ADA LANGUAGE CONSIDERATIONS FOR
CONCURRENCY ANALYSIS

Douglas L. Longx
Lori A. Clarket
Joseph Fiallit

COINS Technical Report 89-42
May 1989

xDepartment of Computer Science
Wellesley College
Wellesley, Massachusetts 02181

tSoftware Development Laboratory
Department of Computer & Information Science
University of Massachusetts
Ambherst, Massachusetts 01003

This paper to appear in
The Proceedings of the
6th Washington Ada Symposium

This work was supported in part by Office of Naval Research grant N00014-88-K-0025 and by National Science
Foundation grant CCR-87-04478 in cooperation with the Defense Advanced Research Projecis Agency (ARPA Order

No.6104).



This work was supported in part by Office of Naval Research grant N00014-88-K-0025 and by National Science
Foundation grant CCR-87-04478 in cooperation with the Defense Advanced Research Projects Agency (ARPA Order
No.6104).



Abstract

The concurrency features of Ada can result in very complex program
behavior. This can inhibit both program understandability and the de-
velopment of analysis tools to help programmers write correct concurrent
programs. This paper discusses some of the causes of this complex behavior
and suggests ways of avoiding the resulting problems by limiting the use of
certain concurrency features. When adhered to, these limitations result in
programs that are easier to comprehend and analyze.

1 Introduction

Concurrent programming is an important tool for solving complex prob-
lems, but the increased complexity of concurrent programs makes them
more difficult to write and test. In fact, careless usage of concurrency and
poor design may lead to concurrent programs that behave in ways that
are too complex to understand or to analyze. This problem is alleviated
somewhat in Ada because it provides extensive concurrent programming
facilities that are simpler to understand and easier to use than those pro-
vided by many other languages. Nevertheless, Ada contains features that
may make concurrent programs harder to understand than necessary. This
paper discusses several potential problems and suggests ways to avoid them.

The difficulty of writing concurrent programs suggests that automated
analysis tools are necessary to help in the development and testing of such
programs. We are in the process of developing such tools. Our approach,
derived from the static concurrency analysis of Taylor [Tayl83b), is based
on Task Interaction Graphs(TIG), a graphical representation of a task that
emphasizes information about task interactions over information about con-
trol flow. The TIG approach, described more fully in [Long89], is designed
to reduce the number of states that must be considered in static concur-
rency analysis. At the same time, the TIG approach is able to model a
number of concurrency constructs, such as hierarchically related tasks and
shared variable accesses, that other analysis techniques have chosen to ig-
nore [Dill88,Kemm838|. '



2 The Rendezvous Model

In Ada, a concurrent program consists of a number of tasks that may be
executed concurrently. Ada requires that tasks synchronize with each other
at certain points. These synchronization points allow the coordination of
and the exchange of data between tasks and are central to the understand-
ing of the behavior of a concurrent Ada program. Synchronization points
occur at the start and end of a rendezvous between two tasks, between mas-
ter and dependent tasks, and when a pragma SHARED variable is read or
updated.

The primary way tasks interact with each other is through rendezvous.
The Ada rendezvous provides synchronous communication between two
tasks and occurs when a client task makes an entry call to an entry of a
server task and the server task accepts the entry call. The execution of
a task making an entry call or an accept is suspended until another task
makes a corresponding accept or call. The rendezvousing tasks synchronize
at the start and the end of the rendezvous. Calls and accepts may have
parameters that are used to exchange data at this time.

Tasks may be nested in other tasks. One or more tasks that are nested
within the scope of a master task are said to be dependent on the mas-
ter. Dependent tasks become active just prior to the start of execution of
the first statement in the body of their master and must terminate before
the program can leave the scope of the their declaration. A master task
synchronizes with its dependents at the point at which the dependents are
activated, i.e., the dependent tasks begin the elaboration of their declar-
ative regions, when all its dependent tasks have finished the elaboration
of their declarative regions and again when all its dependent tasks have
completed execution.

