The protocol exploits the full-duplex architecture and contol message separation.
Control messages reach the source of starvation quickly and requests may be satisfied very
early. In a sense, the request messages search for the closest available empty message. We note
that the protocol is easily modified to suit architectures in which the control information is
iinbedded into regular messages. For example, a similar protocol may be used in a full-duplex
Slotted Ring with n slots.

o Spatial reuse. We note that a reserved empty message may waste bandwidth as it travels
along the ring unused. However, this wastage is minimized since the empty messages are
marked with the identity of the node they are reserved for. In this case, the reserved empty
message may be used along the way. We demonstrate this through an example in figure 4.
Assume that node 3 has a message to transmit to node 2 on the I-ring and node 4 sends an
empty message reserved for node 1 on the ring. This message, although reserved for node 1,
is used by node 3, since the message empties before it reaches node 1.

o Failures. We now describe how the protocol operates during node failures (for details on other
types of failures we refer the reader to [1:4]) through an example. Consider the failure of node
6 in figure 5. Then node 5 receives no upstream messages from 6 and thus, is never starved.
Then all requests from nodes 4,3,2 and 1 are pulled off the ring by node 5, which can send
empty messages since it is itself never starved.

The protocol presented here s for fixed-sized packets. In the case that variable-sized packets are
|

permiltted, some modification is necessary. We note that, if a packet is smaller than the fixed size



Figure 4: Minimization of bandwidth wastage

Figure 5: Protocol operation during a node failure



permitted then it may be transmitted immediately. In the case that the packet is larger, we suggest
two possibilities. In the first, the larger packet is broken up and transmitted [16] in a few fixed size
packets. In the second scheme, the cost of breaking up a packet is avoided, and instead, a large
packet waits in a separate buffer for a large enough empty message to arrive. We are at present

unaware of the relative merits of these two schemes and note that a thorough performance study
is required.

5. Performance Results

In this section we present our simulation results: graphs of the mean packet delay against
differing loads and a table of the mean reserved message latency. We compare not only our protocol
with the unregulated buffer insertion ring, but also with other standards such as the Token Ring
[4,10] and the QPSX Dual Bus [8,12,13]. We use the following labels on each of the plots:

o T1 - the single Token Ring.

o T2 - two Token rings operating in parallel. Since we use full duplex links in our architecture, a
fair comparison with the token-passing ring requires a comparison with two such token-passing
rings operating concurrently.

e B1 - the unregulated buffer insertion ring.

e B2 - the buffer insertion ring using our protocol with wkk) = n, i.e., when the wait period

before transiting to the starved state is n.

e B3 - the buffer insertion ring using our protocol with wgk) = 2n. As discussed earlier, a
node may move into the starved state “too soon” and thus unnessarily request an empty
message. A more optimistic scheme will permit a longer waiting time and hence, a more
cautious transition into the starved state. In some cases, particularly with small bulk sizes,
this may result in bandwidth savings.

QPSX - the QPSX dual bus architecture and access protocol [8,13].

For each system considered above, we considered idealized operating conditions. For example,
in all of the above systems we assume that messages are removed by destination. In the simulation
of the Token Ring, we assume that there is no delay in passing the token. In the case of QPSX,
we allow for spatial reuse along the the bus and assume that a node does not wait to set a request
bit (see [13]). For the buffer insertion ring, we assume no additional overhead in address decoding
and control messages. Next, we assume that destinations are chosen at random from a uniform
distribution over the set of possible destination nodes. Finally, we take the bulk arrival process at
each node to be a geometric random variable with fixed bulk sizes and choose - 10. We note
that the load factor in cach graph has been normalized so that the throughput of a single Token
ring is unity and also, the delay is measured in terms of the number of messages.



Load La‘f&icy —I
B=10 [ B=100 |
0.2 1.555 1 3.731
0.6 1.737 1 2.668
1.0 1.796 2.668
1.4 1.835 | 2.374
1.8 | 2.040 | 2.690
2.2 | 2.050 2.719
2.6 | 2127 | 2.717
3.0 | 2.248( 2.759
3.4 | 2.258 | 2.609
3.8 | 2.324 2.683
4.2 | 2364 | 2.728
4.6 | 2.466 | 2.602
5.0 | 2.506 2.708
54 | 2.561 2.743
58 | 2.643 | 2.723
6.2 | 2.715| 2.785

Table 2: Average latency of reserved nessages

Figure 6 shows the estimated mean packet delay, against increasing load for the system with
unit bulk sizes. We observe that QPSX performs better than both the Token Rings but that all
of the buffer insertion rings exhibit dramatically better performance than the other designs. This
behavior, both in order and degree, is found in the plots with higher bulk sizes of 10 and 100 in
figures 7 and 8 respectively. We note that the protocol introduces no degradation in throughput
and the difference in mean packet delay, with or without the protocol, is negligible. Next, we
observe that for a small bulk size, the optimistic scheme, B3, performs slightly better than B2, the
one described in earlier sections. This suggests that the waiting time threshold (before transiting
to the starved state) be a dynamically variable system parameter such that large values are used
in the presence of small bulk sizes and small values are used for large bulk sizes.

