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Abstract

Explanation Based Learning requires a great deal of information in order to create proofs. This
paper suggests that the use of proofs in EBL is primarily to constrain search. Therefore an
alternate approach for EBL is to use non-provable explanations to constrain search and use
performance testing to discriminate between the resulting generalisations. The approach is
determined in the domain of English word pronunciation.
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1 Introduction

Explanation Based Generalization [Mitchell et al., 1986] and Explanation
Based Learning [Dejong and Mooney, 1986) (both referred to as EBL here-
after) have become popular techniques because they require few examples
and allow the use of domain information. By a deep analysis of a single
example EBL can make significant generalizations.

EBL, however, requires a great deal of domain knowledge. This paper
argues that even in a domain where a complete domain theory may be im-
possible, EBL techniques can be helpful in creating good generalizations.

1.1 EBL

The classical method of EBL [Mitchell et al., 1986] is to take take a single
example of some concept and create a proof that the example is an instance
of that concept. The logical form of this proof is then used to infer a re-
expression of the concept in the representation language of the examples.
EBL creates a new description of the concept in the efficient, operational,
terms of the examples in the domain. This new representation is more general
than the original example because aspects of the example that don’t figure
in the proof don’t appear in the generalization. It is more efficient than the
original concept because of its operational representation.

The dependence on proof makes it difficult to extend EBL to deal with
imperfect domains. However this extension is both necessary and possible.
Not only are theories hard to build [Rajamoney, 1988] but there are also
domains where there appears to be no good complete domain theory. English
word pronunciation, for example, is quite irregular. No one has been able to
find a comprehensive theory to explain how it works (see section 2.1).

1.2 EBL as Constrained Search

EBL may not at first seem to be a search process; there is no search for
generalizations as we have them in hand in the proof tree. All of the stages
of the proof have been justified by the use of truth preserving inference. We
may search among these valid generalizations for the most useful ones, but
we don’t need to search for correct ones.

However we can view this differently: EBL doesn’t search for generaliza-
tions because it uses truth preserving inference to trivialize the generalization
search space. In this view a proof is valuable because it constrains the con-
cepts that will be considered. Generalizations outside of the proof aren’t
considered as they have some information that wasn’t essential to the proof.



EBL involves search, but search has shifted to the proof process.

This view suggests two alternatives when an inadequate domain theory
breaks the typical EBL scenario. On one hand we may wish to keep truth
preserving inference and try to enhance the theory to allow for proofs. On
the other hand we may wish to use a different inference method; one that
is not truth preserving (and does not do proofs), but still uses explanations
to constrain search. A new source of inferences is not a license to wild or
random inference, just a loosening of the bounds that will now allow plausible
or reasonable inference instead of just “true” inference.

This second approach has the advantage that it doesn’t require complete
knowledge to create the explanations. We also create the opportunity for
using multiple explanations. Differing explanations will constrain search in
different ways and to different amounts. This is both an advantage (we don’t
need the correct theory) and a disadvantage (we are likely to get somewhat
poorer performance). When we give up truth preserving inference, we get
the possibility of producing incorrect inferences. Therefore work taking this
approach needs to propose some method to control this error.

This research is most similar in spirit to Dejong and Mooney [1986]. The
approaches are similar in that they see explanations as methods to constrain
and structure search. This current work differs in not requiring explanations
to be causal and in suggesting the use of multiple explanations for a single
example.

1.3 Other Relevant Research

Most of the current research efforts into the EBL domain theory problems
are examples of the theory enhancement approach.

In ADEPT |Rajamoney, 1988] explanations that lead to poor performance
are classified according to the way that they fail. To correct the failure of the
domain theory extensions to the theory are created, and then experiments
are proposed to discriminate between the different proposed extensions.

Clancey [1988] describes a method for finding gaps in a domain theory
and then creating questions to be answered by a teacher or by experimenta-
tion. The answers to these questions provide an evaluation of the proposed
changes.

In SIERRA ([1987] VanLehn uses almost complete explanations to allow
inferring that an extension to the theory is required. If an explanation is
almost sufficient, and the information needed to make it sufficient can be
identified then that information can be added to the domain theory.

All of this work relies on there beinf some good domain theory that is, if



not correct, at least good enough to produce an almost correct explanation.
It assumes that one can get an explanation that can be patched to become
the correct explanation. Little work (besides this work on MOB) has dealt
with the problem of working in domains where there is thought to be no
complete domain theory.

2 The Mob System

MOB is a failure-driven supervised learning system whose task is the
pronunciation of novel words. Each training instance is a correct
word /pronunciation pair. When MOB is given a pair that contains a word
that it fails to pronounce correctly MOB attempts to learn the correct pro-
nunciation.

