INTERPRETATION IN A
TOOL-FRAGMENT ENVIRONMENT

Steven J. Zeil
Edward C. Epp

COINS Technical Report 89-41
April 1988

Software Development Laboratory
Department of Computer & Information Science
University of Massachusetts
Ambherst, Massachusetts 01003

This paper appeared in
The Proceedings of the 10th International
Conference on Software Engineering

This work was supported in part by the National Science Foundation under grant CCR-87-04478, with cooperation
with the Defense Advanced Research Projects Agency (ARPA Order No.6104), by the National Science Foundation

under grant DCR-8404217, by Control Data Corporation under grant 84M103, and by RADC under grant F30602-
86-C-0006.

Interpretation in a Tool-Fragment Environment

Steven J. Zeil and Edward C. Epp

Software Development Laboratory
Computer and Information Science Department
University of Massachusetts
Ambherst, Massachusetts 01003

Abstract

The philosophy of composition of new software tools from
previously created tool fragments is a useful approach to facili-
tating the development of solt ware systems. This paper examines
the extension of this philosophy to the design of program inter-
preters, demonstrating how the separation of interpretation into
a core algorithm, value kind definitions, and computation model
allows the capture of conventional execution models, symbolic
execution models, dynamic data flow tracking, and other useful
forms of program interpretation. An interpretation system based
upon this separation, called ARIES, is cusrrently under develop-
ment.

1. Introduction

This paper discusses the role and design of program inter-
pretation tools in a software development environment. We will
examine the prospects for providing interpreters that satisfy two
important characteristics of powerful development environments:

o support for a wide variety of activities occurring throughout
the development life cycle, and

e support for the straightforward construction of new -soft-
ware tools via the composition of previously constructed
tool fragments. .

It is not the purpose of this paper to defend the utility of these
characteristics, nor to discuss general environment architectures
for their support. Instead, we propose to examine a useful class of
tools that have not traditionally been designed with these char-
acteristics in mind and to show how these characteristics affect
those tools.

1.1 Varieties of Interpretation

A survey of activities that can take place within o compre-
kensive soRware development environment reveals an impressive
range of activities where some form of program execution is re-
quired. In this section, we will examine some of these activities,
with the goal of illustrating both the variety of computation mod-
els that must be encompassed and the common threads that run
through those models. .

Although it is not uncommon for a software development
environment to center upon the use of some single language
(9,13,11,14), there is cestainly no requirement that all eaviron-
ments should do so. Indeed, as the scope of our environments
widen to include direct support for more of the life-cycle, we can

This wotk was supported by grasts DCR-8404217 and CCR-8704478
rora the Natlosal Scieace Foundation, $4M103 (rom Costrol Date Corpore-
tion, sad RADC grant F30602-85-C-0000.

0270-5257/88/0000/0241$01.00 © 1988 IEEE

reasonably expect that environments will include not only a vari-
ety of implementation languages, but also distinct languages for
specification, design, etc. ’

What may be less apparent, however, is that even for a given
language there may still be a requirement for many different forms
of interpretation depending upon the development activity being
performed. Consider, for example, the following scenarios for the
execution of the statement A := B + C, where A, B, and C are
integer variables:

Actual Interpretation: One possibility is to request interpre-
tation in a form thaot mumics, as closely as possible, the
actions that would be taken by compiled code for that state-
ment. This form of interpretation is the most familiar, and
can serve as the basis for a wide variety of tools and activ-
ities that require more detailed monitoring/control of in-
termediate states of execution than are conventionally pro-
vided by compiled, machine-native code.

In this case, we might choose, for exasmple, to represent
integer vasiables as 32-bit binary numbers in 2's comple-
ment form. The semantics associated with *+' would be
the familiar 2s complement addition, so that, if the initiali
values of B and C were the binary strings corresponding to’
2 amd 3, respectively, then following interpretation of this
statement we would expect the value of A to be the binary
representation of 5.

