.
%

EXPERIMENTAL EVALUATION
OF REAL-TIME TRANSACTION
PROCESSING

J.Huang, J.A. Stankovic, D. Towsley
and K. Ramamritham

COINS Technical Report 89-48
April 1989



Experimental Evaluation of Real-Time Transaction
Processing’

Jiandong Huang
Department of Electrical and Computer Engineering
University of Massachusetts

John A. Stankovic
Don Towsley
Krithi Ramamritham
Department of Computer and Information Science
University of Massachusetts

April 1989

Abstract

This paper presents results of empirical evaluations carried out on the RT-CARAT
testbed. This testbed was used for evaluating a set of integrated protocols that support
real-time transactions. Using a basic locking scheme for concurrency control, several
algorithms for handling CPU scheduling, data conflict resolution, deadlock resolution,
transaction wakeup, and transaction restart are developed and evaluated. The perfor-
mance data indicates (1) that- the CPU scheduling algorithm has the most significant
impact on the performance of real-time transactions, (2) that various conflict resolution
protocols which directly address deadlines and criticalness produce better performance
than protocols that ignore such information, (3) that deadlock resolution and trans-
action restart policies tailored to real-time constraints seem to have negligible impact
on overall performance, (4) that criticalness of transactions is a very important factor
in real-time transaction processing, and (5) that deadline distributions strongly affect
transaction performance. We believe that these results represent the first experimental
results for real-time transactions from an actual system.

“This work was supported, in part, by the U.S. Office of Naval Research under Grant N0G014-85-K0398,
by the National Science Foundation under Grant DCR-8500332, and by Digital Equipment Corporation.



1 Introduction

A real-time database is a database system where (at least some) transactions have explicit
timing constraints such as deadlines. In such a system, transaction processing must satisfy
not only the database consistency constraints but also the timing constraints. Real-time
database systems can be found in program trading in the stock market, radar tracking
systems, battle management systems, and computer integrated manufacturing systems.

Most work on databases focuses on query processing and database consistency, but not
on meeting any time-constraints associated with transactions. On the other hand, real-time
systems research deals with task scheduling ta guarantee responses within deadlines, but it
has largely ignored the problem of guaranteeing the consistency of shared data, especially
for data that resides on a disk. Therefore, the traditional mechanisms for consistency
enforcement and for timing constraint enforcement are not suited for real-time transaction
processing. Rather, algorithms from the two areas have to be extended and combined.
To study real-time transaction systems, some new criteria are required which unify timing
and consistency constraints, specify the properties of transactions, define correctness, and
specify proper metrics.

Several papers have recently been published in the area of time-critical database sys-
tems [11,1,2,9,4 3]. The topics covered in these papers include the identification of the
characteristics of real-time transactions as well as the model of the underlying real-time op-
erating system primitives [11,1,3], access control and conflict resolution [11,2], transaction
scheduling (2,3}, and deadlock prevention [9]. These previous studies provide insight into
many of the issues encountered in the design of real-time transaction systems, and present
some basic ideas for solving some of the problems.

Because research on real-time transactions is still in its infancy, current work has many
shortcomings. First, they are incomplete. For example, timing constraints and criticality
are two important but independent factors in describing real-time transactions. The relation
between the two factors and their combined effect with respect to system performance has
not been addressed. Second, some of the previous work concentrates on only one or two
specific issues, thus lacking an integrated systemwide approach. Third, nane of the ideas or
proposed algorithms in the previous studies, though well thought out, are evaluated in real
systems. Indeed, only [2] presents any experimental results. However this work is based
on simulation and the effect of many important overheads, such as locking and deadlock
detection, are ignored.

In the research described here we have implemented and evaluated 4 real-time CPU
scheduling algorithms, 5 policies for data conflict resolution, 3 policies for transaction
wakeup, 4 deadlock resolution policies, and 3 transaction restart policies. We compare
various combinations of these algorithms to each other and to a baseline system where
timing constraints are ignored. We also studied:

e the relationship between transaction timing constraints and criticality, and their com-
bined effects on system performance,

o the behavior of a CPU bound system vs. an I/O bound system, and



e the impact of deadline distributions on the conducted experiments.

The performance data indicates (1) that the CPU scheduling algorithm is the most sig-
nificant of all the algorithms in improving the performance of real-time transactions, (2)
that conflict resolution protocols which directly address deadlines and criticalness can have
an important impact on performance over protocols that ignore such information, (3) that
deadlock resolution and transaction restart policies tailored to real-time constraints seem
to have negligible impact on overall performance, (4) that criticalness is a very important
factor in real-time transaction processing, and (5) that deadline distributions strongly af-
fect transaction performance. We believe that these empirical results represent the first
experimental results for real-time transactions on an actual system.