A read or an update of a pragma SHARED variable is also a synchro-
nization point. Particular attention must be paid to the use of shared
variables and to the difference between those shared variables that are de-
clared as pragma SHARED variables and those that are not. A shared
variable is a variable that is accessed by two or more tasks. Since Ada
tasks are defined as independent entities that can be distributed on com-
puters connected by a network, one cannot assume that access to a shared
variable is the same as an access to a global variable. Since tasks may
execute in completely separate address spaces, a shared variable access can



translate into a network communication. Since the access to shared vari-
ables can be costly and time-consuming, the specifications of Ada allow a
task Lo maintain a local copy of a shared variable between synchronization
points. Shared variables are updated at synchronization points, e.g., at the
start and end of rendezvous and when master and dependent tasks syn-
chronize. Because of this delay, a read or an update of a shared variable
is not a synchronization point and it is considered erroneous to have one
task modifying a shared variable at the same time another task could be
referencing it. On the other hand, declaring a variable to be a pragma
SHARED variable forces a read or an update of that variable to be a syn-
chronization point. Le, an access to a pragma SHARED variable causes
data to be communicated immediately with other tasks. Thus we do not
consider the concurrent read and update of a pragma SHARED variable to
be erroneous; the correctness or incorrectness of this must be determined
from the context.

In the TIG model these synchronization points are known as task in-
teractions. These task interactions are the points at which one task can
influence the behavior of another; between synchronization points a task
executes sequentially and independently of the other tasks in the program.
The areas between task interactions are known as task regions. In a TIG,
task regions are represented by nodes of the graph and task interactions are
represented by edges of the graph. The execution state of a concurrent pro-
gram can be described by indicating the region that each task composing
the program is currently executing. The state of the program changes when
a task interaction occurs, causing one or more tasks to execute in differ-
ent regions. Certain types of analysis require the examination of different
states of the program. For example, erroneous usage of shared variables
can be detected in this way. It is simply a matter of looking for a state
that contains a task that is in a region that contains a write to a shared
variable and another task that is in a region that contains a read or write
of the same shared variable. If all states are examined, then all potential
erroneous usage of shared variables can be detected. One way that these
states can be generated is by constructing a concurrency graph [Tayl83b),
which, when based on TIG’s, is referred to as a Task Interaction Concur-
rency Graph (TiCG) [Long89]. The TICG for a program provides a means
for determining the correct usage of pragma SHARED variables, deadlock
detection, and other anomalies [Youn86).

4



3 Task Activation and
Concurrency Analysis

The state based analysis technique described in the previous section may
require the generation of many states; if too many states are generated
then the analysis may become intractable [Tayl83a,DeMi79]. Many of these
states are necessary to correctly represent the behavior of the program, but
others only represent possible orderings of sequences of independent events.
For such analysis to work it is necessary to minimize the latter without
losing information about the former. The number of possible states also
has an impact on the understandability of the program; a change in a
program that reduces the number of states in its TICG should make the
program easier to understand.

One place where a large number of states may be generated is during
the activation of dependent tasks and the elaboration of their declarations.
Consider the three tasks shown in Figure 1. In this example, the MAS-
TER task declares and activates two dependent tasks, T1 and T2. Ada
requires that certain parts of the program complete before other parts of
the program may begin. The precedence diagram in Figure 2 shows which
parts must finish before other parts may begin. In this diagram, an arrow
from one part of the program to another indicates that the first part must
complete before the second may start. On the other hand, if there is no
path from one part of a program to another in this diagram then those
parts may execute concurrently. For example, the dependent tasks are ac-
tivated when MASTER reaches the end of its declarative region. At this
point MASTER suspends execution and T1 and T2 may begin the elabo-
ration of their declarations. MASTER. cannot resume execution until both
T1 and T2 have finished elaboration of their declarations. On the other
hand, once either T1 or T2 has finished the elaboration of its declarations
it may immediately begin execution of its body. Thus the execution of T1
and T2 proceed independently of each other as shown in Figure 3. As can
be seen in this picture T1 and T2 may elaborate their declarative regions
concurrently, T1 may elaborate its declarative region while T2 executes its
body, T2 may elaborate its declarative region while T1 executes its body,
or both may execute their bodies concurrently. These four cases must be
differentiated from one another because the MASTER’s body may not exe-



procedure MASTER is
--BEGIN MASTER decl_region
task T1,T2;

task body T1 is separate;
task body T2 is separate;
--END MASTER decl_region
begin -- MASTER
MASTER_body;
end MASTER;

separate(MASTER)
task body T1 is
T1_decl_region;
begin
T1_body;
end TI;

separate(MASTER)
task body T2 is
T2_decl_region;
begin
T2 body;
end T2;

