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The strictly bottom-up approach to the interpretation of complex images is infeasible as
either a biological or a computational model. Tsotsos applied biological and physiological
constraints to show that massive parallelism alone can not explain human visual perfor-
mance; other mechanisms, including knowledge-based prediction, are required ([6]). The
inadequacy of bottom-up interpretation as a computational model has been documented in
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Abstract

' The AT approach to vision has been heralded as reducing the computational bur-
den of traditional bottom-np systems by applying knowledge-based control. Al-style
systems use knowledge to focus attention and processing resonrces on the most promis-
ing hypotheses and combine information from multiple knowledge sources and/or sen-
sors. Qur case study compares the complexity of an intermediate-level grouping task
with and without top-down control. The results provide clear empirical support. for
the claim that knowledge-directed control reduces the computation required for object
identification.

The Rectilinear Line Grouping System (RLGS) is a bottom-up line grouping system
designed to extract man-made structures from static images. The Schema System is a
knowledge-hased system shell for controlling computer vision tasks. In this paper we
consider the task of finding instances of two objects (telephone poles and road signs)
in complex natural scenes. First we apply the RLGS in the original bottom-up manner
in which it was designed, noting the number of line relations that must he computed,
as well as the complexity of the graph matching task that must be performed. Then
we place the RLGS primitives nnder the direction of the Schema System, noting the
reduction in required computation.
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two ways: first, by proving that tasks involved in some approaches to the image interpreta-
tion process are NP-complete, such as subgraph isomorphism and constrairt propagation
([4]); second, by the observations of those who have built large scene interpresation systems
(e.g. [3]).

The Al approach to vision has been heralded as reducing the computational burden of
traditional bottom-up systems by applying sophisticated, knowledge-based control. Object
predictions based on domain knowledge, interpretation results of previous images in the
sequence, and the evolving interpretation of the current image (among other sources) can
be used to constrain the search for an object to restricted portions of the image. Common
views of 3D objects can provide efficient 2D predictions, and automatic analysis of the
knowledge base can determine the most efficient sequence of tasks to identily an object.

This paper reports a case study in using top-down knowledge and control to constrain
hottom-up processing. The task is to find instances of two objects (telephone poles and
warning signs) in two complex natural scenes. A measure of the effectiveness of knowledge-
directed control is made by comparing the computation required to recognize the objects
with and without knowledge-based control. In hoth cases, the underlying recognition
tools are the same - the rectilinear line grouping system (RLGS [5]), which groups lines
according to fundamental geometric relations, and a subgraph isomorphisra routine ([7h
which finds instances of the objects’ 2D models in the line groups. The difference is that in
the second case, a top-down control system called the schema system ([2]) uses knowledge
of expected region characteristics (color, texture and shape) to constrain the line grouping
process.

The reader should understand that the point of this paper is not criticism of the RL(S
or systems like it. Quite the opposite, this effort is the result of the success of the RLGS
at locating certain objects, not only in aerial photography (for which is was designed),
but in the less structured domain of New Fngland road scenes. The line relations and
connected components algorithm of the RLGS were obvionsly useful tools for the image
interpretation task. The RL(GS’s control component was inadequate, but that was not the
focus of the research. This paper grew from an effort to integrate the RLGS primitives
into the intelligent control framework of the schema system.

2 The Bottom-Up System

2.1 The Rectilinear Line Grouping System

The RLGS was first presented in [5]. It is a hottom-up perceptual organization system
that suggests the presence of man-made events by detecting sets of related line segments.
Three distinct binary relations are used to form these sets. The relations are: spatially
proximate collinear, spatially proximate parallel and spatially proximate orihogonal. The
collinear relation indicates that one line is a good collinear continuation of the other. The



Illustrating Spatial Proximity Relations.
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Figure 1: Illustrating when pairs of line segments salisfy the individual spatial proximity
relations. Note subtle changes in distances hetween lines (scaled as a function of line
length) as well as relative orientations.

parallel relation indicates that the two lines bound a rectangular area. The orthogonal
relation indicates that the two lines form a corner or “T". Examples illustrating each type
of relation are shown in Figure 1. Formal definitions are provided in [5].

The bottom-up line groups produced by the RLGS are best conceptualized as connected
components in a graph. Line segments correspond to the nodes of the graph, while pairs
of nodes satisfying one of the three proximity relations are linked. Because the binary
relations are not transitive, connected components are confined to sub-graphs. The sub-
graphs insure that the orientation of the lines within a single group are consistent with
rectilinear structure. For example, a sequence of collincar pairs forming a semi-circle will
not he part of a single sub-graph and therefore cannot form a single group.