Symbolic Interpretation: Another option is to represent the

values taken on by variables as algebraic expressions that
denote the computational history of those variables. Sym-
bolic Interpretation has a variety of applications in software
testing, verification, and analysis {2,7].
The semantics sssociated with ‘+’ could then be to form a
new algebraic expression with + as its root operator and
with the symbolic values of B and C as the operands of
that +. Thus, if the initial values of B and ¢ had been
z and 2 ¢ £ + y, reopectively, then after interpretation the
value of A might be z + (2+ z + y). We can achieve dif-
ferent varieties of symbolic interpretation by altering these
-semantics somewhat. For example, we might choose to say
that the semantics of '+’ involve forming a new algebraic
expression as above, but then simplifying that expression
to yield, in thie example, 3 ¢ £ + y as the final value for
A. Alteration of the semantics associated with conditional
statements can yield the variants known as path-dependent
symbolic evaluation {2} or global symbolic ezecution (1,2).
Symbolic and Actual interpretation can also be combined
to yield dynamic symbolic evaluation (2}. :

Dynamic Data Flow Interpretation: An even less conven-
tional form of interpretation can be achieved by letting the

241

Recommended by: K. Kistuda

value of a variable or expression be a vanable name or a null
indicator. This form of interpretation can serve to monitor
many of the data-flow based testing metrics surveyed in |3].

For this purpose, the semantics of '+’ is to check cach of its
operands and, if that operand's value is a vanable name,
to mark that variable as having last been referenced at this
statement. (Similacly, the semantics of *: »' would mask it's
right-hand-side operand, if not null, as having been refer-
enced, but to mark it's leR-hand-side operand as having
been defined at this statement.) Many variations of dy-
namic data flow interpretation can be realized by minor
changes in these semantics, including monitoring of other
testing metrics or, when combined with symbolic interpre-
tation, the generation of program slices {15)].

1.2 Tool Fragments

There is little chance that any single interpretation tool could
encompass the range of interpretation activities outlined in the
previous section. Futhermore, the above descriptions were merely
a sampling of the kinds of activities requiring interpretation that
might arise within a development environment. One can reason-
ably expect the range and character of interpretation activities in
an environment to evolve over time and to vary somewhat from
one project to another.

It is worth noting that, in many instances, interpretation is
not itself an end goal but is instead a past of some larger activ-
ity. The examples above may serve to suggest the existence ofa
variety of software tools within the environment, tools of which
the interpreter is simply a component.

Software development environments must have the construc-
tion of new software tools as one of their ma jor concerns, whether
those tools represent the end product of some project or an inter-
mediate tool to aid in the construction of that end product. One
philosophy that has proven useful is an emphasis upon the com-
position of new tools from smaller, well-defined tool fragments
[10,9,12. The question that we wish to raise in this paper is,
“Can we define s fragment architecture for interpretation that
would encompass the varieties of interpretation outlined above
and that would facilitate the construction of new software tools
having interpretation as one component?”

As diverse as the above examples of interpretation activities

. may seem, there are clearly common threads that suggest that
such an interpreter architecture should be possible. In each in-
stance, the interpretation of A := B ¢ C consisted of the follow-
ing sequence of operations:

1. Fetch the current values of B and C.
2. Apply the ¢ operator to those values.
3. Determine the location known as “A™.

4. Apply the :e operator to that location and to the value
returnod by the + operation.

What changed from one interpretation variant to another was:

1. the representation of values of variables and expressions,
and

2. the semantics associated with the operators + and :=.

242

‘This suggests that we may be able to define an interpreter as-
chitecture comprnised of a common core interpretation algorithin
that determines the order in which values are fetched and op-
erators invoked, a vaniant part providing the representation of
values, and variant parts defining the semantics of the language
operators.

2. Interpretation Semantics

2.1 Value Kinds

Conventionally, the values mamipulated by programs are clas-
sified by domain and operation sets into different data types.
The previous Section, however, suggesto another classification,
the value kind. Our examples have served to informally intro-
duce three value kinds, which we call actual, symbolic, and data
flow. Other value kinds are possible as well, but these three will
suffice as examples.

The need for this new clasmification stems from a fundamen-
tal and sometimes confusing property of interpreters and inter-
preted code, namely the existence of two distinct levels at which
we must view the objects and operations being manipulated dur-
ing interpretation. At the level of the interpreted code, we have
various objects subject to the typing rules of the language be-
ing interpreted. At the level of the interpreter, we have objects
subject to the typing rules of the language in which the inter-
preter is written. The connection between these two sets of types
can be tenuous, even if the language being interpreted and the
language in which the interpreter is written are the same. It is
possible that an integer object in the interpreted code has an
integer-typed counterpart in the interpreter, but requiring that,
for every object of type T in the interpreted code, there should
be an object of identical type T in the interpreter would raise
severe problems in most implementation languages, since such a
correspondence would limit the ability to interpret code in which
new types are constructed.

