THE IMPLICATIONS OF PROGRAM DEPENDENCES
FOR SOFTWARE TESTING, DEBUGGING,
AND MAINTENANCE

Andy Podgurskit
Lori A. Clarke!

COINS Technical Report 8943
August 1989

tDepartment of Computer Engineering & Science
10900 Euclid Avenue
Case Western Reserve University
Cleveland, Ohio 44106

!Soft ware Development Laboratory
Computer and Information Science Department
University of Massachusetts
Ambherst, Massachusetts 01003

This paper to appear in
The Proceedings of the
TAV3 — SIGSOFT 89 Symposium

This wotk was supported by grants DCR-8404217 from the National Science Foundation, CCR-8704478
from the National Science Foundation with cooperation from the Defense Advanced Research Projects

Agency (ARPA Order 6104), 84M103 from Control Data Corporation, and RADC grant F30602-86—C-
0006.

The Implications of Program Dependences
for Software Testing, Debugging, and Maintenance

Andy Podgurskit
Lori A. Clarke!

fComputer Engincering & Science Department
Case Western Reserve University

Cleveland, Ohio 44106

'Software Development Laboratory
Computer & Information Science Department
University of Massachusetts
Ambherst, Massachusetts 01003

Abstract

This paper presents a formal, general model of program
dependences. ‘T'wo generalizations of control and data
dependence, called weak and strong svntactic depen-
dence, are presented. Some of the practical implica-
tions of program dependences are determined by relat-
ing weak and strong syntactic dependence to a relation
called semantic dependence. Informally, one program
statement is semantically dependent on another if the
latter statement can affect the execution behavior of the
former. It is shown that weak syntactic dependence is a
necessary condition for semantic dependence, but that
neither weak nor strong syntactic dependence are suf-
ficient conditions. The implications of these results for
software testing, debugging, and maintenance are then
explored.

1 Introduction

Program dependences are syntactic relationships he-
tween the stalements of a program Lhat represent as-
pects of the program’s control flow and data flow. They

are used in several areas of computer science to ob-
tain “approximate” information about semantic rela-
tionships between statements. Typically, proposed uses
of program dependences have only been justified infor-
mally, if at all. Since program dependences are used
for such critical purposes as software testing [Lask83,
Kore87, Ntaf84, Rapp85), debugging [Berg85, Weis84],
and maintenance [Reps89, Weis84), code optimization
and parallelization [Ferr87, Padu86], and computer se-
curity [Denn77],! this lack of rigor is unacceptable. This
paper presents a formal, general model of program de-
pendences and investigates its implications for software
testing, debugging, and maintenance. These implica-
tions validate certain proposed uses of program depen-
dences, invalidate others, and suggest new ones.

For example, one application of program dependence
to software testing is the detection of operator faults.
An operator fault is a fault that affects the operators®
used by a single program statement, but does not affect
the control structure or use of variables in a progran.
For instance, accidental use of the multiplication op-
crator “*” instead of the addition operator “+” in the
assignment statement “X := Y * Z” results in an op-
erator fault. Operator fanlts are common in program-
ming, and it would be useful to be able to automati-

UI'he term “dependence” is not used in all the references given,

2The term “operntor” refers to hoth the predefined operators
of a programming language and to user-defined procedures and
functions.

cally detect and locate them. Unfortunately, as with
many other semantic properties of programs, deciding
whether a program contains an operator fault is unde-
cidable. This paper shows, however, that there is an
algorithm, in fact an cfficient one, that detects neces-
sary conditions for an operator fault at one statement
to affect the execution behavior of another statement.
Those necessary conditions are expressed in terms of
program dependences.

This paper addresses procedural programs, for which
there are two basic types of program dependences: “con-
trol dependences”, which are properties of a program’s
control structure, and “data dependences”, which are
properties of a program’s use of variables. Depen-
dence analysis, the process of determining a program’s
dependences, involves control flow analysis and data
flow analysis, and can be implemented efficiently.

To determine some of the implications of program
dependences, we relate control and data dependence to
a concept called “semantic dependence”. Informally,
a program statement s is semantically dependent on a
statement s’ if the semantics of s', that is, the func-
tion compnted by s’, affects the execution behavior of
s. The significance of semantic dependence is that it is
a necessary condition for certain interstatement seman-
tic relationships. For example, if s and s’ are distinct
statements, s must be semantically dependent on s’ for
an operator fault at s’ to affect the execution behavior
of s. Similarly, some output statement must be seman-
tically dependent on a statement s for the semantics of
s to affect the output of a program.

Three main results are presented in this paper:

I. A generalization of control and data dependence,
called “weak syntactic dependence”, is a necessary
condition for semantic dependence,

2. A commonly used generalization of control and
data dependence, which we call “strong syntactic
dependence”, is a necessary condition for semantic
dependence only if the semantic dependence does

not depend in a certain way on a program failing
to terminate,

3. Neither data flow, weak syntactic, nor strong syn-
tactic dependence is a sufficient condition for se-
mantic dependence.

In Section 2 some necessary terminology is defined
and Section 3 defines control, data, and syntactic de-
pendence. Related work is surveyed in Section 4. In
Section 5 semantic dependence is defined and then re-
lated to syntactic dependence in Section 6. In Section 7
the implications of these results for software testing, de-

bugging,and -maintenance are described. Finally, Sec-
tion 8 presents possible future research directions.

2 Terminology

In this section we define control flow graphs, some dom-
inance relations, and def/use graphs.

