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1 Introduction

Hard real-time systems require both functionally correct executions and results that are
produced on time. Nuclear power plants, flight control, and avionics are examples of such
systems. In these systems, many tasks have explicit deadlines. This means that the task
scheduling algorithm is an important component of these systems. In general, a schedul-
ing algorithm in a hard real-time system is used to determine whether a feasible execution
schedule for a set of tasks exists so that the tasks’ deadlines and resource requirements are
satisfied; it generates a schedule if one exists.

Many practical instances of scheduling algorithms have been found to be NP-complete,
i.e., it is believed that there is no optimal polynomial-time algorithm for them [Ullman 73],
[Ullman, 75]. A majority of scheduling algorithms reported in the literature perform static
scheduling and hence have limited applicability since not all task characteristics are known
a priori and further, tasks arrive dynamically. For dynamic scheduling, in [Dertouzos, 74],
Dertouzos points out that for a single processor system with independent preemptable tasks,
the earliest deadline first algorithm is optimal. Later, Mok and Dertouzos in [Mok and
Dertouzos, 78] and [Mok, 83| further show that the least laxity first algorithm is also optimal
for the same system. For dynamic systems with more than one processor, and/or tasks that
have mutual exclusion constraints, Mok and Dertouzos in ((Mok and Dertouzos, 78], [Mok,
83), [Mok, 84]) show that an optimal scheduling algorithm does not exist. These negative
results point out the need for heuristic approaches to solve scheduling problems in such
systems.

Many scheduling algorithms developed so far only take processor requirements into consid-
eration [Sahni and Cho, 79], [Blazewicz, 79|, [Horn, 74|, [Martel, 82]. As a result, contention
among tasks over other resources, such as buffers and data structures, might cause locking
and waiting and thus presents a problem for predictability in real-time systems. In this paper,
scheduling algorithms based on heuristic functions are developed to dynamically schedule a
set of tasks with deadlines and resources requirements. Specifically, the algorithms schedule
a set of tasks with given computation times, deadlines and resource requirements. Previ-
ously, [Zhao, Ramamritham and Stankovic, 85] [Zhao and Ramamritham, 87] we have shown
that for uniprocessors a simple heuristic which accounts for resource requirements signifi-
cantly outperforms heuristics, such as scheduling based on earliest-deadline-first, that. ignore
resource requirements. Here, we show that an extension of this (O(n?)) heuristic algorithm

also works well for multiprocessors. Further, we develop an O(n) version of this algorithm,



called the myopsic algorithm and show that

o For a given maximum scheduling cost, the myopic algorithm works as well as the original
algorithm in the cases when tasks have tight deadlines or resource contentions are high.

e For a given maximum scheduling cost, the myopic algorithm can work better than the
original algorithm for the cases when tasks have loose deadlines or resource contentions

are low.

e In general, the myopic algorithm incurs substantially less computational cost than the
original algorithm and thus can work more effectively during dynamic scheduling.

The algorithms discussed in this paper are being incorporated into the Spring System,
a distributed hard real-time system where each node is a multiprocessor [Stankovic and
Ramamritham 87]. In the Spring System, tasks can arrive dynamically at any node in the
system. The local scheduler on a node tries to guarantee that the task will complete before
its deadline. It does so by determining if the new task plus all the previously guaranteed
tasks on this node can be scheduled to complete before their deadlines. If such a schedule
exists, the new task is guaranteed; otherwise not. In either case, previously guaranteed tasks
remain guaranteed. A task that is not guaranteed can be sent to another node if appropriate.
The distributed scheduler [Ramamritham, Stankovic and Zhao, 88| on each node makes the
decision connected with this case. In this paper, we focus on the local scheduler, specifically
the component which dynamically determines if a feasible schedule can be found for a set of
tasks.

The rest of this paper is organized as follows: Section 2 introduces our model of multi-
processor systems and the characteristics of real-time tasks. Section 3 discusses the heuristic
scheduling algorithms. In section 4, simulation results are presented and discussed. Section
5 summarizes the work.

2 System and Task Models

Broadly speaking, two types of multiprocessor models exist:

e A Shared Memory Model, and

¢ A Local Memory Model.



In the shared memory model, tasks are loaded into the shared global memory and the next
scheduled task to run is dispatched to the first available processor. This case does not impose
any relationships between processors and tasks, and models homogeneous multiprocessor
systems. On the other hand, in the local memory model, each processor has its own memory
and a task can be loaded into the memory of one of the processors. A task is thus eligible to
be executed on a speciﬁc. processor. (In general, code for certain tasks may reside on more
that one processor’s memory, offering greater flexibility during scheduling. We do not study
this alternative here.) The second model can be used either in homogeneous multiprocessor
systems, or in heterogeneous systems.

In multiprocessor scheduling, processors can be represented either by multiple processor
resource items each with a single instance (corresponding to the local memory model), or by
one processor resource item with multiple instances (corresponding to the shared memory
model). In our simulation study, we assume that all the processors are identical.

In addition to processor resources, a multiprocessor system also has resources such as
files, data structures, buffers, etc, that will be used by tasks. One of the strengths of our
scheduling algorithm is that it takes into account the requirements of tasks for these non-
Processor resources.

Tasks are the dispatchable entities and are characterized by the following:

e Task arrival time T,;

e Task deadline Tp;

e Task worst case computation timé Tc;

¢ Task resource requirements {Tg};

e Tasks are independent, nonperiodic and non-preemptive.

o A Task uses a resource either in shared mode or in exclusive mode and holds a requested

resource as long as it executes.

o Task earliest start time, T.,;, at which the task can begin execution; (T., is calculated

when scheduling decisions are made.)

The following condition is always true: 0 < Ty < T.py < Tp — Tc.



