EFFICIENT EMULATIONS OF
INTERCONNECTION NETWORKS:
A Formal Framework and a Case Study

Arnold L. Rosenberg

Computer and Information Science Department
University of Massachusetts

COINS Technical Report 89-40



EFFICIENT EMULATIONS OF INTERCONNECTION NETWORKS:
A Formal Framework and a Case Study

Arnold L. Rosenberg
Department of Computer and Information Science
University of Massachusetts

Ambherst, MA 01003, USA

ABSTRACT. We propose a graph-theoretic framework for comparing the
communication powers of competing interconnection networks by seeing how
efficiently one of the networks can emulate the other on general computations
(including pipelining). As a case study illustrating the framework, we present
three surprisingly efficient emulations by shuffle-oriented networks (such as
the Shuffle-Exchange and deBruijn networks) of butterfly-oriented net-
works (such as the Butterfly and Cube-Connected-Cycles networks).
Each emulation is efficient in its own way. (In order to minimize constant
factors, we concentrate on the Butterfly and deBruijn networks.)

o We emulate the order-n Butterfly network on the (like-sized) order-
(n + [logn]) deBruijn network, incurring a slowdown that is only log-
arithmic in n, hence doubly logarithmic in the size of the emulated net-
work; this is exponentially faster than the anticipated slowdown.

e For any m < n + [logn]|, we emulate the order-n Butterfly network on
the order-m deBruijn network, incurring a slowdown proportional to
n2"~™ logn. This emulation is a work-preserving derivative of the pre-
ceding one, in that the slowdown x processor-count product is preserved
for any choice of m.

o We emulate the order-n Butterfly network on the order-2n deBruijn
network, incurring a slowdown that is only a factor of 2. In fact, we can
emulate roughly 2" /n such Butterfly networks simultaneously.

1. INTRODUCTION

1.1. Goals of the Study

Which is the most powerful Hypercube-derivative network?



This apparently simple question is very hard to answer definitively, because there are
numerous meaningful notions of “powerful,” and not all notions lead to the same answer.
If we restrict attention to certain classes of computations, such as convolutions, then all
networks in the class have roughly the same power. If we insist on using the networks’
structures in a straightforward way, then the butterfly-like networks will appear to be
more powerful than the shuffle-oriented networks, since they (seem to) admit pipelining
more gracefully. Other groundrules lead to other answers.

Our goal here is to present a formal notion of the emulation of one interconnection
network by another, which will allow us to study questions of this sort rigorously. The
framework we present derives from several sources. It somewhat generalizes the frame-
work enunciated in [6] and used in [1-3, 5, 7] and elsewhere; that framework has recently
been shown in [4] to exclude certain useful emulation techniques. It is somewhat less gen-
eral than the full framework of [4]; our emulations do not require the full power of that
approach. The framework we present is simple and tractable, yet formal and rigorous.

1.2. Summary of Results

In order to illustrate the framework, we apply it to our motivating question, adducing
cerlain relevant, though not definitive, results. Specifically, we present three surprisingly
efficient emulations by shuffle-oriented networks (such as the Shuffle-Exchange and
deBruijn networks) of butterfly-oriented networks (such as the Butterfly and Cube-
Connected-Cycles networks). Each emulation is efficient in its own way. (In order to
minimize constant factors, we concentrate on the Butterfly and deBruijn networks.)

o We emulate the order-n Butterfly network on the (like-sized) order-(n + [log n])
deBruijn network, incurring a slowdown that is only logarithmic in n, hence doubly
logarithmic in the size of the emulated network; this is exponentially faster than
the anticipated slowdown.

o For any m < n + [logn], we emulate the order-n Butterfly network on the order-
m deBruijn network, incurring a slowdown proportional to n2"~™logn. This
emulation is a work-preserving derivative of the preceding one, in that the slowdown
x processor-count product is preserved for any choice of m.

e We emulate the order-n Butterfly network on the order-2n deBruijn network,
incurring a slowdown that is only a factor of 2. In fact, we can emulate roughly
2" /n such Butterfly networks simultaneously.

These results originate in [1, 4, 7]; related results appear in [2, 3, 5].



2. THE FORMAL FRAMEWORK

2.1. Interconnection Networks as Graphs
The Structure of Networks.

In common with the related sources, we view parallel architectures and their under-
lying interconnection networks as undirected graphs.! Formally,

e the nodes of the graph represent PEs of the architecture;

o the edges of the graph represent inter-PE communication links.