A directed graph or digraph G is a pair
(V(G), A(G)), where V(G) is any finite set and A(G)
is a subset of V(G) x V(G) — {(v,v)lv € V(G)}. The
elements of V' (G) are called vertices and the elements
of A(G) are called arcs. If (u,v) € A(G) then u is ad-
jacent to v, and v is adjacent from u; the arc (u,v) is
incident to v and incident from u. A walk W in G
is a sequence of vertices v vz - -+ v, such that n > 0 and
(vi,vig1) € A(G) for i = 1,2,...,n ~ 1. The length
of a walk W = vjvs---v,, denoted |W], is the num-
ber n of vertex occurrences in W. Note that a walk of
length zero has no vertex occurrences; such a walk is
called empty. A nonempty walk whose first vertex is
u and whose last vertex is v is called a u~v walk. If
W = wywy: - w, and X = zy23-- -z, are walks such
that either W is empty, X is empty, or w, is adjacent
to zy, then the concatenation of W and X, denoted
WX, is the walk wyw, - - - waz1Z2 - - - Tpn.

All the types of dependence considered in this paper
are directly or indirectly defined in terms of a “control

flow graph”, which represents the flow of control in a
sequential procedural program.

Definition 1 A control-flow graph G is a directed
graph that satisfies cach of the following conditions:

1. The mazimum outdegree of the vertices of G is at
most two?,

to

G containg lwo distinguished vertices: the initial
vertex v;, which has indegree zero, and the final
vertex vg, which has ouidegree zero,

3. Every vertez of G occurs on some v;-vp walk.

A vertex of outdegree two in a control flow graph
is called a decision vertex, and an arc incident from
a decision vertex is called a decision arc. If u is a
decision vertex and u' is a successor of u, the other
successor of u is called the complement of v’ with
respect to u, and is denoted ¢, (u').

The vertices of a control flow graph represent a
program’s statements, and the arcs represent possible
transfers of control between the statements. The pro-
gram’s entry and exit points are represented by the ini-
tial and final vertices, respectively. A decision vertex

3This restriction is made for simplicity only.

(v) D= (x.y)

1. input (X, Y);

2. if X > Y then U(va) = {x, y}

3. Max := X;
else U(vs) = {x} U(ve) =

4. Max := Y; D(vs) = {max] D(v.)=gn}ax;
endif;

5. output (Max);

() U9 = (max)

Figure 1: Max program and its def/use graph

represents the branch condition of a conditional branch
statement. The definition of a control flow graph given
here allows procedural programs of a very general na-
ture to be represented (possibly by including “dummy”
vertices that do not correspond to statements).

The control flow graph of the program in Figure 1

is shown alongside the program; the annotations to
this graph are explained subsequently.

The next three definitions are used in defining types
of control dependence.

Definition 2 Let G be a control flow graph. A vertez
u € V(G) forward dominates a vertez v € V(G) iff
cvery v-vr walk in G conlains u; u properly forward
dominates v iff u # v and u forward dominates v.

Definition 3 Let G be a conirol flow graph. A vertez
u € V(G) strongly forward dominates a vertez v €
V(G) iff u forward dominates v and there is an integer
k > 1 such that every walk in G beginning with v and
of length > k contains u.

While the concept of forward dominance has appeared
before in the literature, the concept of “strong forward
dominance” is apparently néw. In the control flow graph
of Figure 1, vs (strongly) forward dominates each ver-
tex, but v3 does not forward dominate v;. In the control
flow graph of Figure 2, vs strongly forward dominates
v4, but vg does not strongly forward dominate v,, be-
causc there are arbitrarily long walks from v4 that do
not contain vg.

We state the following theorem without proof.

Theorem 1 Let G be a control flow graph. For each
vertez u € (V(G) - {vr}), there czists a proper forward
dominator v of u such that v is the first proper forward
dominator of u lo occur on every u~vg walk in G.

Informally, the “immediate forward dominator” of a
decision vertex d is the vertex where all walks leaving d
first come together again.

Definition 4 Let G be a control flow graph. The im-
mediate forward dominator of a vertez v € (V(G) -

{vr}) is the vertez that is the first proper forward dom-
inator of v to occur on every v—vp walk in G.

For example, in the control flow graph of Figure 1, vs is
the immediate forward dominator of v,, v3, and vq. In
the control flow graph of Figure 2, vg is the immediate
forward dominator of vs.

Data, syntactic, and semantic dependence are defined
in terms of a “def/use graph”, which represents both
the control flow in a program and how the program’s
variables are defined (assigned values) and used (have
their values referenced).

i

Definition 5 A def/use graph is a quadruple G =
(G,Z,D,U), where G is a control flow grapk, T is a
finite set of symbols called variables, and D: V(G) —
2%, U: V(G) — 2% are functions.*

For each vertex v € V(G), D(v) represents the set of
variables defined at the statement represented by v, and
U(v) represents the set of variables used at that state-
ment. A def/use graph is similar to a program schema
[Grei75, Mann74] and is essentially the way a program
is represented for data flow analysis [Aho86).

The def/use graph of the program in Figure 1 is shown
alongside the program.

Definition 8 Let G = (G,XZ,D,U) be a def/use graph,
and let W be ¢ walk in G. Then

pw) = |J D(v)

vEW

Finally, in discussing dependence relations of various
kinds, if an object a is dependent on an object b, we say
that b is the parent of the dependence and that ais the
child of the dependence.