3 Overview of the Scheduling Strategy

At any given time, a node N is said to have guaranteed a set of tasks by generating a full
feasible schedule for this set of tasks. This means that each task will finish execution no
later than its deadline. In the following, we compare scheduling with searching and present
heuristic functions used to direct the search for a full feasible schedule. The data structures

used in the heuristic algorithm are also described.

3.1 A Heuristic Scheduling Algorithm

Scheduling a set of tasks to find a full feasible schedule is actually a search problem. The
structure of the search space is a search tree. An intermediate vertex of the search tree
is a partial schedule, and a leaf, a terminal vertex, is a complete schedule. It should be
obvious that not all leaves, each a complete schedule, correspond to feasible schedules. If a
feasible schedule is to be found, it might cause an exhaustive search which is computationally
intractable in the worst case. Since in many real applications, a feasible schedule is time

consuming to find and we need to find a feasible schedule quickly, we take a heuristic approach.

The heuristic scheduling algorithm tries to determine a full feasible schedule for a set of
tasks in the following way. It starts at the root of the search tree which is an empty schedule
and tries to extend the schedule (with one more task) by moving to one of the vertices at
the next level in the search tree until a full feasible schedule is derived. To this end, we
use a heuristic function, H, which synthesizes various characteristics of tasks affecting real-
time scheduling decisions to actively direct the scheduling to a plausible path. The heuristic
function, H, is applied to each of the tasks that remain to be scheduled at each level of search.
The task with the smallest value of function H is selected to extend the current schedule.

While extending the partial schedule at each level of search, the algorithm determines if
the current partial schedule is strongly-feasible or not. A partial feasible schedule is said to
be strongly-feasible if all the schedules obtained by extending this current schedule with any
one of the remaining tasks are also feasible. Thus, if a partial feasible schedule is found not
to be strongly-feasible because, say, task T misses its deadline when the current schedule is
extended by T, then it is appropriate to stop the search since none of the future extensions
involving task T will meet its deadline. In this case, a set of tasks can not be scheduled given
the current partial schedule. (In the terminology of branch-and-bound techniques, the search
path represented by the current partial schedule is bound since it will not lead to a feasible



complete schedule.)

However, it is possible to backtrack to continue the search even after a non-strongly-
feasible schedule is found. Backtracking is done by discarding the current partial schedule,
returning to the previous partial schedule, and extending it by a different task. The task
chosen is the one with the second smallest H value. Even though we allow backtracking,
the overheads of backtracking are restricted either by restricting the maximum number of
possible backtracks or by restricting the total number of evaluations of the H function.

In summary, given a particular H function, the algorithm works as follows: The algorithm
starts with an empty partial schedule. Each step of the algorithm involves (1) determining
that the current partial schedule is strongly-feasible, and if so (2) extending the current partial
schedule by one task. This task is chosen by first applying the H function to all the tasks
that are not in the current partial schedule and then determining the one with the least H
value. This algorithm has a total of n steps, where the complexity of each step is given by the
complexity of determining strong-feasibility and the complexity of H function evaluations.
Both of these are linearly proportional to the number of tasks that remain to be scheduled.
Hence the overall complexity of the algorithm is n + (n — 1) + ....... + 2 = O(n?).

Henceforth, for ease of discussion, the O(n?) algorithm described in this section is called

the original algorithm.

The following is a list of potential H functions that can be used in conjunction with the

original algorithm as well as the myopic algorithm developed in the next section.

¢ Minimum deadline first (Min_D ):
H(T) = TD;

Minimum processing time first (Min_P ): H(T) = Tp;

Minimum earliest start time first (Min S ): H(T) = T,.;

Minimum laxity first (Min_L ): H(T) = Tp - (Teat+Tp);

Min D + Min P: H(T) = Tp + W « Tp;

Min.D + Min.S: H(T) = Tp + W # T,y;

The first four heuristics are simple heuristics and the last two are integrated heuristics.
W is a weight used to combine two simple heuristics. Min L and Min_S need not be combined



because the heuristic Min_L contains the information in Min_D and Min_S. Note that Min.P,
Min D, and (Min.P + Min D) heuristics do not consider task resource requirements. Our
simulation results show that they perform poorly. The other heuristics do consider resource
requirements. Our simulation studies show that (Min_D + Min_S) has very good performance.

3.2 The Myopic Scheduling Algorithm

Before we describe this algorithm, let us define some terms to facilitate the presentation of

the algorithm.

o {Tasks.remaining}: The tasks that remain to be scheduled. Tasks in

{Tasks_remaining} are arranged in the order of increasing deadlines.

N,: Number of tasks in {Ta.sks-remaining}.

e k: Mazimum number of tasks in Tasks_remaining considered by the myopic algorithm.

Ng: Actual number of tasks in {Tasks.remaining} considered by the myopic algorithm
at each step of scheduling.

N.=k,if N, > k
N.=N,,if N, <k

{Tasks.considered}: The first N, tasks in {Tasks_remaining}.

Recall that at a certain search step, the original algorithm first checks whether the current
partial schedule is strongly-feasible and if so, it applies the H function to all the remaining
tasks. In the original algorithm, strong-feasibility is determined with respect to all the re-
maining tasks. Instead, the myopic algorithm considers only the first N, tasks in a task set
(where 0 < N, < k) both for checking strong-feasibility and for determining the task with
the lowest H value. The algorithm works as follows:

Tasks in the task set are maintained in the order of increasing deadlines !. When at-
tempting to extend the schedule by one task, (1) strong-feasibility is determined with respect
to the first N, tasks in the task set, (2) if found to be strongly-feasible, the particular H
function being used is applied to the first N, tasks in the task set, and (3) that task which

1This is realized in the following way: When a task arrives at a node, it is tnserted, according to its deadline,
into a (sorted) list of tasks that remain to be executed. This insertion takes at most O(n) time.



has the smallest H value is chosen to extend the current schedule. Since only N, tasks are
considered at each step, the complexity incurred in the myopic algorithm is smaller than the
original scheduling algorithm where all the remaining tasks are considered all the time. Let
us elaborate upon this. Consider a task set which has n tasks; the complexity for the original
algorithm to schedule this task set was shown to be O(n?). On the other hand, the complexity
is O(nk) for the myopic algorithm since only the first N, tasks (where N, < k) are considered
each time. If the value of k is constant (and in practice, £ will be small when compared to
the task set size n), the complexity of the myopic algorithm is linearly proportional to n, the
size of the task set.

