Embedable Problem Solving Architectures:
A study of integrating OPS5 with GBB

Daniel D. Corkill

March 1989
COINS Technical Report 89-32

Submitted to the Third Workshop on Blackboard Systems to be held at IJCAI-89,
Detroit, Michigan, August 23, 1989.

Embedable Problem Solving Architectures:
A study of integrating OPS5 with GBB

Daniel D. Corkill

.Department of Computer and Information Science
University of Massachusetts
Ambherst, Massachusetts 01003

March 1989

Abstract

Typically, problem-solving “shells” are developed with a Ptolemaic view of their
universe. While they may have sophisticated interfacing capabilities with subordinate
modules, they cannot be used as components of a larger problem-solving system. This
paper describes the need and requirements for problem-solving architectures that can
be embedded within other architectures and that can coexist with other instances
of themselves and of other systems. The additional requirements needed to produce
an embedable architecture are minor and the increased applicability of the problem
solving architecture is substantial.

A specific case of system embedding arose with the Generic Blackboard Devel-
opment System (GBB). Initial GBB users coded knowledge sources (KSs) directly
in Common Lisp. But why not allow KS writers to code KSs in their favorite Al
language? In principle, a KS could be written using any shell or language embedded
within GBB. We pursued this idea by embedding the public domain version of OPS5
within GBB. Our observations and the specifications for embedable architectures
presented here are the result of generalizing this experience.

This research was sponsored in part by donations from Texas Instruments, Inc., by the National Science
Foundation under CER Grant DCR-8500332, and by the Office of Naval Research, under a University
Research Initiative Grant (Contract N00014-86-K-0764).

Embedable Problem Solving Architectures Corkill 2
1 Introduction

The specifications for an embedable! problem-solving architecture presented here began
with a “simple” goal: integrating a popular rule-based AI language (OPS5 [1]) into the
Generic Blackboard Development System (GBB) [2,3]. GBB contains a high-performance
blackboard database compiler and runtime system that can be extended into a complete
blackboard “shell” by the addition of a control shell and knowledge source (KS) rep-
resentation languages. Initial versions of GBB required application developers to code
KSs directly in Common Lisp using functions provided by GBB’s blackboard database
runtime system. Although Common Lisp is an appropriate language for computational
KSs, many knowledge-based KSs can be more easily expressed using rule- or frame-based
Al languages.

Some blackboard systems provide a specialized language for writing KSs [4,5]. We
envisioned a different approach with GBB. Why not allow KS writers to code KSs in their
favorite Al language? There could be KSs written in native Common Lisp, in OPS3, in
PROLOG, and in any number of popular AI shells and languages. In this way, the KS
independence of the blackboard paradigm would be extended from the knowledge itself
to the language used to codify the knowledge.

Such architectural independence among KSs is a restricted form of the multiarchi-
tecture integration approach exemplified by the ABE project [6]. Instead of ABE’s

" recursively-defined module hierarchy containing primitive language framework modules
at its leaves, GBB’s KS shell approach integrates modules as a single-level structure
within the blackboard KS framework.? This large-grained, KS shell viewpoint reduces
the complexity of embedding a problem solver within GBB. From the perspective of the
blackboard’s KS scheduler, a KS written in OPS5 (or any other embedded language) is
not much different than a KS written in Common Lisp. Both are subroutines with spe-
cific calling conventions that perform blackboard read/write operations. Once called, an
OPS5 KS instance operates as a “regular” OPS5 problem solver, except for commands
to access the blackboard and to return control back to the KS scheduler at the end of the
KS computation. We felt that this simple subroutine invocation boundary would make
embedding a wide range of existing Al architectures within GBB an easier task than the
ABE integration effort.

As the scope of Al applications grows beyond restricted domains, the ability to in-
tegrate multiple expert systems or problem-solving techniques together is increasingly
important. The blackboard framework’s cooperating KS model is attracting experi-
menters who are using the blackboard model as a means of integrating heterogeneous

1The form of embedding considered here in which a problem solver is made coresident with other
problem solvers in the same Common Lisp environment differs from integrating a C-based Al language as
the sole problem-solving component of a general-purpose computing application. The latter meaning is
often implied when advertising an expert system as “embedable.”

Whether or not the term “embedable” is a suitable extension of English is controversial. We acquiesce
to increasingly standard practice by using “embedable” to succinctly capture the notion of a system that
can be embedded within a larger system.