In practice, grouping is restricted to eight sub-graphs. Each sub-graph contains line
segments with orientation within 1.0 of either of two orthongal axes. In order to subdivide
the range 0 - 7/2 into eight sub-ranges overlapping by 50%, a value of (7/2) /8 radians
(11.25 degrees) is selected for . These sub-graphs, called orthogonality ranges, are desig-
nated by number. Orthogonality range i contains all lines whose orientation is within 8
of (i + 8) or ((i +#) 1 7/2). Hence, orthogonality range 0 contains roughly horizontal and
vertical lines. Orthogonality range 1 contains roughly diagonal lines.

The overlapping of orthogonality ranges insures that interesting groups, if they exist,
will be found by grouping within at least one range. However, it introduces a complication.
If a large group is found within a given range, fragments from this group may be present
in the two adjoining ranges. In [5] a voting scheme was presented for resolving this type of
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Figure 2: Illustrating relation model for telephone pole and warning sign. Note that
orthogonal and parallel are symetric relations while above and right are not. Also note
that the parallel relation appears only in the telephone pole model.

duplication. In most, but not all cases, the redundancy was adequately resolved by voting.
However, as we shall show, top-down control removes entirely the need for overlapping
orthogonality ranges.

2.2 The Graph Matcher

Once line groups have heen extracted, objects are located in the image by finding corre-
spondences between object models and pieces of line groups. Object models are expressecl
in terms of RLGS primitives. To be precise, an object model is a set of predicted line
segments, grouped by pairwise collinear, parallel and orthogonal relations. Figure 2 shows
the telephone pole and warning sign models used in this study. Objects are identified in'
the image by finding an isomorphism between an object model, called the model graph,
and a RLGS line group, refered to as the data graph.

The subgraph isomorphism routine is hased on the commonly-used algorithm of Ullman
([7]), with minor modifications for vision. Ullman’s algorithin matches model lines to data
lines using depth-first search. Every time a data line is assigned to a model line, all
potential bindings for each remaining model line are tested, and any that are incompatible
with the new assignment are removed from the model line’s set of potential bindings. In
Al terminology, binary constraint propagation is performed every time a data line is bound
to a model line during the depth-first search.

Our implementation of Ullman’s algorithin has been modified to allow directional links



and on-demand (lazy) evaluation of node links. Directional links allow the expression
of non-commutative relations such as “above” which we have found necessary. In our
telephone pole model, for example, it is important that the crossbar be “above” (2D) the
upright. On-demand computation removes the necessity of precomputing ail possible line
relations.

Although Ullman’s algorithm is very good, it cannot escape the inherent intractabhility
of the subgraph isomorphism problem. The algorithm’s time complexity is exponential in
the number of lines. As a result, the size of the graphs is the dominant factor in determining
the over-all run-time of the system. Both of the models in this paper have four nodes in
their model graphs. Therefore, we compare the complexity of the model matching task
in the bottom-up and top-down scenarios by comparing the size of the respective data
graphs. ‘

3 The Schema System

The schema system is a knowledge- based image interpretation system for recognizing oh-
jecls in natural scenes. It differs from other knowledge-based vision systems in that 1) it
integrates many distinct methods of object interpretation; 2) it makes explicit control deci-
sions; and 3) both its declarative knowledge hase and its run-time processing are organized
according to perceptual objects, rather than by level of abstraction. We will focus on the
integration of multiple interpretation methods here; readers interested in the motivations
for and consequences of the other points are encouraged to see [2].

Visual processing is highly object-specific. Much of the recent model-based vision
research has limited itsell to studying objects for which we have rigid models (e.g.
CAD/CAM). Typically, an attempt is made o find a single algorithm which will recog-
nize all such objects. Unfortunately, not cverything can be identified through rigid object
models. Some objects, such as telephone wires, are not rigid. Others, for example trees,
are nearly rigid, but arc irregular in that cach instance has a unique shape. making fixed
models infeasible. Still others (e.g. clouds, human beings) are neither rigid nor regular,
while some (e.g. the sky) defy the very concept of a shape based represer.tation. Many
object recognition techniques are necessary for recognizing different objects. Even when a
single interpretation mechanism is applicable to multiple objects, ob ject-specific knowledge
of contexts, common viewpoints, etc., can be used to speed the recognition process.

The point is not that rigid models should be abandoned - far from it, they provide the
basis for recognition techniques that are useful for a wide range of objects and contexts.
The point is that no single recognition algorithm will suffice for all objects under all
circumstances. To be gencral purpose, a high-level vision system must provide a multitude
of object-specific interpretation stralegies.