By now, the reason for calling this algorithm myopie should be clear. It is short-sighted in
each decision-making step. In choosing the next task to extend the current partial schedule,
it focuses only on the N, tasks with the shortest deadlines.

It should be pointed out that in the integrated heuristic (Min.D + Min.S), the effect of
the simple heuristic Min_D is always taken into account. The myopic algorithm preserves this
flavor by working with tasks in a task set that are ordered according to increasing deadlines.
The fact that the myopic algorithm applies the heuristic (Min_D + Min_S) only to N, tasks
with the earliest deadlines implies that it places less emphasis on the heuristic Min_.S than the
original scheduling algorithm. Thus, the myopic algorithm uses less information in making
scheduling decisions and hence one would expect degraded performance. In order to study
the performance of the myopic algorithm, we resort to simulation. As the simulation results
presented in Section 4 will show, it achieves the same performance as the original algorithm
at a lower run-time cost. Said differently, it achieves better performance than the original

algorithm for a given run-time cost.

3.3 Data Structures

When resources are taken into account (e.g., in the Min_S heuristic) in the heuristic func-
tion, several data structures are required. To simplify discussions, we first present the data
structures when the system has one instance of each resource. Subsequently, extensions to
handle multiple instances are discussed. When only one instance exists for each resource, the
algorithm maintains two vectors EAT? and EAT®, to indicate the Earliest Available Times

of resources for shared and exclusive modes respectively:

EAT* = (EAT},EAT}, ..., EAT?) and



EAT® = (EAT{,E AT}, ..., EATY)

Here EAT? (or EATY) is the earliest time when resource R; will become available for
shared (or exclusive) usage.

At each level of the search, using the EAT® and EAT* vectors the algorithm calculates
the Earliest Start Time T, for each remaining task to be scheduled. An example of the
computation for T,,; will be illustrated later in this section. After the task with the smallest
value of heuristic function is chosen to add to the partial schedule, the algorithm updates
EAT® and EAT® using the new task’s start time, computation time and resource require-
ments. Because a task T can start running only after all the resources it needs are available,
it is clear that

T... = MAX(EAT})

Here u = s, for shared use of R; and u = e, for exclusive use of R;.

After a task T is selected to extend the current partial schedule, its Scheduled Start Time
T, is equal to T.,.. After the EAT* and EAT* vectors are updated according to currently

selected task T’s computation time and resource requirements, other remaining tasks’ earliest
start time will be re-computed at the next level using the newly updated EAT" and EAT®.

Here is a simple example to illustrate the computation of new EAT® and EAT" values:
Assume a system has 5 resources, Ry, Ry, ..., Rs. Let current EAT’ and EAT® be

EAT® = (EAT;,EAT}, EAT{, EAT;, E ATy)

= (s, 25, 10, 5, 10), and

EAT® = (EAT:, EAT;, EAT, EAT, EATY)

= (5, 25, 10, 10, 15)

Suppose task T is being selected by the scheduler at the current level. Assume T has
processing time Tp = 10, and requests Ry, R, for exclusive use and R; for shared use. Then

the earliest time when T can start is the earliest available time of the resources needed by
task T. So,

T... = MAX(EAT{, EAT{, EATY)

= MAX (5, 10,10 )

= 10 and

the scheduled start time T, of task T is 10.



The algorithm updates the EAT?® and EAT® vectors:

EAT’ = (EAT}, EAT], EAT{,EAT}, E ATY)

=(20, 25, 10, 20, 10 ), and

EAT® = (EATY,EAT;,EAT{, EAT{, EAT})

=(20, 25, 10, 20, 20 ).

Note that for Rs, both EAT; and EAT¢ need to be updated. EAT?=10 because task
T uses R; in shared mode and it is therefore possible for some other task to utilize Rs in

parallel, in shared mode. However, EAT{=20 because another task which requires Rs in
exclusive mode cannot be permitted to execute in parallel with T.

Based on the above discussion, it is easy to observe that given a task’s earliest start time,
its finish time can be determined and thus the scheduling algorithm can decide if a task will
finish by its deadline.

Now, we discuss our extensions to allow each distinct resource to have multiple instances.
In this case, a vector no longer suffices to represent the two EAT’s. EAT® and EAT® have
to be matrices so that we can represent the earliest available time for every instance of each

resource.
(EAT},, EATY,, ..., EAT},)
(EAT},, EAT},, ..., EATL,)
EAT® = ' ;
(EAT!,, EATS,, ..., EATS,)
and
(EATY,, EATS,, ..., EATS,)
(EAT;U EATzez, sy EAT;m)
EAT® = ‘

(EA :11 EA :2’ Rl ] EATrep)

where n, m and p are the number of instances of resource items 1, 2 and r, respectively.

After we extend our representations for EAT® and EAT® into a matrix format, we need
to revise the formula for determining T.: Toot = MAXizy ., (MIN;z 4 (EAT,';))



where u is s when R; is used in shared mode or ¢ when R; is used in exclusive mode and ¢ is

the number of instances of R;.

In summary, the EAT vectors are used in the Min_S, Min_L and the (Min.D + Min.S)
heuristics and they need to be matrices to account for multiprocessing and for multiple

instances of other non-processor resources.

4 Results of Simulation Studies

In this section, we first introduce the task set generation and simulation method and then

present the simulation results.