2.1 Domain

The domain of MOB is English word pronunciation. This is a particularly
suitable area for exploring problems with insufficient domain theories because
there is no known complete theory of how to map letters onto phonemes
and generate the correct pronunciations [Stanfill and Waltz, 1986). English
pronunciation has clear regularities. Double consonants sound only once
(APPLE). An E on the end of a word often indicates that the vowel earlier
in the word is long, but the E is silent (HOME, TOME, MORE, HIKE,
GRATE). However there are many exceptions to such regularities. SOME is
not pronounced with a long O and a silent E. THOUGH and TOUGH share
no phonemes even though the only difference is the added H in THOUGH.
We don’t have, and don’t expect to have, a complete or consistent domain
theory for word pronunciation.

2.2 Explanations and Inference in MOB

If there is no well defined domain theory for word pronunciation, what then
can be good explanations for why a given sequence of letters: should be pro-
nounced in a particular way?

Rather than rely on finding the putative right explanation MOB creates a
number of possible explanations; each a different way that the pronunciation
of a word could be justified. There is no apriori way to discriminate between
them and decide which is the best exglanation; they are all candidates.



2.3 Explanations and Generalizations

The basic method used by MOB is to build an explanation tree (see figure 1).
The tree gives a decomposition of a word/pronunciation pair into a number
of mappings from subsequences of the letters to subsequences of phonemes.
These mappings can be treated as rules for how to pronounce this sequence
of letters. MOB is successful if it gathers a set of these rules that pronounces
words accurately.

(lines > /li2 n sD

(ines->/i2 n s)

(nes->/n_s/)
/ N
(n->/n)) (es->/s))

Figure 1: An Ezplanation Tree

Each explanation tree gives a number of sets of rules that can be used to
correctly pronounce this training word. In figure 1 we can find, among oth-
ers, the single rule {LINES—/1i2 n s/} or the set of rules {L—/1/, I—/i2/,
N—/n/, ES—/s/}. Both are potential explanations, the first if the pronun-
ciation is highly idiosyncratic, the second if it is highly regular.

We can see these rules as generalizations, rules to apply in the general
situation of novel words; therefore a single explanation tree gives rise to a
number of different possible generalizations. It may be that the most general
rules, in the context of the prior rules learned, won’t work; they may be too
general or there may be no way to decide between two rules that map the
same letters into different phonemes. This may require using more specific
generalizations, ones closer to the root of the explanation tree. For example
I—/i2/ may not be a good rule in general. It may be that a more useful
mapping is the more specific INES—/i2 n s/.

This representation of explanations is instantly operational. It doesn’t
keep the explanation justifications explicitly, but only keeps around the op-
erational version of each step.

This explanation representation also produces the possible generalizations
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as a side effect. Conceptually this generalization method is contezt regres-
ston. A very general mapping is refined by adding more context to it. The.
leaves of the explanation tree provide a set of very general mappings from

letters to phonemes. Other, more specific, generalizations are formed by com-

bining with the local context, in this case neighboring nodes. Since nodes in

different explanation trees that are formed by different methods have differ-

ent neighbors, MOB’s technique of using multiple explanations results in a

variety of generalizations.

2.4 Creating Explanations

Explanation trees are created by a grammar that specifies acceptable ways to
map letters to phonemes. The parse tree of the grammar gives the structure
of the explanation tree. The contents of each node are formed by the gen-
eralization method. Specifically in MOB the grammar is used to construct
an explanation tree where each node represents a mapping from letters in
the word to phonemes in the pronunciation (see figure 1). Each grammar
is ambiguous and so will provide a number of different possible explana-
tions. MOB also uses a number of these grammars at the same time, so that
different types of explanations will be produced.

The grammars used in MOB are show in figures 2 and 3. They both con-
tain nonsyntactic constraints on how the tree should be constructed. These
constraints limit the number of explanations generated. Having these two
degrees of freedom (multiple grammars and ambiguous grammars) means
that MOB creates a number of explanations, none of which are known to be
more or less plausible that another. All are used to propose generalizations.
Testing is used to discriminate between the generalizations that the theory
could not discriminate.

X-S
X-U
X-V

S—-S1S U-UU VoVVYV
S— A U—= ) Vo A
Sl- Pair U— Pair V— Pair

Figure 2: The composite grammar (§2) for the simple ezplanations. The
only semantic restriction is that Pair must map to 1 letter and 1 phoneme.
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X—-F F— Pair X

X—-FL FL— Pair X Pair

X—-VOLS VOLS— X VOL VOL X
VOL— Pair

X-KD KD— X mapping X

Figure 3: The additions to the composite simple grammar for the knowledge-
able ezplanations (KD). The semantic restrictions are that a VOL must refer
to a vowel and that ¢ mapping must refer to some rule that is already known
and that applies to this training pair.

2.5 Mob Details
2.5.1 Domain Details

The words used with MOB were the same words that were used in Lehn-
ert’s PRO system [1987]. These are approximately 1,500 English words of
3 to 7 letters in length. Training is done with with short words first and
other words presented in order of increasing word length. There are 5 sets
of 25 test words, one each for each word length. These test words are never
used for training. The words were arbitrarily selected from the New World
Dictionary [Guralnik, 1980).