2Qur proposed embedable architecture interface specifications (discussed in Section,4) are similarly
related to ABE’s black box (BBOX) framework.

Embedable Problem Solving Architectures Corkill 3

problem solvers. To date, such integration efforts have typically involved distributed ma-
chines connected by a communication protocol suggestive of a blackboard system. Such a
“paste-up” approach is inappropriate as a general technique. Use of heterogeneous prob-
lem solvers (represented as independent KSs) should not require networked KS execution
merely to circumvent the inability of problem solvers to be coresident. Such neworking is
both excessive and ignores the important issue of opportunistic control of individual KS
instances. In general, the problem to be addressed is one of embedability—not distributed
blackboards. Although embedding requires the individual KS shells to be coresident in
the same environment (in our case, a single Common Lisp image), the basic cooperating
KS problem-solving model and control machinery operate normally. It is this approach
to heterogeneous problem solving that is considered in this paper.

With our vision of GBB KS shells in place, we began modifying OPS5 to become
GBB’s first KS shell.® As with many goals that are simple in principle, achieving an
integration of OPS5 with GBB required dealing with a number of implementation in-
compatibilities. Our efforts have resulted in both a successfully integrated OPS5/GBB
KS shell and an improved understanding of the requirements for embedding a problem
solving system within another problem solving system. Our experiences and recommen-
dations should be useful to anyone contemplating a similar integration effort.

2 OPS5 and GBB

What would a GBB/OPS5 KS instance look like? Each GBB/OPS5 KS instance would
have its own private working memory (WM) and a knowledge base (KB) shared with
other instances of the same KS. Its WM would be appropriately initialized with KS
stimulus data and then control would be transferred to OPS5. At this point, one or more
OPS5 KB rules have been triggered by the insertion of the stimulus data. Some of these
rule activations might include retrieving other objects from the blackboard and placing
them or some of their attributes in WM. The OPS5 KS instance would also likely create
or modify objects on the blackboard. Finally, it might return one or more values back to
GBB’s KS scheduler indicating the completion status of the KS.4

Note that the WM of OPS5 is conceptually and implementationally distinct from the
blackboard (Figure 1). The private computations held in WM should not be seen by other
instances of OPS5 KSs or by any other KSs in the blackboard application. Similarly, it
is inappropriate to run every blackboard modification through the RETE network of
every OPS5 KS instance. Finally, the OPS5 inference engine and the blackboard’s KS
scheduling cycle should be completely independent.

Depending on the control shell used, instantiating and invoking a GBB/OPS5 KS
can require a number of KS activities. Our initial integration efforts focused on GBB’s

“simple shell” control shell that implements the precondition/action KS invocation model
first used in the Hearsay-II speech understanding system (7). In the “simple shell,”

30PS5 was selected as the initial KS shell for a number of reasons including popularity and publicly-
available Common Lisp source code.

“For example, in GBB’s “simple shell” control shell, a KS can return a special termination value
indicating to the shell that a solution has been found a.nd that KS instance invocations should cease. .

o - - .- ——ew---———n

! OPS5 '
| :
1
L[WM KB |
| |
] !
] [}
stimulus/ unit creation/
retrievals modification
-------- 1
-------- 1
BB

Figure 1: GBB’s Blackboard and OPS5’s Knowledge Base (KB) and Working Memory
(WM).

a KS is declared as two distinct but related modules: a precondition procedure and
an action procedure. The precondition procedure is invoked on a stimulus blackboard
object that matches a defined condition (representing the types of blackboard events of
interest to the KS). The precondition procedure typically uses the stimulus object as a
context for searching for other relevant blackboard objects. If sufficient data are found,
the precondition procedure returns a local estimate of the importance of scheduling the
action portion of the KS.

The GBB/OPS5 KS shell allows either the precondition procedure, the action proce-
dure, or both to be coded in OPS5. The two procedures are effectively distinct modules
(with distinct KBs) coupled only by a data passing convention in the stimulus/response
frame of the KS instance. :

Another way of looking at the relationship between GBB and OPS5 is to consider
OPS5’s three major components: the QPS5 inference engine and support code, the KB,
and the WM. If any KS precondition procedure or action procedure uses the GBB/OPS5
KS shell, the OPS5 inference engine must be loaded into Common Lisp.® Each precon-
dition procedure or action procedure requires a separate instance of an OPS5 KB to
be defined and maintained within GBB. Finally, if GBB/OPS5 precondition or action
procedures can be interrupted or executed in parallel, every active GBB/OPS5 KS in-
stance (initiated but not completed) requires a separate instance of an OPS5 WM. These
relationships are illustrated in Figure 2.