Figure 1: An Ada program containing nested tasks



MASTER

decl-region

[y

T2
decl-region

T2
body

T
dec l-regw
’1
body

MASTER
body

T1 T2

terminate terminate

N LA

MASTER

terminate

Figure 2: Precedence graph of a nested Ada program



(MASTER decl-region,—,—)

|

(-, T1 decl-region,T2 decl-region)

™~

(-, T1 body,T2 decl-region) (-,T1 decl-region,T2 body)

—

(MASTER body,T1 body,T2 body)

/§\

Figure 3: Concurrent execution

cate until after T1 and T2 have finished elaborating their declarations. At
least four states are required to represent these four cases. The situation
is much worse if there are more dependent tasks. If there are n dependent
tasks then at least 2" states are necessary.

The presence of task interactions in declarative regions complicates the
behavior of a concurrent program. These may occur as references to pragma
SHARED variables, calls to functions that have task interactions as side
effects, or in the elaboration code of nested packages. Regardless of their
form, these task interactions force the consideration of all the cases out-
lined above for the activation and execution of dependent tasks because
the task interactions that occur in the declarative regions of the subtasks
must occur before any of the task interactions in the body of the MASTER
task. Consider, for example, the program shown in Figure 4. At the end
of execution of procedure MASTER the variable M may have a value of
10, 20, 30, or 40, depending on which of the 16 possible orderings of the
elaboration of the declarative regions and the execution of the task bodies
actually occurs. The shared variable SHARED.may have a value of 20 or
40, depending on which of the 6 possible orderings of the execution of the
task bodies actually occurs. In addition to the proper consideration of the
task interactions in declarative regions, the possibility that a declarative re-
gion might contain a shared variable (not pragma SHARED) also requires



procedure MASTER is

M,SHARED : INTEGER := 0;

pragma SHARED(SHARED);

function SIDE_EFFECT(X : in INTEGER)
return INTEGER is

begin
SHARED := X;
return X + 1;

end

task T1,T2;

task body T1 is separate;
task body T2 is separate;
begin -- MASTER
M := SHARED;
end MASTER;

separate(MASTER)
task body T1 is
N : INTEGER := SIDE_EFFECT(10);

begin

SHARED := 20;
end T1;
separate(MASTER)

task body T2 is

N : INTEGER := SIDE_EFFECT(30);
begin

SHARED := 40;
end T2;

Figure 4: An Ada program containing nested tasks



the consideration of all these cases.

The complete analysis of a program may require the consideration of
a very large number of program states. Part of the reason is that task
interactions that occur in the declarative region of the master task must
occur before the task interactions that occur in the declarative region of any
of the dependents, and the task interactions that occur in the declarative
region of the dependent tasks must occur before any task interactions that
occur in the body of the master. The other part of the reason is that the
dependent tasks are free to move from their declarative regions to their
bodies independently of the other tasks. It is this combination of events
that requires the consideration of so many possible orderings of execution.

4 Restrictions to Ada

The source of much of the trouble described in the last section is the syn-
chronization point that forces the master task to wait for all its children
to finish elaboration of their declarations. This synchronization point was
added, not for concurrency related reasons, but for reasons related to ex-
ception handling [Barn84]. While this synchronization point may be useful
from the exception handling perspective, it makes the analysis of concurrent
Ada programs with nested tasks more difficult. The question that arises
is, are the benefits of this feature worth the cost of this added complexity?
One could accept this added complexity as the cost of doing business and
proceed accordingly. On the other hand, it is not clear that what is gained
is worth the cost. The use of language features that cause task interactions
in declarative regions should be approached with some caution. These in-
teractions occur as side effects of the declarations and in many cases it is not
readily apparent to the programmer that these side effects are occurring.
Our approach to this problem is to look for restrictions on these features
that will mitigate the impact of the troublesome synchronization point on
the analysis. There is more to gain from analysis tools that aid the devel-
opment of concurrent programs than there is to lose from the restrictions
necessary to make these tools possible.