4.1 Task Generation

Clearly, what we are striving for is a scheduling algorithm that is able to find a feasible
schedule for a set of tasks, if such a schedule exists. Obviously, a heuristic algorithm can
not be guaranteed to achieve this. However, one heuristic algorithm can be considered better
than another, if given a number of task sets for which feasible schedules exists, the former
is able to find feasible schedules for more task sets than the latter. This is the basis for our
simulation study. Ideally, we would like to come up with a number of task sets, each of which
is known to have a feasible schedule. Unfortunately, given an arbitrary task set, only an
exhaustive search can reveal whether the tasks in this task set can be feasibly scheduled.

Given m distinct processor resource items, the complexity of an exhaustive search to find
a feasible schedule for n tasks in the worst case can be O(m" * n!). Although we can use
techniques like branch and bound to cut down the complexity, we consider it impractical
and inefficient to find the feasible schedule in the worst case. Therefore, we take a different
approach in our study here. We develop a task set generator that can generate schedulable
task sets where the number of tasks in a task set can be very large without imposing much
complexity on the task generation. Also, the tasks are generated to guarantee the (almost)
total utilization of the processors. The schedule generated by the task generator is used only
for the purpose of generating a feasible set of tasks which are then input to the scheduling
algorithm, i.e., the scheduling algorithms have no knowledge of the schedule itself but are only
given the tasks and their requirements. The following are the parameters used to generate
the task sets:




1. Probability that a task uses a resource, Use_P.

2. Probability that a task uses a resource in shared mode, Share P.
3. The minimum processing time of tasks, Min_P.

4. The maximum processing time of tasks, Max P.

5. The schedule length, L;

The cost of accessing resources is assumed to be accounted for in the computation time
of a task.

The schedule generated by this task set generator is in the form of a matrix, M, which
has r columns and L rows. Each column represents a resource and each row represents a
time unit. In order to illustrate the process of task set generation, we assume that there are
n processors and m other resources, i.e., the total number of resources is n+m. Resource
items 1 ... n represent the n processors. The task set generator starts with an empty matrix,
it then generates a task by selecting one of the n processors with the earliest available time
and then requests the m resources according to the probabilities specified in the generation
parameters. The generated task’s processing time is randomly chosen using a uniform distri-
bution between the minimum processing time and the maximum processing time. The task
set generator then marks on the matrix that the processor and resources required by the task
are used up for a number of time units equal to the task’s computation time starting from
the aforementioned earliest available time of the processor. The task set generator generates
tasks until the remaining unused time units of each processor, up to L, is smaller than the
minimum processing time of a task, which means that no more tasks can be generated to use
the processors. Then the largest finish time of a generated task, t f, becomes the task set’s
shortest completion time, SC. As a result, we generate tasks according to a very tight schedule
without leaving any usable time units on the n processors between 0 and SC. However, there

may be some empty time units in the m resources.

So far we have discussed how task resource requirements and computation times are
determined. The issue of choosing task deadlines without any bias is addressed now. In order
to exercise the scheduling algorithms in scenarios that have different levels of scheduling
difficulty, we choose the deadline of a task in the task set randomly between the task set’s
SC (shortest completion time) and (1+R)*SC, where R is a simulation parameter indicating
the tightness of the deadlines. In most cases, if R is 0, a scheduler must be capable of finding

10



the. same schedule as that found by the task generator, in order to have a task set completion
time of SC. This means that there is little leeway for the scheduler. As we increase the value
of R, it is not difficult to see that the scheduler has a better and better chance to guarantee
a task set. Because of this unbiased generation of task sets we believe that the resulting task

sets can be used to evaluate the heuristic algorithms rigorously.

4.2 Simulation Method

In the simulation, N task sets are generated and each task set is known to be schedulable,
given the task set generation procedure. Performance of various heuristics are compared
according to how many of the N feasible task sets are found schedulable when the heuristics
are used. In the simulation, we are interested in whether or not all the tasks in a task set
can finish before their deadlines. Therefore, the most appropriate performance metric is the
schedulability of task sets. This metric called the success ratio, SR is defined as

_ total number of task sets found schedulable by the heuristic algorithm
SR="= "N, the total number of task sets

Other possible performance metrics not considered in this paper include minimizing sched-
ule length [Blazewicz et al., 86] and maximizing resource utilization. Recall that simulation
parameter Use_P determines, at task set generation time, the probability that a task will use
a non-processor resource R;; if a task chooses to use R;, then another simulation parameter
Share_P determines the probability that this task will use R; in shared mode. The system
consists of 3 processors and 12 non-processor resources. Share_P is 0.5. A Task’s computation
time is randomly chosen between Min.C (10) and Max.C (40). Except for the studies done
in Section 4.3.5, each task set has between 20 and 30 tasks.

All the simulation results shown in this section are obtained from the average of five
simulation runs. For each run, we generate 200 task sets. Recall that our major performance
metric is the task set success ratio, therefore, we present the results in plot form where we
plot the SR on the Y-axis and R on the X-axis (where R is related to laxity). Simulation
parameters include R, W (the weight used in the H function), and Use_P (resource utilization
probability). Running the simulation with different values of R helps us investigate the
sensitivity of each heuristic algorithm to the change of laxities. Generating task sets with
different resource requirements, by changing the value of Use_P, can be used to evaluate the
heuristic algorithms under different resource conflict situations.

11



4.3 Simulation Results

In [Shiah, 88|, we report on the performance of the algorithm for both shared and local
memory models. The results show that all the observations we make in this paper for the
local memory model are also applicable to the shared memory model. Because of this and
given the space limitation, we do not present the results of the shared memory model here.

In Section 4.3.1, we explore the basic performance characteristics of different heuristics
for the O(n?) algorithm. We find that the integrated heuristic (Min_D + Min_S) has superior
performance when compared to other heuristics including the best simple heuristic, namely
Min_D. Besides, it is more stable under different levels of resource contention. Also the results
show that the performance is not sensitive to the specific value of W as long as the value of
W is > 4 and < 20.