GBB’s “simple shell” buffers all blackboard events (the triggers for KS precondition
procedure invocation) until the end of the currently executing procedure. This means
that “simple shell” KS procedures written in OPS5 are not interrupted by the execution
of precondition procedures. This is not the case with all GBB control shells. To support

SSince both GBB and OPS5 are written in Common Lisp, a tight coupling (desired for efficiency)
requires they reside in the same Common Lisp heap.

Embedable Problem Solving Architectures " Corkill 5

~

wmi ~ / WM;
KB! \
wMmy _ wMl
OPS5
Inference
Engine

WM2

™~
L1

KB2 W3

WM2

Figure 2: Instances of the three major OPS5 Components.

multiple, interruptable procedures, additional embedding efforts are required. We define
three increasingly powerful embedding levels based on KB and WM instance execution
relationships:

1.

Serially reusable: A serially-reusable embedable system must be able to be invoked
on an instance of a KB with an appropriately initialized WM. This is the minimum
required for integration in GBB.

Interruptable: An interruptable embedable system must be able to be suspended
while another instance of a KS and WM. are processed.® The computation can be
resumed when the second instance is completed or interrupted. An interruptable
system requires the ability to save and restore the execution context of the system.

Interactive: An interactive embedable system is able to asynchronously receive and
assimilate changes to its WM (either created directly by another process or in response
to triggering events). Interactive systems operating on a single processor would have
their executions time-shared by a process scheduler. In a multiprocessing setting, mul-
tiple interactive systems could be executing simultaneously. In addition to managing

the KB and WM information, this capability level requires care in implementing the
inference engine.

We consider only serially-reusable embedding in the remainder of the paper.

©This issue is local to the internals of the KS shell. Problems associated with suspending/resuming KS

instances in general are another matter.

Embedable Problem Solving Architectures Corkill 6
3 The OPS5 Modifications

As with most Al shells and languages, the publicly-available OPS5 implementation’ does
not support multiple instances of the KB or WM. We collapsed all global information
associated with a KB or WM instance into one of two global “context” structures to
simplify context switching.® This included moving property list information into the
appropriate global context. Once this effort was complete, running OPS5 on a particular
KB and WM instance simply requires binding the appropriate context structures to these
two global variables.

A means for defining each KB instance was also needed. Each KB ruleset is named
and is compiled, stored, invoked, and potentially redefined using its name. In essence,
we modified OPS5 to support a library of named, independent KB rulesets. Defining

a particular KB ruleset merely involves enclosing the rules within a KB definition form
naming the ruleset:

(ops-define-kb name (rule; rule; ... rule,))

When invoked, a GBB/OPS5 KS execution needs to interact with GBB’s runtime
blackboard routines. Since both GBB and the OPS5 implementation were in Common
Lisp, interaction might appear to be a simple issue. In fact, even with OPS5’s external
routine capabilities, interacting with GBB required substantial modifications.

Consider GBB’s retrieval operation find-units. Find-units represents a blackboard
retrieval pattern as a nested list of specifications and values. OPS5 does not provide
support for list objects, neither internally nor as part of its external routine interface.
How could a GBB/OPS5 KS construct a retrieval pattern?

GBB’s find-units function also returns a list of the retrieved blackboard objects. This
need for a list datatype could be circumvented by entering each of the returned objects as
a separate WM element. This approach hides the common retrieval relationship among
the returned objects. Another approach would use an OPS5 vector-attribute to contain
the returned items. The disadvantage with this approach is lack of control over the
number of retrieved elements and therefore a potentially unbounded WM element size.

Since lists were needed to represent GBB patterns anyway, we decided to extend OPS5
to include a “list” datatype that was atomic from the perspective of OPS5, but could be
passed as a list to GBB. We then added the following “pseudo-list” operators to OPS5:
$cons, $first, $list, $quote,® and Srest.

The external routine interface in OPS5 is cumbersome to use from a Common Lisp
environment. In particular, it requires the subroutine to explicitly manage the passing
of values through OPS5’s result element. We added a new GBB/OPS5 operator, cl-call,
that automatically performs result element value management, allowing any number of
evaluated arguments to be passed to an external Common Lisp function. Multiple return

7All remaining references to OPS5 pertain to this public version.

8The original implementation contained well over 200 global variables! Many were eliminated using
Common Lisp lexical binding techniques.