At one level, then, a value kind is simply a data type used
by the interpreter to hold values during the course of an inter-
pretation. Because these values also have types at the lower level
of the interpreted code, we here reserve the use of the word type
to refer to the lower-level classification and use kind to refer to
the higher-level classification. There is a connotation, however,
that may be safely drawn from the designation of some class of ,
objects as a value kind - that we intend that set of objects and

their associated operations to support one or more computation
models.

2.2 Computation Models

QOur interpreter architecture io based upon an expression-
oriented view of programs. A language is considered to be a
set of syntactic operators {f;} and a set of constraints on the le-
gal ways in which expressions may be built using those operators.
Typical operators would include operators for manipulating data
(e.g., addition, subtraction, array-component-saelection)
and also operators for compooing statements and groups of state-
ments (e.g., saquonco, vhilo-1loop). Constraints on the expres-
sions built from these operators would include type rules such
as “addition takes two integers and returns a single integer™ of
“while-loop takes a boolean-typed expression (the lovp condh-
tion) and a statement list (the loop body) and returns a (comv
pound) statement”. A program is a legal expression built using

those operators. The responsibility for determining that a given
expression is & legal program lies with the tool that produces
the expression (usually a compiler that converts source code into
this expression-oriented form). The set of legal expressions and
subexpressions of legal expressions in a language L will be de-
noted by Eg.

In a normal discussion of programming language semantics,
one would take an expression from £, and ask directly, “what
is the meaning of this expression?” If an interpreter is intended
to support multiple value kinds, this question may not have a
direct answer. This is in part due to the different underlying
representations employed by different value kinds. Were this not
the case, however, it is otill far from clear that the question has
a direct answer. Representation-independent notations for ex-
pressing semantics seem to offer little meaningful information in
this situation. For example, one might try to argue on the basis
of the axiomatic semantics of real arithmetic that the result of
executing Z:=X+Y; Z:92-Y ig to leave Z and X equal, because “-"
is the inverse of “+". This is not true in general for actual value
kinds, however, because of possible round-off and overflow. It
is not even approximately true for many data-flow value kinds,
where Z would have a value indicating that Z and Y had been
used in its calculation, which may or may not be true of X de-
pending on the rest of the program’s code. On the other hand, it
is exactly true for most symbolic execution systems. Thus even
very simple properties of the data and operations employed in
a program may vary from one value kind to another. It is cus-
tomary for any application making use of an unusual value kind
to acknowledge these potential differences from the results that
would be obtained using any given machine’s actual representa-
tions (1,2). Designers and users of tools must determine whether
those differences are significant to the task at hand, whatever
that might be.

We take the view that the meaning of a program expression
cannot be determined in isolation from the value kinds that will
be employed during the interpretation of that expression. Each
value kind has associated with it a set of semantic functions
{u; : E’ x s — s}, where s is an interpretation state!. These
semantic functions produce a new state from an old state and
(potentially) from a collection of program expressions.

A compstation model is a relation
{(fi2 95)s(fiss 3y). ..} thet describes a binding of semantic
funetions to syntactic operators. The interpretation (denotation)
of an expression P = f; (g1,---,9n) under such a computation
‘model is taken to be

IIPI(O) = ui.(’h---n’m‘)' (l)

For example, to accomplish actual interpretation of P = E; + E,,
where E, and E, are integer expressions, we would use a se-
matic function uy(Ey, Ey,s) that evaluates its operand expres-
sions, (o' := I[EyJ(s);s" := I|E;|(«')) and then adds the
tesults (the two “top” results in ¢"). By binding this w, to the
+ operator, we in effect declare it as the semantics of + in this
model.

There may be many different useful computation models pos-
sible for a given value kind, if that value kind provides a suffi-
ciently broad set of semantic functions that more than one mean-

'Becanse the interpretation state mast include biadings of cerreat valucs
Vo vasiables, the structare of Lhe slate must cleasly vary from oae value kind
o another. This level of detail, however, is not crucial to aa asderstanding
of the motion of & ! model.