We have considered several possible restrictions and evaluated each
based on three criteria. First, the restriction must have the desired effect
of reducing the cost of the analysis. Second, it must not be so restrictive

10



that it will eliminate useful programming constructs. Third, an analysis
tool must be able to detect and warn the programmer of an occurrence of
a violation of the restriction that may invalidate the concurrency analy-
sis. This latter problem is of particular interest. Certain queries, such as
does a function call have any task interactions as side effects, may require
a difficult global analysis of the entire program. Further work is needed
in this area. For the initial implementation of our analysis tools we have
adopted restrictions that are easy to enforce. Later implementations will
relax these restrictions as much as possible while maintaining the ability to
detect violations.

The restrictions that we consider focus on the declarative regions of
tasks. If there are no interactions occurring in the declarative regions of
the dependent tasks (or in the body of the master task) then the synchro-
nization point that forces the delay in execution of the body of the master
can be safely ignored without introducing errors into the analysis and with-
out requiring the analysis of a large number of states. Each potential source
of task interactions in declarative regions, shared variables, function calls
and nested tasks, must be considered.

The first potential source of problems is shared variables, both plain
and pragma SHARED. Shared variables may be referenced in a declarative
region any place that an expression may be used and the value of a shared
variable may be changed as a side effect of a function call or the execution
of the elaboration code of a nested package. One could eliminate the prob-
lem by disallowing references to shared variables in declarative regions of
tasks. This is not a very desirable choice for two reasons. First of all, it is
very restrictive. It would eliminate useful programming techniques such as
the one shown in Figure 5, where a master task uses a shared variable to
broadcast information to all its dependent tasks. Second, the identification
of shared variables requires global analysis.

There is a less restrictive alternative that would allow limited forms of
broadcasting from a master task to all its dependents. This alternative
would allow writes to a shared variable only in the declarative region of the
master tasks. The declarative regions of the dependent tasks, the bodies of
the dependent task, and the body of the master task would be allowed to
read the value of the shared variable but not to write to it. This restriction
allows limited use of shared variables, such as that shown in Figure 5, and
will allow the synchronization point that forces the delay in the execution

11



procedure MASTER is
S : INTEGER := 100;
task T1,T2;

task body T1 is

N : INTEGER := S;
begin
end T1;
task body T2 is

N : INTEGER := §;
begin

end T2;
begin -- MASTER

end MASTER;

Figure 5: Broadcasting information to dependent tasks

12



of the body of the master to be ignored. Thus this restriction will help
keep the analysis tractable by helping to minimize the number of states
that must be considered. Unfortunately, it is more difficult to enforce such
a restriction because it requires being able to determine whether or not a
shared variable can be changed as a side effect of a function call or package
body elaboration.

An alternative restriction is to allow only static simple expressions in
declarative regions. This is only slightly less restrictive than the first re-
striction that was considered, but has the decided advantage that it is easy
to enforce. The initial implementation of the analysis tools we are building
uses this restriction.

The two other ways that task interactions can occur in declarative re-
gions are as side effects of function calls and in nested packages. The best
way to deal with function calls is to check each function call for side effects.
Once again, this is a more difficult analysis that might be included in a later
implementation. An alternative is to disallow function calls in declarative
regions altogether. This is easy to enforce and is not so restrictive that it is
impossible to find ways around, but may lead to some awkward code. This
restriction is subsumed by the previous restriction that only allows static
simple expressions in declarative regions.

The easiest way to deal with nested packages is to disallow their use.
This is easy to enforce but may be considered by some to be too restrictive.
An alternative is to allow nested packages, but not to allow package body
elaboration code. This is easy to detect and is not very restrictive. The
package body elaboration code is easily replaced with an explicit initial-
ization subprogram. Even less restrictive would be to allow package body
elaboration code as long as it didn’t contain task interactions as side effects.
Unfortunately, this restriction is more difficult to enforce.

The initial implementation of the analysis tools allows only static simple
expressions and disallows function calls and nested packages in declarative
regions or tasks. We will continue to look for ways that will allow us to
ease these restrictions in later implementations while at the same time being
able to guarantee the detection of violations of the restrictions.