90PS5’s /[operator also functions as $quote for pseudo-lists.

’,

Embedable Problem Solving Architectures Corkill 7

values are automatically placed into the result element for extraction within OPS5. Cl-
call transparently supports the GBB/OPS5 pseudo-list datatype extensions. |

A new operator return-values was added that terminates GBB/OPS5 recognize-act
cycle and returns multiple values to the calling routine. The value nil is returned if the
last recognize-act cycle evaluates an OPS5 halt operator or if no further rules remain to
be fired.

Table 1 contains an example of a GBB/OPS5 precondition procedure for a simple
synthesis KS. The example illustrates the use of cl-call, pseudo-list, and return-value
operators.’® For comparison, the same precondition coded in Common Lisp is shown in
Table 2.

Tracing and debugging a GBB/OPS5 KS execution is also an issue. The OPS5 imple-
mentation provides its own interactive command loop, watch, and trace facilities. When
OPS5 is used as an embedded system, these facilities are disabled by default. What is
needed is a way to selectively enable them on a GBB/OPS5 KS instance-specific ba-
sis. We extended the OPS5 initialization command to specify whether or not each
invocation of a named KB should enter OPS5’s interactive command loop for debugging
purposes.’! The initialization command is also used to control the tracing (watch) level
and whether history recording (for “backing up”) is enabled.

There are two disadvantages with our simple extension. First, a single KB instance
can be invoked many times during in a blackboard application (once per KS instance).
Only a particular invocation may need to be debugged. We should extend our KB-
specific command loop entry to be conditional on the initial contents of WM. The second
disadvantage is that the debugging information is kept within the KB instance itself. To
enable/disable debugging, the desired KB(s) must be individually edited or redefined.
A more global specification of debugging needs is more appropriate. Given the specific
requirements of individual shell and language debugging and tracing tools, however, it
appears difficult to find an acceptable “common denominator” encompassing all tools.
A better approach is to have each shell provide a facility for entering/modifying the
debugging and tracing specifications for its KB instances (see next section). We have not
yet made this modification to GBB/OPS5.

4 A Proposal: An Interface for Embedable
Architectures

What have we learned from our modifications of OPS5? What generalizations can we
make for repeating the procedure with another Al shell or language?
To review, OPS5 required the following modifications to be embedded within GBB:

* It must be able to define and maintain multiple, independent KB instances.

iOBecause it performs counting, this example is better suited to Common Lisp than OPSS.
If the OPS5 debugging command loop is enabled, the OPS5 invocation does not immediately return
when a return-values or halt command is evaluated or when there are no further rules to execute. Instead

an explicit exit command must be entered. This requirement is especially useful when determining why
rule firing stagnated. :

Embedable Problem Solving Architectures Corkill

(ops-define-kb SYNTHESIS-KS-PRECONDITION
((literalize count count)
(literalize belief value)
(literalize supporting-hyps hyps)
(literalize counting-hyps hyps)

(startup (watch 0) (disable back) (disable halt) (disable break))

(p INITIAL
;3 When triggered with a stimulus-hyp, locate other hyps on the same
;3 blackboard level with a value within 3 of the stimulus-hyp’s
;; value. Prepare to count them and determine the maximum belief
;3 value.
(stimulus <stimulus-hyp>)

-->
(bind <found-hyps>
(cl-call
find-units
hyp

(cl-call make-paths :unit-instances <stimulus-hyp>)
($list :ELEMENT-MATCH :within
:PATTERN-OBJECT
($1ist :INDEX-TYPE // (:DIMENSION value :TYPE :point)
:INDEX-O0BJECT (cl-call-hyp$value <stimulus-hyp>)
:DELTA // ((value 3))))))
(make supporting-hyps “hyps <found-hyps>)
(make counting-hyps “hyps <found-hyps>)
(make count “count 0) A
(make belief ~“value 0))

p COUNT-FOUND-HYPS
; Determine the number of supporting hyps and the maximum belief
; among the supporting hyps:
{ <Counting-hyps>
(counting-hyps ~“hyps {<hyps> <> nill}) }
{ <Count>.
(count “count { <value> <=> 0 }) }
{ <Belief>
(belief “value { <belief-value> }) }

e wo o~

-—>
(modify <Belief>
“value (cl-call max (cl-call hyp$value ($first <hyps>))
: <belief-value>))
(modify <Count> ~count (compute <value> + 1))
(modify <Counting-hyps> ~hyps ($rest <hyps>)))

(p FAIL
;; Return 0 indicating failure to instantiate the KS:
(count “count <= 2) --> (return-values 0))

(p SUCCEED
;3 Return the max belief value as the KS instance rating and the
;; stimulus/response frame data:

(counting-hyps “hyps = nil)

(count ~“count > 2)

{ <Supporting-hyps>

(supporting-hyps ~hyps { <hyps> <> nil }) }

(belief ~“value <belief>)

(stimulus <stimulus-hyp>)

-—>

(return-values <belief> ($list <stimulus-hyp> <hyps>)))))

Table 1: The Synthesis Precondition in GBB/OPS5.