The schema system views object recognition as a problem of search thrcugh the space
of visual operators. Each operator secks to extract evidence supporting the presence of an
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Figure 3: lllustrating the Schema System Blackboard.

object class instance. Examples of visual operators include color- and texture-based pattern
classifiers, predictors of 21) views from 3D models and the subgraph isomorphism routine
mentioned earlier. For each object class in the domain, a specialized schema is built which
will guide the search for instances of that object class. Finding the appropriate sequence
of operations to efficiently locate an object instance in any given context is the task of
a schema. The schema system consists of many object schemas, each of which operate
concurrently when interpreting an image. Inter-ohject relations are computed from object
hypotheses written to the global blackhoard by the various schemas. Figure 3 illustrates
the state of the global blackboard during an interpretation.

The knowledge engineer must provide a schema for each object class in the domain.
The schema declaration consists of 1) the list of relevant “knowledge sources” and 2) a
function for combining symbolic evidence. T'he schema system then antomatically com-
piles the optimal strategy for the ohject by exhaustive search of the (object-specific) space
of knowledge source sequences. For the schemas in our case stud ¥, the relevent knowledge
sources are parallel and orthogonal line grouping, graph matching, region zolor and tex-
ture classification, and region shape analysis. In order to be comparable with the purely
bottom-up interpreation system, we used a very simple evidence combination function:
any hypothesis which matches the model line graph is accepted as true, while any hypoth-
esis that does not is rejected. In more complicated interpretation experiments complex
evidence combination functions are used to allow for multiple views and scales, missing
data, etc.
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Figure 4: Road scene image 1.

4 Comparing Bottom-Up and Knowledge-Directed
Execution

We applied the bottom-up and knowledge-directed verions of our system to two images,
one of which contained a telephone pole, the other a warning sign. Figures 4 and 5 are
black-and-white copies of the original color images. Both the bottom-up and knowledge-
directed versions of the experiments are started with a set of straight lines extracted from
an image using the algorithm in [8] (Figures 6 and 7). The lines were filtered to remove
short and low conirast lines. Because the goal is to extract instances of telephone poles
and warning signs from the image, relations which do not appear in either of these models
need not be computed; in particular, the RLGS’s spatially proximate collinear relation is
not used?. Also, hecause the direction of gravity is known for this domain and all of the
lines in the models are either horizontal, vertical or diagonal, lines at other orientations can
be discarded. For the bottom-up RLGS, which divides the lines into 8 sets according to
orientation ([5]), this corresponds to only grouping lines in 2 of the 8 sets (see section 2.1).

4.1 Bottom-Up Interpretation

The RLGS extracts all possible instances of the spatially proximate parallel and orthog-
onal line relations (Figures 8 and 9 show the line-pairs found for image 1). A connected

?Note that a subgraph isomorphism is a one-to-one mapping between data and model lines. Therefore,
the collinear relation cannot be used to map multiple line segments to a single madel line.

|



Figure 5: Road scene image 2.
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Figure 6: Straight line exiracted from image 1 using (8]
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Figure 7: Straight line exiracted from image 2 using [8]

components algorithm is then applied to find groups of related lines. Two types of line
groups are created, the first by computing connected components over just the orthogonal
relation, the second by computing connected components over both the orthogonal and
parallel relations. The graph matcher can then search all diagonal orthogonal groups for
instances of the warning sign modecl, and all horizontal/vertical orthogonal and parallcl
groups for instances of the telephone pole model.

4.2 Knowledge-Directed Interpretation

Figures 10 and 11 show the orthogonal and parallel relations computed under the con-
trol of the schema systemm for image 1. The schema system uses features derived from
the region segmentation and knowledge of the expected color and texture of objects to
control the computation of line pairs and groups. Because warning signs are saturated
yellow, region-based recogntion strategies perform well. Warning signs rare.y fragment in
the segmentation, and they can be distingnished from other objects based on the color
features. For warning signs, the line data is used to confirm region-based hypotheses.
The schema therefore selects the set of lines that intersect the hypothesis, and directs the
RLGS to compute the orthogonal relation over this small set of lines. These lines are then
passed as the data graph to the graph matcher, without ever calling the RLGS’s connected
components routine.