24)

ingful set of bindings 18 possible. For example, for symbolic value
kinds the semantic function associated with the syntactic oper-
ator “apply user-defined function F” might he to interpret the
code associated with the function F, or might be to simply form
a new symbolic value with F as the root operator (i.e. “F(£)"),
where £ is the vector of current symbolic values of the actual
parameters to this call of F).

A value kind may also provide operations that are not se-
mantic functions but are usefu} to tools employing interpretation
over that kind. For example, most symbolic kinds would provide
some sort of algebraic simplification routine, which would prob-
ably not by itself constitute a semantic function that could be
meaningfully bound to any syntactic operator, but- which might
be profitably employed by a tool (or within some semantic func-
tions). Note that this operation has no meaningful counterpart
in many other value kinds (e.g., actual or data flow), but this is
not a problem since this operation would not be directly invoked
by the interpreter in any case and would only be invoked by se-
mantic functions or tools specifically designed for use with the
symbolic kind.

2.3 Trace-Equivalent Models

Combinations of different value kinds are often valuable, re-
quiring simultaneous support for more than one computation
model. Our earlier examples noted applications requiring com-
binations of actual and symbolic and combinations of symbolic
and data flow models. Applications requiring other combinations
can be anticipated. We could, of course, require tool implemen-
tors to provide a new value kind and model that simply merges
the information and operations of the appropriate combination of
separate kinds, but concern for the reusability of code for imple-
menting value kinds and for avoiding a combinatorial explosion
in the number of value kinds has moved us to instead design
our interpreter with the expectation of simultaneously support.
ing multiple models from one or more value kinds.

This support is not completely general. Some models are so
incompatible that it is not even clear that “simultancous inter-
pretation” would have any useful meaning. For example, under
actual execution and some forms of symbolic execution, the inter-
pretation of an IF statement involves choosing either the then or
elae branch and requesting interpretation of that branch alone.
Under global symbolic execution, the interpretation of the same
IF involves interpreting both branches and combining the result-
ing states to form something like (c A then-state) V (€A else-state),
where ¢ is the symbolic value of the IF condition (1,2]. The term
“simultaneous” would seem to have little meaning when applied
to global symbolic and actual execution, although it may make
perfect sense when used with other model combinations.

To characterize the models that can be supported in combina-
tion, we return to the definition of interpretation in equation (1).
There we noted that many semantic functions would request in.
terpretation of the subexpressions passed to them as parameters.
Define a trace T(P,s) of expression P = f(...) on state s un-
der a given computation model as a tree of nodes labelled with
syntactic functions as follows:

¢ The root of T(P, s)-is labelled by the syntactic function f.

o If the semantic function bound to / in this model, when ex-
ecuted in state s, would not request interpretation of other
expressions, then the root of T(P, s) is a leafl node.

o If the semantic function bound to f in this model, when
executed in state s, would request interpretation of expreo-
sions ey ...¢s in otates sy.. .0, then the root of T(P,s)
has children Ti(e1,21)..-Ta(en, 2u). The chuldren are or-
dered according to the order of the interpretatiun requests
when significant.

We will say that Lwo traces are equivalent if every existing pair
of nodes in corresponding position (relative to the root) have
identical labels.

We allow simultaneous use of models that yield equivalent
troces on the programs and states being interpreted. This means
that most models resulting in the same flow of control through
o program can be interpreted simultaneously. An important ad-
ditional case satisflying trace equivalence arises when one trace
ineludes nodes for which no corresponding nodes occur in the
other. An example of this might arise during simultaneous actual
and symbolic interpretation of ABS(X), where actual interpreta-
tion might require subsequent interpretation of the body of the
ABS routine, but the symbolic interpretation might be content to
immediately return “ABS(z)", where z is the current symbolic
value of X, without actually conducting a saymbolic execution of
the code for ABS.

3. The ARIES Interpretation System

The ideas presented here are being used in the development of
an interpretation system called ARIES, for ARcadia Interpretive
Execution System, which will be a part of the Arcadia-1 envi-
ronment (12].7 In this Section, we sketch some of the key features
of the ARIES design.

3.1 IRIS

Programs in the Arcadia-1 environment will be compiled into
an internal representation called IRIS {5}, and it is this internal
represeatation that will be provided to the interpreter. IRIS,
which stands for Internal Representation Including Semantico,
is an abstract syntax graph that represents a program in terms
of expressions. In essence, IRIS encodes everything as literals
or as operators applied to a set of operand expressions. Thus
the expression 2 + 3 is encoded as the application of an addition
operator to the literals 2 and 3. A while-loop would be encoded
as the application of a whila operator applied to two operands,
the first being an IRIS structure encoding a condition and the
second an IRIS structure encoding a statement list.