The rest of this paper is organized as follows. In section 2, we describe a real-time
transaction model and summarize our basic assumptions. The protocols and policies for
real-time transaction processing are described in section 3, where we focus on CPU schedul-
ing, data conflict resolution, transaction wakeup policies, deadlock resolution, and transac-
tion restart. In section 4, we present our real-time database testbed, RT-CARAT, where
the proposed protocols and policies are implemented and evaluated. The performance re-
sults are demonstrated and discussed in section 5. Finally, we make concluding remarks in
Section 6.

2 Transaction Model

In this study we investigate a real-time database that is secondary storage resident and
centralized. As is usually required in traditional database systems, we also require that
all the real-time transaction operations should maintain data consistency as defined by
serializability!. In our system, serializability is enforced by using the two-phase locking
- protocol. ‘

A real-time transaction is characterized by four factors:

e a deadline,

e a criticalness,

o a value function, and

e a size (not always known) that is dependent on

— the number of data objects to be accessed, and

— the amount of computation to be performed.

!The property of data consistency may be relaxed in some real-time database systems, depending on the
application environment and data properties. The relaxation cf consistency is not considered in this paper.



Deadlines constitute the time constraints of real-time transactions. Depending on
the timing requirements, transactions can be defined as hard real-time and soft real-time
[11]. The transactions considered here are soft real-time, i.e. transactions should meet
their deadlines, but there may still be some (but diminishing) value for completing the
transactions after their deadlines. Here the goal is to maximize the number of transactions
that meet their deadlines.

The criticalness represents the importance of a transaction. In real-time database sys-
tems, not all transactions are equally important. For instance, in a stock market database,
a transaction that updates the database with new information about the financial market
may be more critical than the one that searches the database for arbitrage opportunities.
Thus, the criticalness of a transaction will have an impact on transaction execution.

Criticalness and deadline are two independent characteristics of real-time transactions.
A transaction with a short deadline does not mean that it has high criticalness. Transactions
with the same criticalness may have different deadlines and transactions with the same
deadline may have different criticalness values. The use of a value function is one way to
combine the effects of transaction’s deadline and criticalness. In a real-time database each
transaction imparts a value to the system which is related to its criticalness and to when
it completes execution (relative to its deadline). We define the value of a transaction as a
function of its criticalness, deadline and current time of the system. Basically, the higher
the criticalness of a transaction, the larger its value to the system. On the other hand, the
value of a transaction is time-variant. A transaction which has missed its deadline will not
be as valuable to the system as if it completed before its deadline. The following formula
expresses the value of a transaction T: 2

c, t<d
V(T) = f(c,d,t) =3 c+(1-t/d)xc?, d<t<d+dfc
0, t>d+d/c

where t - current time;
d - deadline of transaction T;
¢ - criticalness of transaction T.

As an example, Figure 2 shows the value functions of two transactions. In this model,
a transaction has a constant value before its deadline. The value decays if the transaction
passes its deadline and decreases to zero at time z. In this paper we model the decay rate as
a function of deadline and criticalness where z is inversely proportional to the criticalness,
which means that the higher the criticalness of a transaction, the faster it loses its value
after its deadline. At the extreme, if a transaction is extremely critical (¢ = o0), its value
drops to zero immediately after its deadline.

Clearly, given value functions, real-time transactions should be processed in such a
way that the value of completed transactions is maximized. If a transaction does not

*There are other ways to present and interpret transaction value functions depending on the application.

1]



value
T\
C1
)
'
T, !
c2 +
|
|
)
'
v [~~~ ~ + -
]
|

time
dy 21 ds t 22

Figure 1: Value functions for transaction Ty and T

complete before time z (see Figure 2), it should abort as soon after z as is feasible, since its
execution after z does not contribute any value to the system at all. (Note that aborting the
transaction at exactly point z would require preempting the currently executing transaction
and subsequently may cause the preempted transaction to miss its deadline.) On the other
hand, a transaction aborted because of deadlock or data conflict may be restarted if it has;
not missed its deadline or it may still provide some value to the system.

_For some of our protocols we assume that the estimated execution time of a transaction
is known. This information may be helpful in making more informed decisions regarding
which transactions are to wait, abort, or rollback. This hypothesis is tested in our experi-
ments. :

3 Real-Time Transaction Processing

In this section we present the various real-time protocols and policies that we developed,
implemented, and tested.

3.1 CPU Scheduling

In traditional database systems, transactions compete for the CPU based on any number
of algorithms. Such scheduling usually emphasizes fairness and an attempt to balance CPU
and 1/O bound transactions. These scheduling schemes are not adequate for real-time
transactions. In real-time environments, transactions should get access to the CPU based
on criticalness and deadline, not fairness. If the complete semantics of transactions, e.g.
the data access requirements and timing constraints, are known in advance, then scheduling
can be done through transaction preanalysis (3]. On the other hand, in many cases there



will exist no complete knowledge of timing and a priority based scheduling scheme may be
used, where the priority is set based on deadline, criticalness, length of the transaction, or
some combination of these factors.