$We denote the power set (sct of all subsets) of a sct S by 25,

1. input (N);
2. Fact := 1;
3. while not N = 0 loop
4, Fact := Fact * N;
S. N :=N-1;
end loop;
6. output ("The factorial is ");

7. output (Fact);

D{v:)=:{fact)

U(vy)=({n}

U(ve)={fact}

D(ve)={fact}
U(va)={fact, n)

D(vs)={n)
U(vs)={n}

Figure 2: Factorial program and its def/use graph

3 Control, Datp;a, and Syntactic
Dependence

3.1 Control Dependence

The concept of control dependence was introduced to
model the effect of conditional branch statements on
the behavior of programs. Intuitively, a statement s in
a program P is control dependent on a statement s’ in P
if s’ is a conditional branch statement and the control
structure of P potentially allows s’ to decide whether
s is executed or not. For example, in the program of
Figure 1, statements 3 and 4 are control dependent on
statement 2. Control dependence is a property of a pro-
gram’s control structure alone, in that it can be defined
strictly in terms of a control flow graph.

Various formal and informal definitions of control de-
pendence are given in the literature. Usually these are
expressed in terms of “strudtured” co‘nttol statements
for a particular class of languages. Such definitions
have limited applicability, because control statements
vary across languages and because “unstructured” pto-
grams occur in practice. Indeed, even Jjudicious use of
the goto statement or the use of restricted branch state-
ments such as Ada’s exit, raise, and return statements
can result in programs that are, strictly speaking, un-
structured. It is therefore desirable to have a language-
independent definition of control dependence that ap-
plies to both structured and unstructured programs and
is generally applicable to procedural programming lan-
guages. Two definitions that satisfy these requirements
are “weak control dependence” and “strong control de-

pendence”.

Strong control dependence was originally defined in
the context of computer security [Denn77)°, and this
definition has been used by several authors [Kore87,
Padu86, Weis84]. It was the first graph-theoretic,
language and structure-independent characterization of
control dependence appearing in the literature.

Definition 7 Let G be a control flow graph, and let
u,v € V(G). Then u is strongly control dependent
on v iff there ezists a v—u walk vWu not coniaining the
immediate forward dominator of v.

For example, in the control flow graph of Figure 1, the
immediate forward dominator of the decision vertex vy
is vs; therefore v3 and v, are strongly control dependent
on v;. In the control flow graph of Figure 2, the imme-
diate forward dominator of the decision vertex vy is vg;
therefore vy, vy, and vy are strongly control dependent
on v3. Note that strong control dependence character-
izes: (1) the statements that constitute the “body” of
a structured or unstructured conditional branch state-
ment and (2) the branch condition of a loop.

Weak control dependence [Podg89) is a generalization
of strong control dependence in the sense that every
strong control dependence is also a weak control depen-
dence.

Definition 8 Let G be a control flow graph, and let
1, v € V(G). Vertez u is directly weakly control

®In [Denn77] the concept is called “implicit information flow".

—

dependent on vertez v iff v has successors v’ end v"
such that u strongly forward dominates v' bui does not
strongly forward dominate v"'; u is weakly control
dependent on v iff there is a sequence vy, vy,..., U,
of vertices, n > 2, such thel v = vy, v = v,, and
v; is directly weakly control dependent on Vipq fori =
1,2,...,n—1.

Informally, u is directly weakly control dependent on v
if v has successors v’ and v such that if the branch from
v to v’ is executed then u is necessarily executed within
a fixed number of steps, while if the branch from v to
v" is taken then u can be bypassed or its execution can
be delayed indefinitely.

The essential difference between weak and strong con-
trol dependence is that weak control dependence reflects
a dependence between an exit statement of a loop and a
statement outside the loop that may be executed after
the loop is exited, while strong control dependence does
not. For example, in the control flow graph of Figure 2,
vg is (directly) weakly control dependent on vy (because
ve strongly forward dominates itself, but not v4), but
not strongly control dependent on vy (because vg is the
immediate forward dominator of v3). In addition, vs,
vy, and vs are (directly) weakly control dependent on
v3, because cach strongly forward dominates vy but not
vg. Since an exit statement of a loop potentially de-
termines whether execution of the loop terminates, the
additional dependences of the weak control dependence
relation are relevant to program behavior. Moreover,
there are cfficient algorithms for computing both the
weak and strong control dependence relations for a con-
trol flow graph [Podg89].

3.2 Data Dependence

Although several types of data dependence are discussed
in the literature, we consider only “data flow depen-
dence” [Ferr87, Padu86]. Informally, a statement s is
data flow dependent on a statement s’ if there is a se-
quence of variable assignments that potentially propa-
gates data from s’ to s.

Definition 9 Let G = (G, L, D,U) be a def/use graph,
and let w,v ¢ V(G). Vertez u is directly data flow
dependent on vertez v iff there is a walk vWu wm ¢
such that (D(v) OV U(w)) - DOWV) £ 0; v s data How

dependent on v iff there is a sequence vy, vg, ..., vy
of vertices, n > 2, such that v - vy, v = v, and v; is
dircctly data flow dependent on v,y fori = 1,2,... ,n-
1.

The direct data flow dependence relation can be eff-
ciently computed using a fast algorithm for the “reach-

ing definitions” problem [Aho86). The data flow depen-
dence relation can then be efficiently computed using a
fast algorithm for transitive closure [Aho74].