Therefore, in the following sections, we focus our attention on the integrated heuristic
(Min.D + Min_S) applied to the myopic algorithm. The value of the weight W used to
combine the two factors is set to 8. We work for the most part with Use_P = 0.7, which
represents a situation where there is high contention for resources since the probability of
a task requiring a resource is high. We have experimented with other resource contention
situations and many more results have been obtained than those reported here. These can

be found in [Shiah, 88]. Here only salient graphs are included.

We first discuss the effect of the value of k on the performance of the myopic algorithm.
As one would expect, the simulation results of Section 4.3.2 show that the larger the values
of k, the better the performance of the myopic algorithm. Following this, simulation results
with backtracking are discussed. Note that a step in the myopic algorithm incurs less costs
(i.e., total cost of determining strong feasibility and evaluating the H functions) than a step
in the original algorithm. This makes it difficult to compare the cost-performance properties
of the two algorithms for a given number of backtracks. Therefore, we adopt the following
scheme. We fix the maximum number of times the H function can be applied by a given
algorithm. In general, this will allow the myopic algorithm to backtrack a larger number of
steps than the original algorithm but for the same total cost. The simulation results, reported
in Section 4.3.3, show that the myopic algorithm works very effectively when compared with

the original algorithm unless the task deadlines are tight or the resource contention is high.

Hence, in Section 4.3.4, we formulate an adaptive strategy for determining the value
of k according to current resource contention and the tightness of deadlines. When using
an adaptive value for k, the myopic algorithm works as good as or better than the original

12



algorithm in all the cases.

Clearly, the amount of scheduling costs allowed will affect the performance of the heuris-
tics. To study the effect, in Section 4.3.5, we evaluate the performance when a maximum
of (p x n) H function evaluations are permitted for p = 12, 16, and 20. Also we study the
behavior for two different task set sizes. As the number of tasks being scheduled increases,
the performance of the original algorithm deteriorates while that of the myopic algorithm
displays little change. The reason is that the myopic algorithm focuses its computations on
the most likely candidates. Therefore, for a fized cost of ezecution, it ts able to try more alter-
natives among more likely candidates rather than squandering computation time on unlikely

candidates.

4.3.1 Performance of the Original Algorithm with Different Heuristics

In this section, we first explore the basic performance characteristics of the original algorithm
when it employs different heuristics. We show the results in Figures 1 and 2 with respect to

two levels of resource contention (Use_P = 0.1 and 0.7) when no backtracking is allowed.

As can be seen from the results in these figures with different levels of R and Use_P, we
find that Min P is not a good heuristic since the SRs remain very low even when the laxity is
relaxed, i.e. with increasing values of R. This is an important observation because in non real-
time environments, the simple heuristic Min_P is the best algorithm for minimizing average
response time. Here we see that Min.P is totally inadequate in a real-time environment.
As for other simple heuristics, we find that Min.D and Min.S have approximately the same
performance and Min_L works slightly better than Min_D and Min_S in the cases when tasks’
timing constraints are relaxed, i.e. with increasing value of R. After a little thought, we
perceive that the slightly better performing simple heuristic Min L, formed by Tp-Tp-T.,,
actually combines the information of a task’s deadline constraint Tp and earliest start time
T... As a result, the additional information helps Min_L to perform better than Min.D and
Min_S. However, in general, we can say that none of the simple heuristics works substantially
better than the others.

Now let us move our focus to the integrated heuristic Min D+W*Min._S. It should be clear
in Figures 1 and 2 that the integrated heuristic Min.D+W*Min_S has substantially better
performance than all the simple heuristics. For example, in the tightest case when R = 0
from Figure 1, we see that the integrated heuristic Min_ D+ W*Min_S works better than the
simple heuristics Min_D, Min.S, Min_L and Min.P by 18%, 17%, 35% and 61%, respectively.

13



The integrated heuristic Min_ D+ W*Min_S also performs better for different Use_P values as
reported in Figures 1 and 2. This shows that a properly formed integrated heuristic does
help in achieving higher SRs.

However, since an integrated heuristic combines more than one simple heuristic by different
weight values W, we investigate the sensitivity of the integrated heuristic Min.D+W*Min_S
to the changes of weight values W. We show one instance of the results when R = 0.2 in
Figure 3. In the case when W = 0, the integrated heuristic Min_ D+ W*Min_S degrades to the
simple heuristic Min.D and does not perform well. We see a substantial performance increase
when W is increased from 0 to 4. After that, when we vary the value of weight W from 4 to
24, we see that different weights affect the performance only slightly. This implies that the
algorithm is robust with respect to this weight. If we use a very large value of weight W (say
much greater than 24), the factor Min_S becomes the decisive part and as a result we can
predict that the performance will drop to what the simple heuristic Min_S exhibits.

Another interesting question concerning the integrated heuristic Min_D+W*Min_8 is its
sensitivity to the increase in resource contention. To get an answer, we plot the simulation
results in Figure 4 with respect to different levels of Use_P. We see that for a fixed value of R,
as the value of Use.P increases, the performance of the integrated heuristic Min.D+W*Min S
remains more stable than the simple heuristic Min_D. This is because the integrated heuristic
Min_D+W#*Min_S not only accounts for the timing constraints of tasks but also explicitly
addresses the resource conflict. Again, this shows another promising aspect of a properly
formed integrated heuristic.

4.3.2 Effect of the Value of k on SR

In this section, we investigate the performance of the myopic algorithm when considering k
tasks where k = 3, 5, 7 and N, (indicated by maztasks in the figures). We show the simulation
results in Figure 5 for Use_P = 0.7. It should be easy to see that k£ = maztasks, corresponds
to the original algorithm and hence serves as a baseline in the performance comparisons. As
can be seen in this figure, when k = 3, the myopic algorithm does not perform well in tight
deadline cases. This implies that the value of k should not be too small. Considering more
tasks is one way to obtain better performance in general.