A key feature of IRIS that separates it from other syntax
graph representations (e.g., DIANA [6]) is that none of the oper-
ators in IRIS are predefined. Instead, the operator in each graph
node is represented by a pointer to an IRIS structure represent-
ing the declaration of that operator, including such information
as the operator's name, the number of operands it takes, the data
types of those operands and of the returned value (if any), the
infout mode of the parameters, and whether each parameter is
to be evaluated prior to invoking the operator's semantics (for
example, ‘+° operators asswme that their operands have been
evaluated prior to performing the semantic action we call addi-
tion; the while operator does not expect its operands to have

"The Arcodis project is & consortium eflort that jncluden reseaecheta from
the University of California ot Ievine, Universily of Colorado, Ugiversity of
Massachusetts, Stasford University, Aeroopace Corp., | tal Systems
Corp., and TRW,

been previously evaluated but instead will, as part of its seman-
tics, determine when and how often to evaluate them). There
is essentially no difference between the declarations for the “pre-
defined” operators for the programmung language and for user-
defined procedures and functions thet have been compiled into
IRIS. IRIS is therefore a general purpose structure for represent-
ing programs. To represent & given language in IRIS, one must
provide the IR1S-structured declarations of the syntactic opera-
tors for that language. Different seto of primitive operators would
yield different languages.

3.2 Dynamic Manipulation of Computation Mod-
els

The set of operators defined in a given IRIS graph consti-
tute the set of syntactic operators during interpretation of that
graph. In practice this set includes both language-primitive oper-
ators and operators representing user-defined functions and pro-
cedures. Semantic functions must be bound to each operator for
each model supported by a given instance of ARIES.

In ARIES we have chosen to allow these bindings to be altered
dynamically. This means that a tool is actually able to change
computation models during the course of an interpretation. We
do require that the value kinds and the number of models to be
based upon each value kind be declared when the tool’s version of
ARIES is instantiated. Also, current environmental limitations
require that the semantic functions be compiled as part of the
tool. Thus the pool of semantic functions from which models are
constructed must also be determined at compile time. Within
that pool, however, one still has considerable flexibility in the
construction/alteration of a model. The advantages of allowing
dynamic alteration of the computation models are:

¢ It provides a simple mechanism by which tools can exert
control over the interpretation process. For example, during
interpretation of a program that reads a large amount of in-
put, a tool might wish to begin taking inputs from a file but
then allow the tool user to add additional items from the
keyboard. This can be accomplished by altering the bind-
ing to various 1/0O operators at the appropriate time. Simi-
larly, a debugger might wish to dynamically choose whether
an operator representing a user-defined routine should be
interpreted by simply invoking a previously compiled-into-
native-code version of that routine or instead by interpret-
ing the code for that routine, depending on whether the
internals of that particular routine were of interest to the
person employing the debugger. Similar choices have ear-
lier been described for symbolic execution of functions and
procedures like ABS. These choices are easily achieved un-
der ARIES by changing the semantic functions bound to
the relevant syntactic operatoro.

¢ Dynamic manipulation of these bindings also provides a
natural treatment for dynamic creation of new proce-
dures and functions to be interpreted. Many tools slated
for implementation under Arcadia-1 involve incremental
changes to the code coupled with immediate interpretation
(e.g., [17)).

o Tools may also easily adjust the response of the interpreter
to exceptions and run-time errors by changing the bindings
of exception handlers, etc., in response to changing toul
requirements.

We have found it convenient to define one special model,
called the traversal model, whose values consist of IRIS expres-
sions and whose activation stack is used to summarize the control
gow information for each process. The use of this value kind has
the sdvantage of providing a mechanism by which trace equiv-
alence can be readily enforced, of providing a standard means
by which tools may gather control flow information no matter
what other value kinds and models are employed, and of provid-
ing & basis for a set of standard semantic functions for describing
control-related semantics that are common to many models. For
example, the meaning of an IF statement can change from model
to model (s in global versus non-global symbolic execution) but
the “standard” definition is sufficiently common that it is worth
providing & commonly accessible semantic function defining it,
which we do using the traversal kind. This does not prevent a
tool from binding & new function to the IF operator; it merely
provides a useful default.