Note that if u is data flow dependent on v then there
is a walk v\ Wiv, Wy ..oy, W, -1Vn, n > 2, such that
v =01, ¥ = vy, and (D(vi) NU(viy1)) — D(W;) # 0 for
t=1,2,...,n—1. Such a walk is said to demonstrate
the data flow dependence of u upon v. '

Referring to the def/use graph of Figure 1, vy is di-
rectly data low dependent on vy, because the variable
X is defined at vy, used at vy, and not redefined along
the walk vyvyv3; vs is directly data flow dependent on
v3, because the variable Max is defined at vy, used at
v5, and not redefined along the walk vyvs. It follows
that vs is data flow dependent on vy; the walk vyvav5v4
demonstrates this dependence.

3.3 Syntactic Dependence

To evaluate uses of control and data dependence, it is
necessary to consider chains of such dependences, that
is, sequences of vertices such that each vertex in the
sequence except the last is either control dependent or
data dependent on the next vertex. Informally, there is
a “weak syntactic dependence” between two statements
if there is a chain of data flow and weak control depen-
dences between the statements, while there is a “strong
syntactic dependence” between the statements if there
is a chain of data flow dependences and strong control
dependences between them. Weak syntactic dependence
apparently has not been considered before in the liter-
ature; the notion of strong syntactic dependence is im-
plicit in the work of several authors [Berg85, Denn77,
Ferr87, Horw88a, Kore87, Padu86, Weis84).

Definition 10 Let G = (G,Z,D,U) be a def/use
graph, and letu,v € V(G). Vertez u is weakly syntac-
tically dependent on vertez v iff there is a sequence
V1,V2,...,Vn of vertices, n > 2, such that u = v,
Y =g, and fori = 1,2,...,n— 1, either v; is weakly
control dependent on viyy or v; is data flow dependent
on vi,g.

Definition 11 Let G = (G,Z,D,U) be a def/use
graph, and let u,v € V(G). Vertez u is strongly
syntactically dependent on vertez v iff there is a
sequence vy, vz,...,%, of vertices, n > 2, such that
u=1v,v =, and for i = 1,2,...,n — 1, either v,
i3 strongly conirol dependent on viy, or v; is data flow
dependent on v;y,.

Since the weak and strong control dependence and data
flow dependence relations for a def/use graph can he

efficiently computed, the weak and strong syntactic de-
pendence relations can be efficiently computed using a
fast algorithm for transitive closure.

Referring to the def/use graph of Pigure 2, v is
weakly svntactically dependent on vy, because v is
weakly control dependent on vy and v3 is data flow de-
pendent on vs; vs is strongly svntactically dependent on
vy, because vg 1s strongly control dependent on vz and
vz is data flow dependent on v;.

4 Related Work

In this section we briefly survey the literature on uses
of dependences in testing, debugging, and maintenance
and on the semantic basis for these uses.

In software testing, a “code coverage criterion” is a
rule, used for selecting test data, that is intended to
ensure that certain portions of a program’s code are
“covered” or “exercised”. Several coverage criteria have
been defined that call for exercising the data flow depen-
dences in a program [Fran87, Lask83, Ntaf84, Rapp85];
these are called “data flow coverage criteria” or simply
“data flow criteria”. The data flow criteria call for ex-
ecuting program walks® that demonstrate certain data
flow dependences. One purpose for these criteria is the
detection of statement faults. Data flow dependences
involving potentially faulty statements are exercised in
the hope that this will cause incorrect values to prop-
agate via the sequence of assignments represented by a
data flow dependence and, thus, cause observable fail-
ures.

For structured programs, Bergeretti and Carré
[Berg85] define relations that are similar to strong syn-
tactic dependence, and they suggest several uses for
these relations, including testing and debugging.

Korel proposes two uses of program dependences
[Kore87]. The first use is for detecting useless program
statements; that is, statements that cannot influence
the output of a program and can be removed without
changing the function it computes. Korel claims that
a statement is redundant if there is no output state-
ment strongly syntactically dependent upon it. Korel’s
second use of program dependences is for determining
which input variables in a program influence the value
of a given output variable. Korel claims that an input
variable influences an output variable if there is a strong

syntactic dependence between the corresponding input
and output statements.

In his work on program slicing, Weiser essentially
claims that program dependences can be used to de-

®That is, sequences of statements corresponding to walks in a
program's control Aow graph.

termine the set of statements in a program - called a
“slice” of the program - that are potentially relevant to
the behavior of given statements. Weiser demonstrates
how these dependences can be used to locate faullts when
debugging [WeisT9, Weis82, WeisB84|. Weiser claims that
if an incorrect state is observed at a statement s, then
only those statements that s is strongly syntactically de-
pendent upon could have caused the incorrect state. He
argues that by (automatically) determining those state-
ments and examining them the debugging process can
be facilitated.

While most investigators who proposed uses for pro-
gram dependences made no attempt to rigorously jus-
tify these uses, Weiser [Weis79] did recognize the need
to rigorously justify the use of dependences in his pro-
gram slicing technique, and attempted to provide such
justification via both mathematical proofs and a psy-
chological study. Unfortunately, the mathematical part
of Weiser’s work is flawed (see Section 7.3).

Recently, several papers have investigated the seman-
tic basis for proposed uses of program dependences
[Cart89, Horw88a, Horw88b, Reps89, Selk89]. Some of
these papers address the use of dependences in software
debugging and maintenance. Horwitz et al [Horw88a)
present a theorem stating that two programs with the
same dependences compute the same function. Reps
and Yang [Reps89] use a version of this theorem to prove
two theorems about program slicing, which“are in turn
used by Horwitz et al [Horw88b) to justify an algorithm
for integrating versions of a program.