In table 2, we tabulate the average latency (the average number of messages before the arrival
of a reserved empty message when a request was made) with differing loads and bulk sizes of 10

and 100 messages respectively. We note that although the worst case latency is 10, the number of
nodes, the results show that the average is far less.
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6. Conclusions and Future Work

In this paper, a full-duplex architecture with control message separation for buffer insertion
rings was presented. It was shown that the problem of starvation occurs in realistic LAN traffic.
A protocol was introduced to ensure fair access to the network and it was shown that the protocol
is correct, stable and possesses several attractive properties in addition to preserving the usual
advantages of buffer insertion rings over other designs. Simulation results indicated that the intro-
duction of the protocol caused negligible degradation in performance and, in any case, exhibited
significantly better performance than competing systems.

For future work, we observe that there are several issues of interest worth pursuing here. Firstly,
it is desirable to modify the design for handling variable-sized packets efficiently. Next, we note
that, in order to support traffic with real-time constraints such as voice traffic (isochronous traffic),
a further modification is required wherein certain timing guarantees must be made. Finally, we
note that an investigation into the effects of various system parameters on overall performance
such as the number of nodes, varying bulk sizes, and different classes of traffic would constitute an
important direction for future research in this area.

Acknowledgements:

The author would like to thank Israel Cidon, Inder Gopal and, especially, Yoram Ofek for an
introduction to the problem studied here, for several helpful discussions and, last but not least, for
a thoroughly enjoyable summer at IBM.

REFERENCES

(1] W.Bux, “Local Area Subnetworks: A Performance Comparison”, IEEE Trans. on Commu-
nications, Oct 1981.

[2] W.Bux and M.Schlatter, “An Approximate Method for the Performance Analysis of Buffer
Insertion Rings”, IEEE Trans. on Communications, pp. 50-55, Jan 1983.

[3] W.Bux, “Modeling Token Ring Networks - A Survey”, IBAl Research Report, RZ-1615, 1987.

[4] D.Dykeman and W.Bux, “An Investigation of the FDDI Media Access Control Protocol”,
IBM Research Report, R7-1591, 1987.

17



[5] D.C. Flint, “The Data Ring Main - An Introduction to Local Area Networks”, Hiley, 1983.

{6] E.R.Hafner, Z.Nenadal and M.Tschanz, “ A Digital Loop Communication System”, IEEE

Trans. on Commaunications, June 1974.

[7] W.Iilal and M.T.Liu, “Analysis and Simulation of the Register-Insertion Protocol”, Proc.

Computer Networking Symposium, 1982.

(8] J.L.Hullet, “New Proposal Extends the Reach of Metro Area Nets”, Data Communications

(9]

(10]

(L1]

Magazine, Feb 1988.

A.A Lazar, A.Patir, T.Takahasi and M.Zarki, “MAGNET: Columbia’s Integrated Network
Testbed”, IEEE J. Selected Areas in Communications, pp. 859-871, Nov 1985.

M.T.Liu and D.M.Rouse, “A Study of Ring Networks”, Ring Technology Local Area Net-
works”, I.N.Dallas and E.B.Spratt (Editors), Elserier Science Publishers, 1984.

W.M.Loucks, V.C.Hamacher, B.Preiss and L.Wong, “Short-packet Transfer Performance in
Local Area Rings”, Proc. of IEEE Infocom., San Francisco, 1984.

[12] J.F.Mollenauer, “Networking for Greater Metropolitan Areas”, Data Communications Mag-

(13]

14

[15]

[16]

[17]

(18]

(19]

azine, Feb 1988.

R.M.Newman, Z.L.Budrikis and J.L.Hullet, “The QPSX Man”, IEEE Communications
Magazine, Apr 1988.

Y.Ofek and I.Cidon, “Metaring: A Reconfigurable Chordal Ring with Spatial Reuse”, IBM

Research Report, in preparation.
F.E.Ross, “FDDI - A Tutorial”, IEEF Communications Magazine, May 1986.

J.F.Shoch, “Packet Fragmentation in Inter-Network Protocols”, Computer Networks, Feb
1979.

W .Stallings, “Local Network Performance”, [EEE Communications Magazine, Feb 1984.

W Stallings, “Fairness in LANs: Is the Performance Price Worth [t?”, Data Communications
Magazine, Feh 1988.

A.Thomasian and H.Kanakia, “Performance Study of Loop Networks Using Buffer Inser-
tion”, Computer Networks, Dec 1979.

18



DELAY

DELAY vs. LOAD (Butk size= 1)

10=

T |
-+ QPSX

N -—53

' -+ 32
=31

" ! -T2
-a- T

c T T T T T T T 1 T

0O AN 1D 150 .00 2,50 200 350 00 4,50 5.00 5.50 6.9

L0AD

Figure 6: Delay vs. Load for unit bulk size
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DELAY vs. LOAD (Bulk size = 10)
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DELAY vs. LOAD (Bulk size = 100)
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Figure 8: Delay vs. Load for a bulk size of hundred messages