3.3 ARIES Components

ARIES has been partitioned into four conceptual levels, as
illustrated in Figure 1:

1. The Toolis the highest conceptual level. Operations occur-
ting at this level will vary considerably from tool to tool.

2. The second level is the Tool Interpreter Interface (TI1). This
level serves as an interface between the particular require-
ments of a tool and the details of the interpreter. It is at
the TII level that the interpreter becomes language and tool
specific via the importation of the appropriate value kinds
and of the appropriate semantic functions.

3. The third level is the Jangusge and tool independent Atomic
Interpreter level. Its primary functions are to traverse the
IRIS structure and select the semantic procedures that have
been bound to the syntactic operators.

4. The lowest conceptual level consists of the set of semantic
functions, which implement particular operators for partic-
ular valus kinds.

These four levels are discussed in more detail below. Because the
T serves primarily as the interface between levels, we reserve its
discussion until alter the functions of the other levels have been
made clear.

249

3.3.1 The Tool

Although the set of tools that will employ interpretation is
not fixed, we do know that tools will need to set up interpreta-
tions of arbitrary IRIS structures, to_run the interpreter, to halt
interpretation at appropriate times, and to then gather informa-
tion before resuming interpretation. A typical scenario for tonls
is therefore:

State := initial_state(Code.To_Be_Interpreted):
vhile not done(State) loop

run_interpreter (State);

collect information from the stato;
end loop;

The operations initial_statae, done, and run_interpreter
may vary from tool to tool. Their precise definition occurs in the
Tool-Interpreter Interface. Other high level functions in which a
tool might be interested include altering operator bindings, alter-
ing the interpreter state, and comparing the results of different
states.

3.3.2 The Atomic Interpreter

The atomic interpreter knows nothing about specific lan-
guages, tools, and value kinds. It treats the IRIS structure as
an expression to be evaluated. Most of itc work is therefore con-
cerned with determining what IRIS node is currently being exe-
cuted, whether that node has operands that require evaluation,
and what semantic functions should be invoked to execute that
node. IRIS contains information about the expected evaluation
patterns of many operators, in that it allows indications as to
whether an individual operand is to be evaluated prior to invok-.
ing the operator’s semantic function. Thus the atomic interpreter
can follow a default evaluation order for operators such as “+",
“<", or “:=", but allow other operators such as “IF”" or “LOOP"
to leave all decisions on interpretation of their operands to the
semantic functions.

Information about which node in the IRIS structure is the
next to be interpreted and which nodes have already been visited
is kept on the activation stack for the traversal vajue kind.
A rough sketch of the atomic interpreter’s interaction with this
traversal information is:

Levels

Tools Debugger

Small Granulanty,

Tool-Interpreter
Actual Values

Test Data
Selector

Exanmples

Loop Analysis

Large Granulanty,
Actual & Symbolic

Interface Values
Atomic Interpreter
Interpreter
Semantic actual sym.b?lic while-loop
Functions addition addition

Figure 1: Levels of Abstraction in ARIES

Get the current node from the top of the
traversal model stack;
Dotermine the current node's aperator;
If all operands of the current node have not
been processed then
Get first unprocessed operand;
If this operand is to be interpreted before
invoking the operator’s semantics then
Push root node of operand onto stack;
(Subsequent calls to the interpreter will
result in the evaluation of this operand,
eventually returning to the current node.)
end if;
else
invoke the semantic functions bound to the
current operator for each
computation model;
ond if;

From this sketch, it can be seen that a single call to the atomic
interpreter results in a change of state to force subsequent eval-
uation of an operand of the current node or in the invocation of
the semantic functions for the current node's operator. lmplicit
in this simplified view of the atomic interpreter is the idea that
the values returned by evaluated operands (e.g., any operands of
the + operator) and the IRIS structures representing unevaluated
operands (e.g., the statements in the “then” and “else” parts of

an if operator) are all collected and eventually passed to the
sernantic functions.

3.3.3 Semantic Functions

The purpose of the semantic functions has already been dis-
cussed at length. The iterative approach to ARIES means that
some of these functions (those not employing the default operand
evalustion order) must examine the interpreter state to deter-
mine which of the operands have been interpeted and adjust the
state to force interpretation of the other operands, as necessary.
For example, the usual semantic function for the while operator
would alternately modify the interpreter state to switch interpre-
tation between its “condition” and “statements” operands until
the evaluated condition is false.