This paper differs in three respects from this recent
work on the semantic basis for the use of dependences.
First, the other work does not address the concept of se-
mantic dependence. Second, while the results in those
papers are proved for a simple, structured programming
language, we adopt a graph-theoretic framework for our
results, similar to that in [Weis79], that makes them
applicable to programs of any procedural programming
language, in particular to unstructured programs as well
as structured ones. Third, this paper considers the se-
mantic significance of both weak and strong control de-
pendence, while the above papers consider only strong
control dependence.

5 Semantic Dependence

Recall that, informally, a statement s is semantically
dependent on a statement s’ if the function computed
by s’ affects the behavior of 5. In this section, a more
precise but still informal description of semantic depen-
dence is given.

We first informally define the auxiliary terms neces-

—

sary to define semantic dependence. A sequential pro-
cedural program can be viewed abstractly as an inter-
preted def/use graph. An interpretation of a def/use
graph is an assignment of partial computable functions
to the vertices of the graph. The function assigned to a
vertex v is the one computed by the program statement
that v represents; it maps values for the variables in
U(v) to values for the variables in D(v). An interpreta-
tion of a def/use graph is similar to an interpretation of
a program schema [Grei?5, Mann74]. An operational se-
mantics for interpreted def/use graphs is defined in the
obvious way, with computation proceeding sequentially
from vertex to vertex along the arcs of the graph, as
determined by the functions assigned to the vertices. A
computation sequence of a program is the sequence
of states (pairs consisting of a vertex and a function
assigning values to all the variables in the program) in-
duced by exccuting the program with a particular input.
An execution history of a vertex v is the sequence
whose ith element is the assigment of values held by
the variables of U(v) (the variables used at v) just be-
fore the ith time v is visited during a computation. An
execution history of a vertex in an interpreted def/use
graph abstracts the “execution behavior” of a program
statement.

A more precise description of semantic dependence
can now be given:

Definition 12 (Informal) A vertez v in a def/use
graph G is semantically dependent on a vertez v of
G if there are tnterpretations Iy and Iy of G that differ
only in the function assigned to v, such that for some
inpul, the czecution history of v induced by Xy differs
from that induced by I,.7

For example, if the branch condition X > Y in the pro-
gram of Figure 1 were changed to X < Y, then the pro-
gram would compute the Min function instead of the
Maz function. Hence, for all unequal values of X and ¥,
this change demonstrates that vertex vy of the def/use
graph of Figure 1 is semantically dependent on vertex
vz. As another example, if the statement N := N - 1
in the program of Figure 2 were changed to N := N -
2, this would cause the while-loop not to terminate for
the input N = 5, and statement 6 would not be executed.
Hence, this change demonstrates that vertex vg of the
def/use graph of Figure 2 is semantically dependent on
vertex vg.

"The formal definition of semantic dependence, given in

[Podg89], contains conditions to ensure that n semantic depen-
dence is wot cnuaed by the value of the funetion nasgned Lo vey
tex being undelined for some input. Thisois dove Lo avoid trivial

semantic dependences. When we imformally say that (the semnn-
tics of) one program statement alfects the execution behavior of
another statement, this restriction is implied.

Note that a pair of execution histories of a vertex can
differ in two ways: the histories can have corresponding
entries that are unequal, or one history can he longer
than the other. Informally, a semantic dependence is
said to be finitely demonstrated if one of these two
possibilities is demonstrated by finite portions of the
computation sequences induced by a pair of interpreta-
tions and an input. Semantic dependence demonstrated
by a pair of halting computations is, of course, finitely
demonstrated.

6 Relating Semantic and Syn-
tactic Dependence

In software testing, debugging, and maintenance, one is
often interested in the following question:

When can a change in the semantics of a pro-
gram statement affect the execution behavior
of another statement?

This question is, however, undecidable in general. De-
pendence analysis, like data flow analysis, avoids prob-
lems of undecidability by trading precision for (efficient)
decidability. During dependence analysis, programs are
represented by def/use graphs, which contain limited
semantic information but are easily analyzed. Depen-
dence analysis allows semantic questions to be “approx-
imately” answered because all programs with a given
def/use graph sharc certain semantic properties. To
evaluate the nse of dependence analysis in “approxi-
mately” answering the question above, we frame the
question in terms of def/use graphs, by asking when one
statement is semantically dependent on another. This
leads to our main results (proofs are found in [Podg89]).

Theorem 2 Let G = (G, Z, D,U) be a def/use graph,
and let u,v € V(G). If u is semantically dependent on
v then u is weakly syniactically dependent on v.

Theorem 3 Sirong syntactic dependence is not a nec-
essary condition for semantic dependence.

Theorem 4 Let G = (G,Z, D,U) be a def/use graph,
and let u,v € V(G). If u is semantically dependent on
v and this semantic dependence is finitely demonstrated
then u is strongly syntactically dependent on v.

Theorem 5 Neither direct data flow dependence nor
data flow dependence is a sufficient condition for se.
mantic dependence.

Corollary 1 Neither weak nor strong syniactic depen-
dence is a sufficient condition for semantic dependence.

7 Implications of the Results

The results of Section 6 support the following conclu-
sions about the nse of dependence analysis Lo obtain
information about relationships between program state-
ments:

1. The absence of weak syntactic dependence between
two statements precludes all relationships between
them that imply semantic dependence,

2. The absence of strong syntactic dependence be-
tween two statements does not preclude all rela-
tionships between them that imply (non finitely-
demonstrated) semantic dependence,

3. The absence of strong syntactic dependence be-
tween two statements precludes all relationships
between them that imply finitely demonstrated se-
mantic dependence,

4. The presence of direct data flow dependence, data
flow dependence, or weak or strong syntactic de-
pendence between two statements does not indi-
cate any relationship between the statements that
implies semantic dependence.