Telephone poles are recognized differently, since unlike warning signs they cannot be
counled on to segment well. Tall, narrow objects tend to be fragmented by the region
segmentation process. Moreover, although telephone poles have an expected color and

9



||
I

! '](i" ] _T\'{
—'E — ==
———— N J———-—:,—h
/ N g 7R

otton Up 0goNa alrs for [mage 1

Figure 8: Spatially proximate orthogonal pairs found hottom-up for Image 1.
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Figure 9: Spatially proximate parallel pairs found bottom-up for Image 1.
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Image | » - ilnq.gv é_h N
Parallel | Orthogonal | Parallel  Orthogonal

Bottom-up 75 272 71 235
Top-down 15 50 29 27

Table 1: Relations computed with and without top-down knowledge

Image | Image 2
O-groups | PO-groups || O-groups | PO-groups |
Bottom-up 150 221 193 | 318 |
Top-down 12 80 ST 120 ]

Table 2: # of lines involved in orthogonal and parallel/orthogonal groups

texture, it is not as distinctive as that of a warning sign. Thus the primary mechanism for
recognizing telephone poles is the line data model-match; the region data merely suggests
portions of the image to be considered. The search is applied everywhere there is either
1) a region that roughly matches the expected color and texture of telephone pole or 2)
a highly elongated region. The schema collects all lines that are near such key regions,
and directs the RLGS to find any lines that are collinear extensions of these lines (the
lines, although more robust than the regions, may also be fragmented). Next, the schema
computes the spatial window defined by the original and collinear lines, expands it slightly
and collects all the horizontal and vertical lines within the window. These lines are then
handed to the RLGS to be grouped according to the spatially proximate parallel and
orthogonal relations. All line groups found by the RLGS with four or more lines are then
tested with the graph matcher. Whenever a match is found, a new region is created from
the interstitial pixels and (assuming its color is not totally unreasonable) hvpothesized to
be a telephone pole.

4.3 Results of the Case Study

Not surprisingly, the knowledge-directed version ran more efficiently. Table 1 shows the
number of line pairs computed by the two systems; it shows that the schema system
computed a factor of five fewer relations than its bottom-up counterpart. Table 2 shows
the number and size of the line groups produced. Since the line groups become the data
graphs for the exponentially expensive graph matching algorithm, the size of the line graphs
is the dominant factor in determining the running time of the over-all system. Once again,
the schema system proves more efficient: the line groups computed top-down are an order
of magnitude smaller than the line groups produced bottom up.

For image 1, the pairs computed using the schema system cluster in areas where the
schema found promising telephone pole regions; not surprisingly, it considered several

12
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Figure 12: Spatially proximate orthogonal pairs found bottom-up for [mage 2.

incorrect regions as well as the correct one. On the other hand, no relations were computed
using diagonal lines in this image. The possibility of a warning sign being present was
rejected on the basis of the region data alone.

Image 2 presents a different kind of problem. At first glance, one would expect fewer
pair-wise relations to be present, hecause of the relative lack of man-made structure. Un-
fortunately, hundreds of instances of almost any pairwise relation can be found in the
random chaos of the trees. The need to constrain the grouping process according to area
(region) attributes is therefore just as important. Figures 12, 13, 14 and 15 show the
orthognal and parallel pairs found by the two methods. Not only does the schema system
do less work, it lessens the likelihood of finding false model matches in the srees.

There are disadvantages to the schema approach, however. Exhaustive search of the
line data guarantees that all instances of the model in the line data will be found, whereas
a failure in the segmentation system could canse the schema system to miss an instance
(for example, if no part of the telephone pole was seperated from the background). In
addition, although the amount of computation on the line data has been greatly reduced,
the costs of region segmentation and region feature extraction must be added to the total
cost of the interpretation. Nonethless, the computation saved through using knowledge
may make an otherwise infeasible recognition task feasible.
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Figure 14: Spatially proximate parallel pairs found bottom-up for Image 2.

11



Figure 15: Spatially proximate parallel pairs found by schema system for Image 2.

5 Conclusion

Our case study gives clear empirical support for the claim that using knowledge saves
computation. We compared the cost of ohject recognition with and without knowledge-
directed control. The use of knowledge reduced the number of intermediate-level relations
computed by a factor of five and the complexity of the resulting graph-matching problemn
by an order or magnitude. This is not meant to indict all bottom-up systems. Many
low-level tasks, such as straight line extraction, are ideally suited for parallel, bottom-up
processing. Moreover, bottom-up systems such as the RLGS often teach us what relations
need to be extracted from an image. What is heing assailed is the exclusive use of the
bottom-up control strategy. It is hard to iiagine circumstances in which knowledge of the
interpretation goal could not in some manner constrain the application of visual operators,
except at the lowest levels of Lthe interpretation task. By adding the RLGS’s relations to
the schema system’s library, the samc image abstractions can he computed more efficiently.
Thus the schema system is able to subsume the operators of the RLGS, both improving
their efficiency and integrating them with other imnage interpretation techniques.
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