However backtracking can also potentially improve the performance. Also, the more
backtracks we allow, the more performance improvement we can get. However, it is not
appropriate to compare the two algorithms when each is allowed to backtrack for a fixed
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maximum number of times. This is because, as we mentioned earlier, the complexity incurred
in scheduling is dependent on the number of tasks considered at each step. Therefore, the
computation cost to schedule a task set, say, with 10 maximum backtracks, when using the
original algorithm which considers all the tasks in {Tasks_remaining} is likely to be higher
than with the myopic algorithm which considers only N, tasks at a time. This is likely to
be the case especially if N, is much smaller than N,. Hence, we study backtracking from
another perspective where we compare the performance of the original algorithm and the
myopic algorithm given a maximum allowable scheduling cost.

4.3.3 Effect of Limited Scheduling Cost

In this section, we rerun the simulation with bounds on the overheads allowed for scheduling.
Note that the cost of the heuristic scheduling algorithm is incurred in calculating H values,
and in the determination of strong feasibility. Recall that at each level of the search, the
myopic algorithm works with N, tasks — both for determining strong feasibility as well as
for extending the current partial schedule. Thus, if we limit the maximum number of times
the H function is evaluated, we also limit the overheads due to the determination of strong
feasibility.

The original algorithm and the myopic algorithm are compared when each is allowed to
backtrack as long as the total number of H calculation is within the maximum. We study

the effect when the maximum allowable H function calculations is set to two different values:
300 and 400.

As can be seen in Figure 6, the myopic algorithm with k& = 7 works better than the
original algorithm for the cases when H = 300. The extremely low performance of the orig-
inal algorithm when H = 300 is because the original algorithm considers all the tasks in
{Tasks.remaining} and as a result runs out of the maximum allowed number of H calcu-
lations faster. When the maximum allowed H calculations is increased from 300 to 400, we
see a large increase in the performance of the original algorithm. However, it is interesting
to observe in Figure 6 that the performance of the myopic algorithm with & = 7 does not
vary too much as the value of H is increased from 300 to 400. This implies that When R >
0.3, the myopic algorithm with H = 300 works better than the original algorithm with H =
400. This indicates that for large laxities, the myopic algorithm has better performance than
the original algorithm even with a smaller computational cost. The reason for this is that it

focuses on tasks with earlier deadlines, i.e. tasks that are more likely to produce the smallest
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H value.

Our simulation studies showed that for the tight deadline cases, i.e., when the value of R
is small, the performance of the myopic algorithm drops as the value of Use_P increases. That
is, for tighter deadline and higher resource contention cases, more tasks should be considered
to obtain better performance. Therefore, our problem now is to choose a value of k in the
linear scheduling algorithm by which we can have lower computational cost while still keeping
good performance. It is not difficult to see that the value of k needs to adapt to different
levels of resource contention and task deadline constraints.

4.3.4 Adapting the Value of K

In this section, we present an adaptive myopic algorithm. In order to have an effective way
for choosing the value of k, we reexamine the simulation results and find that for k = 7, the
performance of the myopic algorithm drops significantly lower than the original algorithm
when Use_P is higher than 0.3 and R is smaller than 0.3. This implies that, for the loads
tested, when Use_P is higher than 0.3 or R is lower than 0.3, we should use a bigger value of
k to consider more tasks in making scheduling decisions. Therefore, we construct a function
to determine the value of k as:

o k= Wl +W2 * fl(R) + Ws * fz(USC_P)

Based on the discussion of the previous paragraph,
fi(R) =03 - R, if R <0.3, else 0.
f2(Use_P) = Use_P — 0.3, if Use_P > 0.3, else 0.

Again, for the loads tested here, we choose W, = 7,W; = W3 = 10. According to this
heuristic, for the cases when R is smaller than 0.3 or Use_P is greater than 0.3, the value of
k will be greater than W;, which means scheduling decisions are made based on information
about more tasks. However, for the cases when the task deadlines are not tight, i.e., R >
0.3, and resource contentions are not high, i.e., Use_P < 0.3, the value of k& will still be W,.
We rerun the simulation for the adaptive myopic algorithm and show the simulation results
in Figure 7.

The figure shows that the adaptive myopic algorithm with H = 400 performs better than
the original algorithm for all values of R. For example, consider the case again when R =
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0.1 and H = 400. Recall that in the last section, the original algorithm has a 12% higher
performance than the myopic algorithm with £ = 7. But now, the adaptive myopic algorithm
works better than the original algorithm by 1%. Thus, an overall improvement of 13% is
achieved by using the adaptive algorithm. This implies that the adaptive myopic algorithm is
more robust under high resource contention than the original algorithm. Generally speaking,
the performance of the adaptive myopic algorithm is very promising. The good point of
the adaptive myopic algorithm, is that for a fized overhead, it is as effective as the original
algorithm at high resource contention and tight deadline constraint cases. Furthermore, it
has higher performance than the original algorithm when resource contentions are not high
and tasks have loose deadline constraints. Under such conditions, it has the same or even
less computational cost than the original algorithm. This is shown by the fact that for the
adaptive myopic algorithm case, when R > 0.4, evaluating H a maximum of 300 times is
sufficient to achieve a 100% SR.

4.3.5 Effect of different Scheduling Costs

In the last section, we worked with task sets with between 20 and 30 tasks and allowed a
maximum of 300 and 400 H function evaluations. In this section, we examine the effect of
this maximum number on tasks sets of different sizes. Specifically, we allow a maximum of
(p x n) H evaluations for p = 12, 16, and 20, and where n is the average number of tasks
in a task set. We experiment with two types of task sets: One contains between 20 and 30
tasks, and the second between 45 and 55 tasks. We investigate both the original algorithm
and the myopic algorithm. Again, we focus on Use_P=0.7. The simulation results are shown
in Figures 8 to 11.