Conclusion 1 follows from Theorem 2; any relationship
between two statements that implies semantic depen-
dence also implies weak syntactic dependence. Con-
clusion 2 follows from Theorem 3 and Theorem 4 be-
cause strong syntactic dependence does not imply se-
mantic dependence. Conclusion 3 follows from Theo-
rem 4; any relationship between two statements that
implies finitely demonstrated semantic dependence also
implies strong syntactic dependence. Finally, conclu-
sion 4 follows from Theorem 5 and Corollary 1.

Note that conclusion 1 implies that the weak syntactic
dependence relation for a program is an “upper bound”
on (contains) any relation on the program’s statements
that implies semantic dependence. Similarly, conclu-
sion 3 implies that the strong syntactic dependence rela-
tion for a program bounds any relation on the program'’s
statements that implies finitely demonstrated seman-
tic dependence. Since the. syntactic dependences in a
program can be computed efficiently, these bounds can
be easily determined and used to narrow the search for
statements having certain important relationships. For
example, if an operator fault at a statement s affects
the execution behavior of a statement s, this demon-
strates that s is semantically dependent on s; therefore,
only those statements that are weakly syntactically de-
pendent on s could be affected by an operator fault
at s. Consequently, weak syntactic dependences can
be used to help locate statements that can be affected

by an operator fault at a given statement. Of conrse,
whenever a relation i on the statements of a program
imphes finmitely demonstrated semantic dependence, the
strong syntactic dependence relation for the program is
a “tighter” bound on I than the weak syntactic depen-
dence relation is.

In the sequel, we use conclusions 1-4 to evaluate ex-
isting uses of dependences in testing, debugging, and
maintenance, and to suggest new ones. These conclu-
sions address the semantic basis for certain uses of de-
pendence analysis. The conclusions suggest that some
proposed uses are mistaken, but provide partial justifi-
cation, in terms of facilitating search, for other uses.

7.1 Dependence-Coverage Criteria

Since operator faults are one of the types of faults cov-
erage criteria are intended to reveal, they are used here
to illustrate coverage criteria that exercise dependences.

To help ensure that an operator fault is revealed, the
data flow criteria exercise data flow dependences upon
potentially faulty statements. This may cause erroneous
values resulting from an operator fault to propagate via
the sequence of assignments represented by a data flow
dependence. In this way, a failure may be exposed.
The data flow criteria differ with regard to the number
of data flow dependences exercised, the types of data
flow dependence exercised, and the number of walks ex-
ccuted that demonstrate a given data flow dependence.
In the next few paragraphs, we discuss the significance
of these differences for the detection of operator faults.

A data flow coverage criterion that exercises only a
single direct data flow dependence upon each potentially
faulty definition is the All-Defs criterion [Rapp85]. One
might assume that exercising a single direct data flow
dependence upon a definition with an operator fault is
likely to cause an incorrect value to propagate to the
dependent statement. However, by conclusion 4, a di-
rect or indirect data flow dependence between two state-
ments does not indicate that an operator fault at one
of the statements can affect the execution history of the
other. Thus, conclusion 4 controveris the use of data
flow criteria like All-Defs, which exercise only a single
data flow dependence per potentially faulty statement,
for the detection of operator faults. It is possible that
there is a stafistical correlation between the existence
of data flow dependences and the propagation of fail-
ures among the statements they relate; however, to the
authors’ knowledge, this has not been demonstrated.

The more demanding data flow criteria, such as
Rapps and Weyuker’s All-Uses and All-DU-Paths cri-
teria [Rapp85], Laski and Korel’s Strategy 11 [Lask83],
and Ntafos’s Required k-Tuples criteria [Ntaf84], call

for exercising elldata flow dependences of certain types.
This may indicate that the inventors of these criteria be-
lieve that these types of data flow dependence are nec-
essary, but not sufficient, conditions for certain cominon
types of failure propagation. This belief is compatible
with conclusions 1-4. The All-Uses and All-DU-Paths
criteria exercises all direct data flow dependences. The
Required k-Tuples criteria exercise all chains of k direct
data flow dependences; that is, all sequences of k + 1
vertices such that each vertex in the sequence except
the last is directly data flow dependent on the next. Fi-
nally, Laski and Korel’s Strategy II exercises all direct
data flow dependences, but exercises them in combina-
tion.

Some of the data flow criteria considered here call
for exercising multiple walks that demonstrate a given
data flow dependence. Exercising any particular walk
demonstrating a data flow dependence on a faulty state-
ment does not ensure that a failure will be propagated,
because the effect of the fault may be masked out. Pre-
sumably the inventors of the criteria requiring multiple
walks wanted to decrease the likelihood that this would
happen.