While the restrictions that we have considered have been evaluated in
the context of the analysis tools we are building, they can also be used as
guidelines to help programmers avoid unnecessarily complex programs. The
avoidance of all task interactions in the declarative regions and the careful

13



use of shared variables, such as is suggested in this section, will result
in programs that are are easier to understand and less likely to behave in
una.ntiéipated ways. Unfortunately, even the most diligent programmer can
make mistakes or may not not have enough information available to be sure
that there are no task interactions in the declarative regions. Automated
tools should be used to verify that these restrictions have not been violated.
The tools we are constructing will help the programmer detect features of
concurrent programs that might cause unanticipated or incorrect program
behavior.

5 Conclusion

We are in the process of developing tools that will aid in the development
of concurrent programs. In the process of designing these tools we have
identified a number of features of Ada that make the analysis less tractable.
In particular, the synchronizations required between master and dependent
tasks cause a combinatorial explosion in the number of states that must be
considered during static concurrency analysis. We have identified several
restrictions to Ada that will make the analysis more tractable without being
overly restrictive. Violations of these restrictions are easy to recognize. In
addition, these restrictions provide guidelines that programmers can use to
avoid overly complex and unexpected program behavior. In future work,
we will investigate relaxations to these restrictions and the global analysis
techniques necessary to recognize violations of these relaxed restrictions.

References

[Ada83] Reference Manual for the Ada Programming Language
(ANSI/MIL-STD-1815A), United States Department of De-
fense, Washington, D.C., January 1983.

[Barn84] J. G. P. Barnes Programming in Ada. Addison-Wesley, 1984.

[Brin78] Per Brinch Hansen. Distributed Processes: A Concurrent Pro-

gramming Concept. Communications of the ACM, 21(11):934-
941, November 1978.

14



[Bris79] G. Bristow, C. Drey, B. Edwards and W. Riddle. Anomaly Detec-
tion in Concurrent Programs. Proceedings of the 4th International
Conference on Software Engineering, 265-273, 1979.

[DeMi79] Richard DeMillo and Raymond Miller. Implicit Comp@a,tion
of Synchronization Primitives. Information Processing Letters,
9(1):35-38, July 1979.

[Dill88] Laura K. Dillon. Symbolic Execution-Based Verification of Ada
Tasking Programs. Proceedings of the Third International IEEE
Conference on Ada Applications and Environments, 3-13, May
1988.

[Geha83] Narain Gehani. Ada, An Advanced Introduction. Prentice-Hall,
Englewood Cliffs, New Jersey, 1983.

(Helm85] David Helmbold and David Luckham. Debugging Ada Tasking
Programs. IEEE Software, 2(2):47-57, March 1985.

[Hoar78] C. A. R. Hoare. Communicating Sequential Processes. Commu-
nications of the ACM, 21(8):666-677, August 1978.

(Kemm88] L.J. Harrison and R.A. Kemmerer. An Interleaving Symbolic
Execution Approach for the Formal Verification of Ada Programs
with Tasking. Proceedings of the Third International IEEE Con-
ference on Ada Applications and Environments, 3-13, May 1988.

[Long89] Douglas L. Long and Lori A. Clarke. Task Interaction Graphs for
Concurrency Analysis. Proceedings of the Eleventh International
Conference on Software Engineering, May 1989, to appear.

[Tai85] K.C. Tai. On Testing Concurrent Programs. Proceedings of
COMPSAC 85, 310-317, October 1985.

[Tayl80] Richard N. Taylor and Leon J. Osterweil. Anomaly Detection In
Concurrent Software By Static Data Flow Analysis. IEEE Trans-
actions on Software Engineering, SE-6(3):265-278, May 1980.

[Tayl83a] Richard N. Taylor. Complexity of Analyzing the Synchronization
Structure of Concurrent Programs. Acta Informatica, 19:57-84,
1983.

15



[Tayl83b] Richard N. Taylor. A General-Purpose Algorithm For Analyzing
Concurrent Programs. Communications of the ACM, 26(5):362-
376, May 1983.

[Youn86] Michal Young and Richard N. Taylor. Combining Static Concur-
rency Analysis With Symbolic Execution. In Proceedings of the
Workshop on Software Testing:170-178, IEEE Computer Society
Press, July 1986.

16