For tasks sets with between 20 and 30 tasks the results of the original algorithm are shown
in Figure 8 and for the myopic algorithm in Figure 9. When the value of p = 12, the original
algorithm shows very poor performance. Besides, the performance of the original algorithm
changes substantially when the value of p increases from 12 to 16 and from 16 to 20. However,
for the myopic algorithm, the performance does not vary too much as the value of p changes
from 12 to 20. In addition, when the value of p = 12 and 16, the myopic algorithm has much
higher performance than the original algorithm. For example, for R = 0.2 and p = 12 and 16,
the myopic algorithm has higher performance than the original algorithm by 41% and 9%,
respectively. This shows that the smaller the allowable overhead, i.e., smaller the p, the bigger
the performance difference between the myopic algorithm and the original algorithm. It also
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implies that the myopic algorithm works much more effectively than the original algorithm
in the low overhead cases.

The second case we investigated is for large task sets — with 45 to 55 tasks. It is to be
pointed out that in Figures 10 and 11, we had to investigate the original algorithm by using
the value of p from 20 to 28 instead of 12 to 20 because the original algorithm shows 0% SR
when p = 12 and 16. Even when p = 20, the original algorithm has no more than a 5% SR.
Therefore, clearly, the myopic algorithm performs much better than the original algorithm
when p = 12, 16 and 20. This again says that the myopic algorithm has a relatively stable
performance for a given allowable overhead. For example, for the case when R = 0.2 and p
= 20, the performance of the myopic algorithm is 78% and 50% for task sets with 20 to 30
tasks and 45 to 55 tasks respectively. However, for the same case, the performance of the
original algorithm drops from 69% to 0% as the task sets size increases. This shows that the
myopic algorithm is more suitable for dynamic scheduling given its better performance even
under a low allowable overhead. This observation is also corroborated by our tests involving
task sets with around 100 tasks.

4.4 Summary

The simulation results show that the myopic algorithm which adapts the value of k¥ to the
system state and task characteristics works very effectively when compared with the original
algorithm even when the maximum allowable overheads is fixed to be linearly proportional
to the number of tasks. This makes the myopic algorithm an O(n) algorithm.

The fact that in dynamic situations scheduling costs have to be restricted, favors the
myopic algorithm. This is exemplified by the results portrayed in Section 4.3.5. They show
that when the task size is large, for a given maximum cost, the myopic algorithm performs
very well while the original algorithm has very poor performance, in some cases as little as

0%.

To apply the myopic algorithm in practice, a number of questions have to be considered:

1. In general, what should the values of W;, W, and W; be in the function used to determine
k?

2. What should be the maximum number of H computations allowed in a given situation,

i.e., what should be the value of p when (p x n) H calculations are allowed?
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The results of this section, can be seen as providing guidelines for answering the above
questions. In general, the answer to (1) depends on the characteristics of a given task set as
well as the number of tasks in this set. The answer to (2) depends on the allowable scheduling
overhead and the number of tasks that need to be scheduled. The advantage of the myopic
algorithm lies in its ability to perform better than the original algorithm for a given maximum

cost.

5 Conclusions

In this paper, we investigated the performance of very efficient heuristic algorithms when
applied to multiprocessor systems.

o We evaluated the heuristic approach when tasks with deadlines and resource require-

ments are scheduled on multiprocessors.
e We allowed multiple instances of a resource item.

e We evaluated two kinds of multiprocessor models, a shared memory model and a local
memory model (even though due to space limitations, only the results of the local
memory model were presented here).

e We found that the heuristic algorithm that integrates the information about tasks dead-
lines and resource requirements performs better than simple heuristics. The algorithm
works well over a range of laxities and is robust with respect to different levels of
resource contention. '

e For a given maximum scheduling cost, the myopic algorithm works as well as the original

algorithm in the cases when tasks have tight deadlines or resource contentions are high.

e For a given maximum scheduling cost, the myopic algorithm can work better than the
original algorithm for the cases when tasks have loose deadlines or resource contentions
are low.

¢ In general, the myopic algorithm incurs less computational cost than the original algo-
rithm and thus can work more effectively during dynamic scheduling.

Acknowledgements: Development of some of the details of the myopic algorithm ben-
efited from discussions with Chia Shen.

19



6 References

[Blazewicz, 79]- Blazewicz, J., “Deadline Scheduling of Tasks with Ready Times and
Resource Constraints”, Information Processing Letters, Vol. 8, No. 2, February 1979.

[Blazewicz et al., 88)- Blazewicz, J., Drabowski, M., and Weglarz, J., “Scheduling Multi-
processor Tasks to Minimize Schedule Length”, IEEE Transactions on Computers, May
1986.

[Dertouzos, 74]- Dertouzos, M., “Control Robotics: The Procedural Control of Physical
Process”, Proc. of the IFIP Congress, 1974.

[Horn, 74]- Horn, W.A., “Some Simple Scheduling Algorithms”, Naval Research Log.
Quart., 21, 1974.

[Martel, 82]- Martel, C., “Preemptive Scheduling with Release Times, Deadlines, and Due
Times”, Journal of the Association for Computing Machinery, Vol. 29, No. 3, July
1982. (pp 812 - 829)

[Mok and Dertouzos, 78]- Mok, A.K. and Dertouzos, M.L., “Multiprocessor Scheduling in
a Hard Real-Time Environment”, Proc. of the Seventh Texas Conference on Computing
Systems, November 1978.

[Mok, 84]- Mok, A.K., “The Design of Real-Time Programming Systems Based on Process
Models”, Proc. of IEEE Real-Time Systems Symposium, December 1984.