By conclusions 1-3, the fact that an operator fault at
one statement can affect the behavior of another state-
ment may involve control dependence, instead of just
data flow dependence, as when an incorrect branch is
taken by a conditional statement. Experience suggests
that almost arbitrary chains of control and data flow
dependences may be involved. This implies that almost
any syntactic dependence not exercised by a coverage
criterion might be the only one by which a given fault
can be revealed. Hence, even the more demanding data
flow coverage criteria do not ensure that all dependences
are exercised that are relevant to the propagation of fail-
ures caused by operator faults. This is also true of those
data flow criteria that include limited forms of control
dependence coverage, such as the Required k-Tuples cri-
téria. One might think that to remedy this weakness it
is only necessary to exercise all syntactic dependences
upon a potentially faulty definition. We suspect, how-
ever, that the number of dependences involved and the
number of walks that must be executed to exercise them
is too large for this strateg'y to be practical. Neverthe-
less, the syntactic dependences in a program provide
a nontrivial bound on those statements that could be
affected by an operator fault, and it should be possi-
ble to exploit this bound in developing testing methods.
Successful use of this information presumably requires
ways of filtering the syntactic dependences to be exer-
cised and of selecting the test data to be used. Satisfying
these requirements will undoubtedly entail more refined
semantic analysis of dependences.

7.2 Anomaly Detection

A program anomaly is a textual pattern that is often
evidence of a programming error [Fosd76] — for exam-
ple, a variable being used before it has been defined. Ko-
rel’s use of strong syntactic dependence to detect useless
statements [Kore87] is a type of anomaly detection.

Korel did not prove his claim that if no output state-
ment in a program is strongly syntactically dependent
on a statement s then s cannot influence the program’s
output. Nevertheless, conclusion 3 supports a version
of his informal claim: if no output statement in a pro-
gram is strongly syntactically dependent on 3, then the
semantics of s is irrelevant to the values of variables
output by the program. This is because if a change to
the semantics of s affected the value of a variable out-
put at statement s, then this would finitely demonsirate
that s' was semantically dependent on 5. A change to
the semantics of a statement can affect the output of a
program in ways that imply non finitely-demonstrated
semantic dependence, however. By conclusion 2, non
finitely-demonstrated semantic dependence might not
be accompanied by strong syntactic dependence. In the
factorial program of Figure 2, changing the branch con-
dition of the while-loop to N = N causes the loop to
execute forever; consequently, statement 6 is not exe-
cuted. Thus vertex vg of the program’s def/use graph
is semantically dependent on vertex v3. However, this
semantic dependence is not finitely demonstrated, and
v is not strongly syntactically dependent on vj. Hence,
the fact that an output statement:is not strongly syntac-
tically dependent on a statement s does not imply that
the semantics of s is irrelevant to the behavior of the
output statement. However, if no output statement in
a program is weakly syntactically dependent on s then,
by conclusion 1, the semantics of s is irrelevant to the
program’s output.

7.3 Debugging and Maintenance

In both software debugging and maintenance, it is neces-
sary to determine when the semantics of one statement
can affect the behavior of another statement. In de-
bugging, one attempts to determine what statement(s)
caused an observed failure. In maintenance, one wishes
to know whether a modification to a program will have
unanticipated effects on the program’s behavior. To de-
termine this, it is helpful to know what statements are
affected by the modified ones, and what staltements af-
fect the modificd ones. There are no general procedures
for determining absolute answers to these questions, but
dependence analysis can be used to answer them ap-
proximadtely.

In his thesis [Weis79], Weiser attemnpts to formally
prove his claims about the relevance of program depen-
dences to debugging, and he states a theorem® similar
to Theorem 2. In his attempted proof of this theorem,
Weiser actually assumes, without proof, that strongsyn-
tactic dependence is a necessary condition for semantic
dependence. Besides being very close to what Weiser
is trying to prove in the first place, this assumption is
false. Weiser does not address the issue of formal justi-
fication for slicing in his subsequent writings.

If a program failure observed at one statement is
caused by an operator fault at another statement, it
follows from conclusion 1 that the search for the fault
can be facilitated by determining weak syntactic depen-
dences, since the statement where the failure was ob-
served is weakly syntactically dependent upon the faulty
statement. If the failure implies finitcly demonstrated
semantic dependence, it follows from conclusion 3 that
strong syntactic dependence can be used to help locate
the fault. However, if the failure implies a semantic de-
pendence that is not finitely demonstrated, then strong
syntactic dependence cannot necessarily be used to lo-
cate the fault. This is illustrated by the example in
Section 7.2. Hence, Weiser’s use of strong syntactic de-
pendence in slicing is not justified in general, but weak
syntactic dependence can be used instead.

The implications of conclusions 1-4 for maintenance
are similar to those for debugging. If a modification in-
volves onlv the semantics of a single statement, then,
by conclusions 1 and 3, only those statements that are
syntactically dependent on the statement to be modified
could be affected by the modification. Similarly, only
those statements that modified statements are syntac-
tically dependent on are relevant to the behavior of the
modified statements.

8 Conclusion

In summary, we have shown that two generalizations of
control and data dependence, called weak and strong
syntactic dependence, are necessary conditions for cer-
tain interstatement relationships. Weak and strong syn-
tactic dependences can be efficiently computed, and
hence can be used to guide such activities as test data se-
lection and code inspection. On the other hand, we have
also shown that neither data flow nor syntactic depen-
dence is a sufficient condition for such interstatement
relationships, and this reflects negatively on the use of

8The theorem is stated in terms of Weiser's problematic “color
dominance” characterization of control dependence, which he

abandoned in his later writings on slicing, in preference to strong
control dependence.

such dependences as evidence for the presence of these
relationships. Finally, we have shown that strong syn-
tactic dependence is not a necessary condition for some
interstatement relationships involving program nonter-
mination, and this suggests that some proposed uses of
strong syntactic dependence in testing and debugging
are unjustified.