Embedable Problem Solving Architectures Corkill 9

(defun SYN-KS-PRECONDITION (stimulus-hyp)
(let ((supporting-hyps
- (find-units
*hyp
(make-paths :unit-instances stimulus-hyp)
¢ (:ELEMENT-MATCH :within .
:PATTERN-OBJECT (:INDEX-TYPE (:DIMENSION value :TYPE :point)
: INDEX-0BJECT , (hyp$value stimulus-hyp)
:DELTA ((value 3)))))))
(cond ((> (length supporting-hyps) 2))
(values (mapc-max ’hyp$belief supporting-hyps)
(1ist ‘stimulus-hyp supporting-hyps)))
(t 0))))

Table 2: The Synthesis Precondition in Common Lisp.

o It must be able to be called as a subroutine with a particular instance of its KB on
an appropriately initialized WM. It may be required to return values to its caller.

e It must be able to “call-out” to other modules (many shells already have this capa-
bility). A well integrated call-out capability supports an extensible “foreign” data
structure capability (including lists!) and allows the results of a call-out to be used
as part of its inference mechanism.!?

The following proposal describes interface requirements for serially-reusable embed-
able systems. This proposal extends each system to include a KB library facility for
managing and invoking instances of the system with a specified KB. By extending each
system to meet these interface specifications, the details of managing KBs are encapsu-
lated within the system itself. Such modularity is important, especially if proprietary KB
representation mechanisms are to be used within a larger system.

zzz-initialize
This function performs all initializations for shell zzz that are independent of a particular KB

instance. This function is called once (no matter how many KB instances of the shell are to

be used), and must be called before any of the following interface functions. With some shells,
this function may be unnecessary.

zzz-define-kb kb-name [kb-declarations] [compile?]

This function instructs shell zzz to create and initialize a new entry in its KB library named
kb-name. If the shell supports declarative initialization of its KB, the optional kb-declarations

value can be used to pass the initialization data to the shell. If compile? is true and the shell
supports KB compilation, the KB representation is compiled.

zzz-load-kb kb-name filename

'2The OPS5 and GBB/OPS5 implementations do not allow external calls to be in the left-hand side of
rules, an inconvenience. : :

Embedable Problem Solving Architectures Corkill 10

This function instructs shell zzz to load KB data from file filename into its KB library entry
named kb-neme. It is an error if name has not been previously defined using zzz-define-kb.

zzz-edit-kb kb-name [compile?]

This function instructs shell zzz to provide interactive editing support for its KB library entry
named kb-name, if the shell supports interactive KB editing. If compile? is true and the shell
supports KB compilation, the KB representation is compiled at the completion of editing.

zzz-exit-kb naeme tnitializations

This function performs cleanup activities after shell zzz has been invoked in a serially-reusable
fashion.13

The function can return multiple values when shell zzz completes. The mechanism for speci-
fying these values is dependent upon the shell.

zzz-save-kb kb-name filename

This function instructs shell zzz to save KB data from its KB library entry named kb-name
into file filename. It is an error if name has not been previously defined using zzz-define-kb.

zzz-delete-kb kb-name

This function instructs shell zzz to delete all traces of its KB named kb-neme. The result is
as if KB name had never been defined.

zrz-invoke-kb name initializations

This function instructs shell zzz to begin executing with the KB named name and a new WM
instance initialized according to initializations.

The function can return multiple values when shell zzz completes. The mechanism for speci-
fying these values is dependent upon the shell.

zzz-debug-kb name

As with GBB/OPSS5, tracing, stepping, and other debugging techniques are important. This
function causes shell zzz to ask the use how invocations of its KB library entry named kb-name
should be conditionally traced, single-stepped, etc. The details are specific to the particular
shell.

A system supporting this interface can be quickly embedded in another architecture
(such as GBB). Here is an example of the control shell interface for a GBB/OPSS5 pre-
condition procedure invocation:

13The need for this capability was pointed out by an anonymous reviewer. .