Some semantic functions actually cut across the value-kind
boundaries. For example, user defined operators representing
procedures and functions to be interpreted can be evaluated with
the semantic procedure interpret-body. Interpret-body will
do the appropriate state manipulation so that subsequent calls
to the interpreter level execute the IRIS-encoded body of the
user-defined operator. In essence all the semantic procedure
interpret-body does is change state in the IRIS-encoded pro-
gram from one IRUS operator to the [R1S-encoded subtree that
defines the semantice for that operator. Any 1ILIS operator that
has an RIS representation of its body may be interpreted via
interpret-body in any model.

Available Available ARIES
Value Kinds §emanuc Core
Functions
(Choose Computation Models)
Chosen Chosen)
Value Kinds Semantic
Functions
Generate
T
TU
Compilation)
ARIES
instance

Figure 2: Creating an Instance of ARIES

3.3.4 The Tool-Interpreter Interface

All interactions between the tocl and the interpreter pass
through this interface. What those interactions are will depend
on the tool. For example, a testing tool might view the program
with large grain, being interested only in the final resuits and
not in any intermediate values. On the other hand, an inter-

active debugger might require very fine-grained control over the.

interpretation, allowing execution to be halted at any node.

The TII is the customising agent. It collects the objects and
operations that might change from one tool to another. TII's
may be unique to a particular tool, or tools with very similar
interpretation requirements may share 8 common TI1. The major
components defined in the TII are:

¢ the value kinds to be employed during interpretation;

o the pool of semantic functions that may be bound to IRIS
operators; :

o the RunInterpreter procedure that repeatedly invokes the
atomic interpreter until a state is reached in which the tool
should regsin coatrol; and

¢ procedures to initialise the interpreter state and to establish
default bindings of semantic functions to operators.

3.4 Generic Interpretation

ARIES is an interpreter skeleton that can be instantiated,
much as one instantiates an Ada generic, to yield a particular
interpreter. Thus each tool that requires interpretation to ac-
complish some task can have an instance of ARIES tailored for
its own use. Of course, if the tool requires a value kind or a
semantic function that has not been used in any previous tools,
then that kind or function must be implemented before the in.
stance of ARIES can be created.

We expect that the development of new value kinds will be
quite rare, but that many tools will need a few customized se-
mantic functions (e.g., different test path selection tools will each

w7

want to supply a new semantic functions for if, loop, etc., that
choose branches in accordance with different path coverage met-
rics).

Figure 2 shows the process whereby an instance of an ARIES
interpreter is created from a set of existing value kinds and se-
mantic functions.

The tool builder must choose the appropriate computation
models, meaning that the number of models, the value kind for
each, and the semantic functions that may possibly be bound to
operators during the interpretation must all be chosen.

The chosen value kinds are used to generate a set of Ada
packages defining a group for each of the abstract data types
defining the value kinds. A group is, intuitively, an array indexed
by computation model of the corresponding data types at some
level of the hierarchy. For example, a value group might contain
one traversal value, one actual value, and one symbolic value, if
those were the value kinds for the models employed in a particular
tool. Currently, these group packages are created by hand, but
there seems to be no fundamental barrier to having them created
automatically.

The chosen semantic functions are grouped together, along
with any tool-dependent code defining such interface behaviors
as the conditions under which control is passed back to the tool,
to form the TII. There is some opportunity for automatic aid in
the formation of the TII, but the extent of possible automation
of this step is still uncertain.

Finally, the chosen value kinds and semantic functions, the
generated group packages, the TII, and the ARIES core can be
compiled to yield a customized interpreter for the given tool, as
shown in Figure 2.

4. Summary and Current Status

There is considerable vaniation in the forms of interpretation
that nay be required in a versatile soft ware development environ-
ment. The decompaosition of interpretation into ah appropriate
set of taul fragments can aud in the construction of the suftware

tools that include some form of program execution as a past of
their functioning.

We have suggested the separation of the core interpretation
algorithm from the questions of representation of valuea (value
kind) and of the binding of semantics to language operatora (com-
putation models) as one such decomposition that permits the cap-
ture of a wide variety of interpretation activities. This separation
has been employed in the deaign of the ARIES interpretation cys-
tem.