[Mok, 83]- Mok, A.K., “Fundamental Design Problems of Distributed Systems for the Hard
Real-Time Environment”, Ph.D. Dissertation, Department of Electrical Engineering
and Computer Science, MIT, Cambridge, Mass., May 1983.

[Ramamritham, Stankovic and Zhao, 88]- Ramamritham, K., Stankovic, J.A., and
Zhao, W., “Distributed Scheduling of Tasks with Deadlines and Resource Require-
ments”, IEEE Transactions on Computers, August 1989.

[Sahni and Cho, 79]- Sahni, S., and Cho, Y., “Nearly on Line Scheduling of a Uniform
Processor System with Release Times”, Soctety for Industrial and Applied Mathematics
Journal for Computing, Vol. 8, No. 2, May 1979. (pp 275 - 285).

20



[Shiah, 88]- Shiah, P.F., “A Heuristic Approach on Real-Time Scheduling for Multipro-
cessors”, M.S. Thesis, Department of Electrical and Computer Engineering, University
of Massachusetts, Amherst, Mass., Jan 1989.

[Stankovic and Ramamritham 87]- Stankovic, J.A. and Ramamritham, K., “The Design
of the Spring Kernel”, Proc Real-Time Systems Symposium, Dec. 1987.

[Stankovic, Ramamritham, Shiah and Zhao, 88]- Stankovic, J.A., Ramamritham,
K., Shiah, P.F. and Zhao, W., “Real-Time Scheduling Algorithms for Multiprocessors”,
Technical Report, University of Massachusetts, Nov 1988.

(Ullman, 73]- Ullman, J.D., “Polynomial Complete Scheduling Problems”, Operating Sys-
tem Review, Vol. 7, No. 4, Oct. 1973.

[Ullman, 7 5)- Uliman, J.D., «NP-Complete Scheduling Problems”, Journal of Computer
and System Science, Oct. 1975.

[Zhao, Ramamritham and Stankovic, 85]- Zhao, W,, Ramamritham, K., and
Stankovic, J.A., “Scheduling Tasks with Resource Requirements in Hard Real-Time
Systems”, IEEE Transactions on Software Engineering, SE-12, May 1987.

[Zhao and Ramamritham, 87]- Zhao, W., and Ramamritham, K., “Simple and Inte-
grated Heuristic Algorithms for Scheduling Tasks with Time and Resource Constraints”,
Journal of Systems and Software, 1987.

21



&8 NIN-D
G—+f

= @———@ WIN-§
“ O HIN-D+HeHIN-S ( W = 8.0 )
100. 0 ¥—x NIN-P

()

N oY
A4

90. 0.
80. 0
10. 0]
60.
30. 0.
40. 0
30. 0]
20. 0.
10. 0

0.0 y
| r i { | i I

0.0 0.1 0.2 03 04 0S5 06 0.7

Figure 1: Effect of Different Heuristics on the Original Algorithm

22



B— 8 NIN-D
G———8 HIN-L
x ———@ HIN-§
& G—© HKIN-D+HsMIN-S L} = 8.0)
¥— X MHIN-P

100. 0. U

Figure 2: Effect of Different Heuristics on the Original Algorithm

23



i— A USE-P - g, |

~x G———— y5E-p - 0.3

. &—@ 5P : 5
100. 0 C————O 5P : 0.]

0.0 40 &0 1.0 160 0 49 ”

Figure 3: Effect of Weight on Success Ratio

24



x 8 WN-D
< G——F] HIN-D+KeHIN-S

100. 0
[B\CL

90. 0. =

EP
b

80.0
0.0,
60.0.
50,0
40.0] \-\\
30.0

0.0
10,0,

0.0
I I |

0.1 0.2 0.4 01 B

Figure 4: Effect of Resource Contention

25



AXTASKS

K=HN
K=1
K=95
K-3

i

Figure 5: Effect of k on SR

26



100. 0

B8 K - KAXTASKS ( H = 300
B——8 k=7 (H:300)
@@ [ - NAXTASKS ( H - 400 )

G———O k=1 [H: 100}
6—6—=0
o—o
——=

l T I

0.6 0.7 0.8

Figure 6: Effect of Limited H Calculations

27



B——8 (- KAXTASKS [ H - 300 )
ox G——8 Kk = ADAPTIVE ( H : 300 )
“ @————@ (- NAXIASKS ( H = 400 )

G—————O K = AOAPTIVE ( K = 400 )

S & ©

—@— @ L

0.1 0.2 03 0.4 0.5 0.6 0.7 0.8

Figure 7: Effect of Adapting the Value of &

28



B—® K - HAXTASKS (W - |
B———8 K - HRXIASKS (H - |
“~ O———@ - HAXIASKS (W - 2

100, 0] -~ o
S, ]
# |

| | | | i | 1)

|
.0 01 02 03 0.4 0.5 0.6 0.7 0.8

Figure 8: Effect of Linear Scheduling Costs — Original Algorithm with 20-30 Tasks per Set

4

29



. B C: ROAPTIVE (W= 12N )
o  B————8 K : ROPIIVE (0 - 16iN )
“| @ ————@ : ARPIIVE (- 20iN )
—8
| I i .
0.6 0.7 0.8

Figure 9: Effect of Linear Scheduling Costs - Myopic Algorithm with 20-30 Tasks per Set

30



= 205K )
H: 245N )
H= 281N )

B—8 [ - KAXTASKS |
O——————3 K - HAXTASKS |
“~ &——@ [ - HAXIASKS [

100. 0.

8 = tJ
& 8 4
1 l T T
4

Figure 10: Effect of Linear Scheduling Costs — Original Algorithm with 45-55 Tasks per Set

31



W ORPIIVE (= |20 ]
- K= ADAPTIVE (M = 16N |
N ®————@ K : RAPIIVE [ H = 20ul |
-——a&—a
5 —a

Figure 11: Effect of Linear Scheduling Costs — Myopic Algorithm with 45-55 Tasks per Set

32