Embedable Problem Solving Architectures Corkill 11

"(defun RUN-OPS5-PRECONDITION (ks stimulus)
(ops5-invoke-kb ks
‘(make (stimulus ,stimulus))))

From within the embedded system the following capabilities are required:

¢ The ability to call external routines. In GBB’s case, this includes the ability to con-
struct and receive list data structures for interfacing to GBB runtime blackboard retrieval
routines.

o The ability to return values to the calling routine. In GBB’s “simple shell” case,
precondition procedures must return a KS rating value and (optionally) a stimulus/response
frame data structure. KS action procedures can return a termination indicator informing
the control shell to terminate its KS scheduling cycle.

The details of these two capabilities are specific to the particular shell or language. This interface
proposal merely requires that the capabilities be present.

Although the proposed interface specifications have been developed specifically for
GBB and OPSS5, we believe that the issues of managing knowledge base libraries, in-
voking and exiting a shell, and debugging apply to the general problem of integrating

heterogeneous problem solvers into larger systems. Of course, we have not validated this
belief.

5 Summary and Status

Even the best problem-solving architecture can be improved by making it embedable. We
began by considering the requirements for embedding OPS5 within the Generic Black-
board Development System (GBB). Although modifying the publicly-available OPS5 im-
plementation was an effort, designing a shell with embedding requirements in mind will
not significantly complicate its implementation or reduce its efficiency. The OPS5 modi-
fications have resulted in a well-integrated GBB KS shell.

The OPS5 modification experience also formed the basis for our proposed embedable
architecture interface specifications. We are integrating other AI languages into GBB,
using the above interface specifications as a common protocol.

Finally, the lessons learned from embedding OPS5 have also been applied to GBB
itself. Multiple independent blackboards and control shells can now be embedded in a
higher-level architecture if needed. We have not used this capability however.

References

[1] C. L. Forgy. OPS5 reference manual. Technical Report CMU-CS-81-135, Computer Science
Department, Carnegie-Mellon University, Pittsburgh, Pennsylvania, 1981.

[2] Daniel D, Corkill, Kevin Q. Gallagher, and Kelly E. Murray. GBB: A generic blackboard
development system. In - Proceedings of the Natzonal Conference on Artificial Intelligence,

Embedable Problem Solving Architectures Corkill 12

[4]

[5]

7]

pages 1008-1014, Philadelphia, Pennsylvania, August 1986. (Also published in Blackboard
Systems, Robert S. Engelmore and Anthony Morgan, editors, pages 503-518, Addison-Wesley,
1988.).

Daniel D. Corkill, Kevin Q. Gallagher, and Philip M. Johnson. Achieving flexibility, efficiency,
and generality in blackboard architectures. In Proceedings of the National Conference on Ar-
tificial Intelligence, pages 18-23, Seattle, Washington, July 1987. (Also published in Readings
in Distributed Artificial Intelligence, Alan H. Bond and Les Gasser, editors, pages 451-456,
Morgan Kaufmann, 1988.).

Alan Garvey, Michael Hewett, M. Vaughan Johnson, Robert Schulman, and Barbara Hayes-
Roth. BB1 User Manual. Knowledge Systems Laboratory, Departments of Medical and
Computer Science, Stanford, California 94305, Common Lisp edition, October 1986. (Pub-
lished as Working Paper KSL 86-61, Knowledge Systems Laboratory, Departments of Medical
and Computer Science, Stanford University, Stanford, California 94305.).

L. Baum, R. Dodhiawala, and V. Jagannathan. Boeing Blackboard System, version 1.0. Tech-
nical Report BCS-G2010-31, Boeing Computer Services, P.O. Box 24346, Seattle, Washington
98124, July 1986.

Frederick Hayes-Roth, Lee D. Erman, Scott Fouse, Jay S. Lark, and James Davidson. ABE:
A cooperative operation system and development environment. In Mark Richer, editor, A
Tools and Technigues. Ablex Publishing Corporation, 1988. (Also published in Readings in
Distributed Artificial Intelligence, Alan H. Bond and Les Gasser, editors, pages 457-489,
Morgan Kaufmann, 1988.).

Lee D. Erman, Frederick Hayes-Roth, Victor R. Lesser, and D. Raj Reddy. The Hearsay-
II speech-understanding system: Integrating knowledge to resolve uncertainty. Computing
Surveys, 12(2):213-253, June 1980.