Work is now continuing on the development of ARIES-based
interpreters. Our first instantiations of ARIES will be for the
Ada language, with expansion into Ada-related languages such as
the Anna specification langusge (8] and the PIC interface-control
language [16) expected in the near future. As of this writing,
we have successfully demonstrated actual interpretation of some
simple Ada programs and are beginning to develop the semantic
functions for symbolic interpretation.

The authors would like to acknowledge the work of Srinivas-
murthy Acharya, Rahul Boce, and Mark Gisi on the implemen-
tation of ARIES, and the many comments and suggestions of
the members of the Arcadin consortium that helped to shape the
initial design.

REFERENCES

{1} T. E. Cheatham, G. H. Holloway, and J. A. Townley, “Sym-
bolic Evaluation and the Analysis of Programs”, JEEE
Transactions on Software Engineering, SE-5, 4, July 1979,
pp. 402417

(2] L. A. Clake and D. J. Richazdson, “Symbolic Evaluation
Methods - Implementations and Applications”, Computer
Program Testing, B. Chandrasekaran and S. Radicchi (eds.),
1981, North-Holland Publishing Co.

(3] L. A. Clarke, A. Podgurski, D. J. Richardson, and S. J.
Zeil, *A Compurison of Data Flow Path Selection-Criteria”,
Eighth International Conference on Software Engineering,
August 1985, [EEE, pp. 244-251

{4) E.C.Epp and§. 3. Zeil, ARIES: A Multi-Lingual Interpreter
for a Tool-Fragment Environmen, COINS Technical Report
86-57, University of Messachusetts at Ambherst, December
1986 (revised May 1987)

(5} D. A. Fisher, “IRIS Arcadia Preseatation”, Arcadie Docu-
ment INC-8§6-03, Incremental Systems Corporatica, Pitte-
burgh, April 1986

(6] G. Goos, W. A. Wulf, A. Evans, Jr. and K. J. Butler, Diana:
An Intermediate Language for Ada, 1983, Springer-Verlag

{7) S. Hantler and J. King, “An Introduction to Proving the
Correctness of Programs”, ACM Computing Surveys, vol. 8,
no. 3, Jeptember 1976, 331-353

{8} D. C. Luckbam and F. W. von Heoke, “An Overview of
ANNA, a Specification Language for Ada”, IEEE Software,
vol. 2, 2, pp. 9-24, March 1985

[9] L. J. Osterweil, “Toolpack - An Experimental Sotware De-
velopment Environment Research Project,” IEEE Transac-

tions on Softvare Bngineering, vol. SE-9, 6, pp. 673-685
November 1983 .

248

[10] D. M. Ritchie and K. Thompson, “The UNIX Time-Shanng
System”, Dell System Technical Jowrnal, vol. 57, no. 6, July-
August 1978, part 2

[11] R. N. Taylor and T. A. Standish, “Steps to an Advanced Ada
Programumung Environment”, IEEE Transactiona on Soft-

ware Enqineening, SE-11, no. 3, March 1985, 302-310

{12} R. N. Taylor, L. A. Clarke, L. J. Ostesweil, J. C. Wileden,
and M. Young, “ARCADIA: A Software Development Envi-
ronment Research Project,” IEEE Compuler Society Second
International Conference on Ada Applications and Environ-

ments, April 1986

(13) W.Teitelman and L. Masinter, “The InterLisp Programming

Environment”, Computer, vol. 14, no. 4, Apnl 1981, 25-33

[14] W. Teitelman, “A Tour Through Cedar”, Proceedings of the
Seventh International Conference on Software Enqineering,
September 1982, IEEE, 58-67

(15) M. Weiser, “Program Slicing”, JEEE Transactions on Soft-
ware Engineering, SE-10, no. 4, July 1984, 352-357

{16] A.L. Wolf, L. A. Clarke,and J. C. Wileden, “Interface Con-
trol and Incremental Development in the PIC Environment”,
Proceedings of the Bighth International Conference on Soft-
ware Engineering, London, England, August 1985

[17) S. J. Zeil, “The EQUATE Testing Strategy”, Proceedings
of the Workshop on Software Testing, July 1986, IEEE,
pp. 142-151

®Ada is a registered trademark of the U.S. Government (Ada
Joint Program Office).