Computations on Networks.

We assume a pulsed model of computation, wherein computation steps alternate
with (point-to-point) communication steps between adjacent PEs.

The Networks of Interest.

For each positive integer n, the order-n deBruijn network D(n) is the graph whose
2" nodes comprise the set of length-n bit strings. D(n) has two types of edges: Shuffle
edges connect nodes '
' 0z & z0 and Iz < zl,

and shuffle-exchange edges connect nodes
0z & z1 and lz & =0,

for every length-(n — 1) bit string z. See Fig. 1.

For each positive integer n, the order-n Butterfly network B(n) is the graph whose
n2" nodes comprise n levels, each comprising the 2" length-n bit strings. B(n) has two
types of edges: Straight-edges connect nodes of the form

(f, 6061 e 6,,._1) L d ((l + 1 mod 17.), 5061 s 6,,-1),
and cross-edges connect nodes of the form
(Z, 6061 s 6,,__1) Aand ((Z + 1 mod TL), 605] v 6(-15[6[4.1 oo 6,;..1),

where £ € {0,1,...,n — 1}, and the §; are bits. See Fig. 2.

1An undirected graph G is specified by a set Vg of nodes and a set Eg of two-element subsets of 1y
called edges.



001 011

\_/

000 010—101 111

/ N

Figure 1: The DeBruijﬁ graph D(3).

0,000 0,100 0,010 0,110 0,001 0,101 0,011 0,111

1,000 1,100 1,010 1,110 1,001 1,101 1,011 1,111

2,000 2,100 2,010 2,110 2,001 2,101 2,011 2,111

/

0,000 0,100 0010 0,110 0001 0,101 0,011 0,I11

Figure 2: The Butterfly graph B(3); level 0 is replicated to aid visualization.



2.2. A Formal Notion of Emulation

- The Components of an Emulation.

Our formal notion of architecture H emulating architecture G has the following com-
ponents.

e We assign each PE of G to one PE of H.

The assignment is accomplished with the (possibly many-to-one) assignment
map o.

¢ We route each link of G along a routing-path in H.
The routing is specified by the routing function p.

e We have H emulate G via alternating computation and communication phases:

— During each computation phase:
Each H-PE executes one computation step for each G-PE assigned to it by
the assignment map a.

— During each communication phase:
Each “message” from G-PE v to G-PE w is routed (using the routing func-
tion p) from node a(v) of H to node a(w) of H.
(If a assigns both v and w to the same node of H [i.e., a(v) = a(w)], then
this communication is “internal” to the H-PE a(v).)

Sources of Slowdown.

In order to have a meaningful notion of the efficiency of an emulation, we must
understand the sources of slowdown in our stylized type of emulation. We have isolated
three major sources.

1. The Load Factor of the assignment is the largest number of G-PEs that a assigns
to any-one H-PE.
Load Factor incurs slowdown because every PE of H must emulate one compu-
tation step of each of its assigned G-PEs during each computation phase of the
emulation.

2. The Dilation of the routing is the length of the longest p-routing path (in M) used
to emulate a single communication link in G.
Dilation incurs slowdown because every message that crosses link e in Architecture
G must traverse path p(e) in Architecture H.



3. The Congestion of the routing is the largest number of p-paths crossing a single
edge of H.
Congestion incurs slowdown because the messages that want to cross a congested
edge must be queued up. (For simplicity, we are giving each edge of H unit capac-
ity; endowing edges with some other constant capacity will reduce our calculated
slowdown due to Congestion by that constant factor.)

In many emulations, it is possible to amortize the effects of Congestion, by orches-
trating the communication phase of the emulation. When this is possible (as it is in our
emulations; see [7] for details), we can replace Congestion as a source of slowdown by

Dynamic Congestion = Congestion/Dilation.

When this is possible, after all considerations, we end up with:

Slowdown = Load Factor + Congestion

3. EFFICIENT EMULATION OF BUTTERFLIES

The order-(n + [log, n]) deBruijn network can emulate the
order-n Butterfly network, with slowdown O(logn).

This is exponentially faster than previous emulations.