There are scveral possible lines of further investiga-
tion related to the use of program dependences in test-
ing, debugging, and maintenance. The results of Sec-
tion 6 could be usefully extended to provide information
about the effects of larger classes of faults and program
modifications. Another possible line of investigation is
the development of software testing methods that ex-
ploit the fact that syntactic dependence can be used to
bound the statements that can be affected by a fault.
For example, Morell {More84], Richardson and Thomp-
son [Rich88], and Demillo et al [DeMi88] propose test
data selection methods based on determining conditions
for erroneous program states to occur and then propa-
gate to a program’s output. These methods could ex-
ploit the dependence relations defined in this paper. A
third possible line of investigation involves using more
sophisticated semantic analysis techniques to comple-
ment dependence analysis.

References s

[Aho74]) Aho, A. V., Hopcroft, J. E., and Ullman, J.D.
The Design and Analysis of Computer Algorithms.
Addison-Wesley, 1974.

[Aho86] Aho, A. V., Sethi, R., and Ullman, J.D. Com-
pilers: Principles, Techniques, and Tools. Addison-
Wesley, 1986.

[Berg85] Bergeretti, J. F. and Carré, B. A. Information-
flow and data-flow analysis of while-programs. ACM
Transactions on Programming Languages and Systems,
Vol. 7, No. 1, Jan. 1985.

[Cart89] Cartwright, R. and Felleisen, M. The seman-
tics of program dependence. SIGPLAN ’89, 1989.

[DeMi88] DeMillo, R.A., Guindi, D.S., King, K.N.
McCracken, W.M., and Offutt, A.J. An extended
overview of the Mothra software testing environment.
Proceedings of the Second Workshop on Software Test-

ing, Verification and Analysis, Banff, Alberta, July
1988, pp. 142-151.

(Denn77] Denning, D. E. R. Certification of programs
for secure information flow. Commaunications of the
ACM, Vol. 20, No. 7, July 1977, pp. 504-513.

[Ferr87) Ferrante, J., Ottenstein, K. J., and Warren, J.
D. The Program Dependence Graph and its use in op-
timization. ACM Trensactions on Programming Lan-
guages and Systems, Vol. 9, No. 5, July 1987, pp 319-
349.

[Fosd76) Fosdick, L. D. and Osterweil, L. J. Data flow
analysis in software reliability. A CM Computing Sur-
veys, Vol. 8, No. 3, September 1976, pp. 306-330.

[Fran87] Frankl, P. G. The use of data flow information
for the selection and evaluation of software test data.
Doctoral Thesis, New York University, 1987.

[Grei75] Greibach, S. A. Theory of Program Struc-
tures: Schemes, Semantics, Verification. Springer-
Verlag, Berlin, 1975.

[Horw88a] Horwitz, S., Prins, J., and Reps, T. On the
adequacy of program dependence graphs for represent-
ing programs. Fifteenth ACM Symposium on Prin-
ciples of Programming Languages, ACM, New York,
1988.

[Horw88b] Horwitz, S., Prins, J., and Reps, T. Inte-
grating non-interfering versions of programs. Fifteenth
ACM Symposium on Principles of Progm.mmzng Lan-
guages, ACM, New York, 1988.

[Kore87] Korel, B. The program dependence graph in
static program testing. Information Processing Letters
24, Jan. 1987, pp. 103-108.

[Lask83] Laski, J. W. and Korel, B. A data flow oriented
program testing strategy. IEEE Transactions on Soft-
ware Engineering, Vol. SE-9, No. 3, May 1983, pp. 347-
354.

[Mann74] Manna, Z. Mathemeatical Theory of Compu-
tation. McGraw-Hill, New York, 1974.

[More84] Morell, L. J. A theory of error-based testing.
Doctoral thesis, University of Maryland, 1984.

[Ntaf84] Ntafos, S. C. On Required Element Testing.
IEEE Transactions on Software Engineering, Vol. SE-
10, No. 6, Nov. 1984, pp. 795-803.

[Padu86] Padua, D. A. and Wolfe, M. J. Advanced com-
piler optimizations for supercomputers. Communica-
tions of the ACM, Vol. 29, No. 12, Dec. 1986, pp. 1184~
1201.

[Podg89] Podgurski, Andy. The significance of pro-
gram dependences for software testing, debugging,
and maintenance. Technical report, Computer and
Information Science Departinent, University of Mas-
sachusetts, Amherst, 1989.

[Rapp85] Rapps, S. and Weyuker, E. J. Selecting soft-
ware test data using data flow information. IEEE
Transactions on Sofiware Engineering, Vol. SE-11,
No. 4, Apr. 1985, pp. 367-375.

[Reps89] Reps, T. and Yang, W. The semantics
of program slicing. Technical report, University of
Wisconsin-Madison, 1989.

[Rich88] Richardson, D. J. and Thompson, M. C. The
RELAY model of error detection and its application.
Proc. Second Workshop on Software Testing, Verifica-
tion, end Analysis, Banff, Canada, 1988.

[Selk89] Selke, R. P. A rewriting semantics for program

dependence graphs. Proc. 16th ACM Symposium on
Principles of Programming Languages, 1989, pp. 12-
24.

[Weis79] Weiser, M. Program slices: formal, psycholog-
ical, and practical investigations of an automatic pro-
gram abstraction method. Doctoral dissertation, Uni-
versity of Michigan, Ann Arbor, Ml, 1979.

[Weis82] Weiser, M. Programmers use slices when de-
bugging. Communications of the ACM, Vol. 25, No. 7,
July 1982, pp. 446-452.

[Weis84] Weiser, M. Program slicing. IEEE Transac-
lions on Sofiware Engineering, Vol. SE-10, No. 4, July
1984, pp. 352-356.