2.6 [Evaluation of Generalizations

The EBL theory used here can’t distinguish between the different generaliza-
tions. MOB produces generalizations only with support from the theory and
all generalizations have equal support. Therefore the theory may produce
erroneous explanations, in that the set of rules it proposes may not be the
ones that provide the best generalization to novel words. One phase of MOB
will test the utility of the generated generalizations. Utility is tested quite
simply: the performance system is run with the addition of the suggested
rule. If the inclusion of this rule increases MOB’s performance on this word!
then MOB accepts the generalization. If there is no such improvement then
the generalization is rejected. The rules are applied by a simple, forward
chaining, production system. The representation used for rules is straight-
forward. Both sides of the production are literal representations of either the
letters or phonemes in a generalization. '

After a training word is successfully pronounced the generalizations added

1Better performance is defined as increasing the number of correct phonemes in the
correct order.
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during this training instance are reviewed. Any generalizations that helped
in some intermediate stage but weren’t used in the final correct pronunciation
are deleted.

3 Evaluating MOB

MOB is evaluated on the basis of its ability to generalize and produce the
correct pronunciation for words it hasn’t been trained on. As is common in
this domain performance will be scored on the percent of phonemes correctly
generated, not on the number of completely correct words (Lehnert, 1987]
[Stanfill and Waltz, 1986] [Sejnowski and Rosenberg, 1988].

In particular MOB is repeatedly tested on its performance on 25 unseen
words of each word length. The testing takes place after every 200 phonemes
of training words, and just before words of a new length are introduced.

To demonstrate the effects of explanations on search MOB uses 2 kinds
of explanations are used, one simple (called S2), one more knowledge based
(KD). The simple one will not constrain search much and therefore lead to
poor performance. The knowledge based one will give explanations that are
constrained by prior learning and therefore give a more restricted search
space.

3.1 Results of MOB
3.1.1 MOB as a Learning System

Figure 4 shows the results of training MOB with two different explanation
types. The system shows a dramatic increase in performance, this increase
is stable and it is far above a chance level of performance. For MOB I have
defined chance to be choosing an output phoneme randomly out of all the
possible phonemes. This is 3 or approximately 2%. Note that the explana-
tion techniques have a large effect on the performance of the system. The

one that uses the more constrained explanations gives better performance.

3.1.2 Comparison to Other Systems

A number of other systems have dealt with this learning problem. Figure
5 shows their performance along with MOB’s. MOB doesn’t give the best
performance, but it has quite respectable performance compared to these

systems.
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SYSTEM | % correct on | words of | training word
unfamiliar | training | length

MOB 72| 1439 | 34,567

" 81 " 4,5

MBRtalk® 86 4438 | ?

PRO® 75 750 | 4,5

NETtalke 78 1024 | ?

chance 2

¢Stanfill and Waltz, 1986)
5[Lehnert, 1987
¢[Sejnowski and Rosenberg, 1988)

Figure 5: Comparison of overall percent correct on unfamiliar words for

several pronunciation systems
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4 Conclusion

4.1 What MOB Implies

MOB establishes that an EBL technique is useful even when a good domain
theory doesn’t exist. It gets good performance (comparable to other systems
in this domain) even though proof is impossible in this domain.

Since this paper argues that the utility of an explanation is in the restric-
tions that it places on generalizations, and not the absolute truth or falsity
of the inferences we can now look at a large number of possible explanation
and generalization methods. Context regression is a single generalization
method, likely to be useful in the situation when the appropriate context is
represented openly in the training examples.

Open context relies on the existence of fragments of the input that can
be translated into the correct output based on their local context. This is
most likely the case with problems where the task is some sort of structural
transformation. Many tasks are not like this. Problems, such as classifica-
tion, that have complex inputs but just a few simple acceptable answers are
not suitable. In these problems there is no mapping of substructure to sub-
structure. Without meaningful substructures context regression is unlikely
to find generalizations that transfer from one example to another.

4.2 Future Directions

4.2.1 Different inference techniques

There are two different places where MOB uses inference. One is in con-
structing proofs. The other is inferring generalizations from proofs. The use
of explanation trees blurs the distinction in MOB, but there is no reason why
these two methods need to be the same. For instance, when constructing a
proof, one might simply assume some truth values that aren’t really known.
The generalization technique might know nothing about this and so do a
straightforward regression assuming that the proof was a normal FOL proof.
This leaves room for exploring techniques for plausible explanations and not
requiring altering the generalization method. On the other hand there are
techniques such as context regression which don’t require FOL as a basis for
explanation or generalization.

4.2.2 Hybrid Techniques

MOB suggests a method for dealing with partially learned theory. Use
the knowledge that is available and discriminate between multiple explana-
tions via testing. If the testing suggfats further theory refinement then do



so, otherwise testing will provide reasonable generalizations. The combina-
tion of the imperfect theory tolerance of MOB and the theory enhancement
techniques of other researchers may give a system the capacity to function
before it can understand a domain well, but also use better information as
it can be found.
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