The strategy of this emulation is to decompose the task into a sequence of simpler
emulations:

1. Emulatee: the order-n Butterfly
Emulator: the product network? (length-n Cycle) x (order-n deBruijn)
Slowdown Factor: 2

2. Emulatee: (length-n Cycle) x (order-n deBruijh)
Emaulator: (order-[log, n] deBruijn) x (order-n deBruijn)
Slowdown Factor: 1

3. Emaulatee: (order-[log, n] deBruijn) x (order-n deBruijn)
Emulator: order-(n + [log, n]) deBruijn network
Slowdown Factor: 2log,n + O(1)

2The nodes of the product G x H of graphs G and H are ordered pairs (u,z), where u is a node of G
and z is a node of . Every edge u « v of G engenders a set {{u,z) — (v,z)} of edges of G x H; every
edge  — y of H engenders a set {(u,z) — (u,y)} of edges of G x H.



We shall sketch the first and third of these emulations, the second being immediate
from the following result of Yoeli [8]:

The deBruijn network contains cycles of every length.

3.1. Emulating the Butterfly on the (Cycle x deBruijn)

Our emulation depends on the following interesting fact.

The order-n Butterfly network “contains” a copy of the order-n
deBruijn network between every two consecutive levels.

One can verify instances of this fact visually; cf. Figs. 3 and 4.

3.2. Emulating the Product of deBruijn Networks on a Big deBruijn Network

Let A =qger [log, n]. We emulate the product network D(A) x D(n) on D(n + A), as
follows.

o We assign node (z,y) of D(A) x D(n) to node zy of D(n + A).
o We route links of D(A) x D(n) in D(n + A) as follows.

— We route the link
(z,9) & (2,9)
within copy z of D(n) along the length-(2) + 1) path

:z:y(-—»---c—)a:y'

in D(n + A).
~ We route the link
(z,y) & (,y)
between copies z,z’' of D(n) along the length-2) path

:cy(._)...q_)x'y
in D(n + A).

e We orchestrate the link-routings to get Dynamic Congestion O(1).



000 100 010 110 001 101 011 111

000 001 100 101 010 011 110 111

000 010 001 011 100 110 101 111

000 100 010 110 001 101 Ol1 111

Figure 3: The order-3 Butterfly network, with a “shuffle-oriented” node-labelling (de-
riving from [1]).

000 100 010 110 001 101 011 111

000 100 010 110 0Obr 101 011 111

Figure 4: Two consecutive levels of the order-3 Butterfly network, permuted so that
like-labelled columns line up. Collapsing the levels yields the deBruijn network.



We illustrate the routing of intra-copy links, the routing of inter-copy links being similar.
Every intra-copy link connects a node of the form zy (z of length A and y of length n) to
a node of the form z[y|n-,8, where [y] denotes the length-m suffix of y, and § € {0,1}.

TY < o zvd (z =£1£2"'EA; v= [y]n—l)

€162€3 -+ - En0v €263+ - ExbUV6 shuffle(-exchange)

€3+ - €\6v8¢, shuffle(-exchange)

11

bvb€1€263---€x—1  shuffle(-exchange)
V8616283 - - €a—1€x  shuffle(-exchange)
£rv6€1€263- - €a-1  unshuffle

117

= &b 6Hvdé unshuffle
o &b OHvd unshuffle

Finally, we indicate why our emulation suffers only the claimed slowdown.

1. Our assignment is one-to-one, so our emulation has unit Load Factor.

2. Our link-routing engenders Congestion O(logn), because of the structure of the
deBruijn network.

3. By orchestrating our routing, we ensure that

Slowdown = Load Factor + Congestion

These three facts guarantee that our emulation engenders only Slowdown O(log n).

4. A WORK-PRESERVING PROCESSOR-TIME TRADEOFF

The result in the previous section has a deBruijn network emulating an equal size
Butterfly network with modest slowdown but no savings in processor-count. We now
build on that result to have a deBruijn network emulate a smaller Butterfly network
with increased slowdown but commensurate decrease in processor-count. This yields a
processor-time tradeoff which is work preserving, in the sense that

The slowdown x processor-count product is constant.

Our tradeoff takes the following form.



For all m < n + [log, n], the order-m deBruijn network can emulate the
order-n Butterfly network, with slowdown O(n2"~™ logn).

The tradeoff follows from the fact that small deBruijn networks can rather efficiently
emulate big ones:

For all m,n, the order-n deBruijn network can emulate the
order-(m + n) deBruijn network, with slowdown 2™.

This auxiliary emulation proceeds as follows.

e We assign node z of D(m + n) to node (2], of D(n), a 2™-to-1 mapping.

¢ We route link
z & [2]min-10

of D(m + n) — all links have this form — via the link
[2)n < [2]n-16

in D(n).

Since the routing in our emulation maps links to links, it engenders no slowdown. Thus,
the slowdown in our emulation results solely from the Load Factor of the assignment,
which is 2™.

5. OPTIMAL-SPEED EMULATION OF SMALL BUTTERFLIES

The order-2n deBruijn network can emulate the order-n Butterfly network,
with just a factor-of-2 slowdown.

At first blush, this emulation seems less surprising than the former ones, because the
deBruijn network consists of a collection of butterflies:

Oz 1z

z0 zl

However, there are two (related) problems with these butterflies, which prevent an easy
emulation.

10



1. Some of these butterflies degenerate.

2. The deBruijn network lacks the levelled structure of the Butterfly network.

If one is willing to use the deBruijn network to emulate only a small Butterfly network,
then there is a simple way to overcome these problems: by appropriatelyinterspersing
cyclic rotations of the string 100---0 with the bits of the Butterfly’s node “address-
strings”:

o We assign node
(1,8061 -+ - n-1)

of B(n) to node
61080« - 6,_508,11800

of D(2n).

— The “active” bit-position is at the left; the index to this position is numbered
from the right.

— The position of the “1” in each cyclic rotation indicates which Butterfly level
is being emulated.

— The interspersed bits keep butterflies from degenerating.

e We route link )
(1) 6051 ot 611—1) « (2) 6061 ot 6n-—1>

of B(n) (8, € {61,5,}) via the length-2 path

610520 e 5,,..206 -11600 « 0620 e 6,;-206 -1 160031
> 620 v 6,,_206 -1 1600610

in D(2n).

—~ Two deBruijn moves change both the “active” bit-position and its index.

Since this emulation has unit Load Factor, the entire slowdown results from Dilation;
hence, the slowdown is 2.

Satish Rao (MIT) has generalized this solution, bringing the size of the emulated But-
terfly closer to the size of the emulating deBruijn network, at the cost of increasing
the slowdown factor.

11



ACKNOWLEDGMENTS. It is a pleasure to expre.ss thanks to my collaborators on
[1, 4, 7], on which the current paper is based: Fred Annexstein, Marc Baumslag, Sandeep
Bhatt, Fan Chung, and Tom Leighton.

A portion of this research was supported by NSF Grants DCI-87-96236 and CCR-88-
12567.
REFERENCES

1. F. Annexstein, M. Baumslag, A.L. Rosenberg (1987): Group-action graphs and

oo

parallel architectures. Tech. Rpt. 87-133, Univ. Massachusetts; submitted for
publication.

M. Baumslag and A.L. Rosenberg (1989): Processor-time tradeoffs for Cayley-
graph interconnection networks. In preparation, Univ. Massachusetts.

. S.N. Bhatt, F.R.K. Chung, J.-W. Hong, F.T. Leighton, A.L. Rosenberg (1988):
Optimal simulations by Butterfly networks. 20th ACM Symp. on Theory of Com-
puting, 192-204; submitted for publication.

. R.Koch, F.T. Leighton, B. Maggs, S. Rao, A.L. Rosenberg (1989): Work-preserving
emulations of fixed-connection networks. 21st ACM Symp. on Theory of Compul-
ing, Seattle, WA,

A. Raghunathan and H. Saran (1989): Is the shuffle-exchange better than the
butterfly? Typescript, Univ. California, Berkeley.

A.L. Rosenberg (1981): Issues in the study of graph embeddings. In Graph-
Theoretic Concepts in Computer Science: Proceedings of the International Work-
shop WG80 (H. Noltemeier, ed.) Lecture Notes in Computer Science 100, Springer-
Verlag, NY, 150-176.

A.L. Rosenberg (1988): Shuffle-like interconnection networks. Tech. Rpt. 88-84,
Univ. Massachusetts.

. M. Yoeli (1962): Binary ring sequences. Amer. Math. Monthly 69, 852-855.

12