We have implemented four simple CPU scheduling algorithms. Since CPU scheduling
turns out to be the most important factor, we expect to study other CPU scheduling
algorithms in the near future. The four scheduling algorithms are as follows:

¢ Scheduling the most critical transaction first (MCF)
o Scheduling by earliest deadline first (EDF)

o Scheduling by criticalness and deadline (CDF): In this algorithm each
transaction is assigned a priority at the time of arrival based on the factor
relative_deadline/criticalness, where relative_deadline is the difference of the trans-
action deadline and its start time.

¢ Scheduling the longest execution first (LEF): In this algorithm, each transaction
is assigned a priority based on the amount of database operations that the transaction
has performed. Transaction priority is increased by one after a certain number of
operations so that the longer a transaction executes the higher its priority. Here the
point is that in general, the longer a transaction holds its locks on data objects, the
more chance it will block other transactions because of data conflict. If we let the
transaction priority increase as it gets close to its end, then the transaction will release
its locks more quickly, thus reducing the blocking time for other transactions and, in
turn, reducing the chance for deadlock.

Note that for each of these four algorithms, as a transaction is committing, its priority
is raised to the highest value among all the active transactions. This enables a transaction in
 its final stages of processing to complete as quickly as possible so that it will not be blocked
by other transactions. This policy also reduces the chance for the committing transaction
to block other transactions. The idea behind this was discussed in the LEF algorithm. In
all four algorithms, the transactions are preemptable, i.e. an executing transaction can be
preempted by a transaction with a higher priority.

3.2 Conflict Resolution Protocols (CRP)

Two or more transactions have a data conflict when they require the same data in non-
compatible lock modes. The conflict should be resolved according to the characteristics
of the conflicting transactions. In this study, we only consider data conflict over exclusive
locks. Here we present five protocols for conflict resolution. The first protocol is based
on the notion of a virtual clock, the second on a pairwise comparison of the results from
combining transaction parameters, the third on separating deadlines and criticalness, the
fourth on deadline, criticalness, and a dynamic estimation of remaining execution time, and
the fifth is only based on criticalness.



In the following descriptions, T denotes the transaction which is requesting a data
item D and Ty the transaction that is holding a lock on D. dr and cr represent the
deadline and the criticalness of a transaction T, respectively. The five protocols have the
same algorithmic structure. The structure is as follows:

Tr requests a lock on the data item D
if no conflict

then Tp accesses D

else call CRPi (i = 1,2,3,4,5)
end if

3.2.1 Protocol 1 (CRP1): Based on a virtual clock

Each transaction, T;, has a virtual clock [8,12] associated with it. The virtual clock value,
VT(T;), for transaction T; is calculated by the following formula.

VT(T)) =t,, + B+ (t — ts;)

where t,, is the start time of transaction T;; ¢ is the current time and 5; is the clock running
rate which is proportional to transaction T;'s criticalness. The more critical the transaction,
the larger the value 3. The protocol controls the setting and running of the virtual clocks.
When transaction T; starts, VT(T;) is set to the current real time t,,. Then, the virtual
clock runs at rate 8;. That is, the more critical a transaction is, the faster its virtual clock.
In this work, #; = cr;. The protocol is given by the following pseudo code.

if dr,, > dry,
then Tk waits
else
ffVT(Ty) < dry,
then Ty aborts Ty
else Tp waits
end if
end if

In this protocol, transaction Tg may abort T based on their relative deadlines, and on
the criticalness and elapsed time of transaction Ty. Also note that in this protocol, when
the virtual clock of transaction T has surpassed its deadline, it is never aborted.

In general, this protocol synthesizes a number of considerations.

1. Information on the amount of elapsed time for transactions (¢ — t,) is used in the
abort decision. That is, if a transaction has existed for only a short time it is more
likely to be aborted, and vice versa. Note that the amount of computation time used
by the transactions is implicitly taken into account here. The larger the computation
time used, the larger the elapsed time is likely to be.



2. The deadlines of transactions are used. Only if the transaction Tgr has a earlier
deadline is abortion considered. Further, the larger the deadline of the transaction
Ty, the more likely it will be aborted.

3. The criticalness of the transaction Ty is also used in making the decision. However,
the above protocol does not consider the criticalness of the requesting transaction, Tg.
This is a weakness of this protocol and will be overcome by an alternative protocol
described in the next section.

For further details about this protocol, the reader is refered to [11].

3.2.2 Protocol 2 (CRP2): Based on combining transaction parameters

This protocol takes into account many kinds of information of the involved transactions.
Let CP(T;) denote the combined value from the set of parameters for transaction T;. Let
t,, be the transaction start time, then at any time t > t,,,

CP(T;) = cr, * (wy * (t - t,) — wy *dr, + w3 * pr, + wq * for, — ws *IT,)

where pr, - cpu time consumed by transaction T
tor; - I/O time consumed by transaction T
I, - approximate laxity® of transaction T;, if known

and the w;’s are weights.
The protocol is described by the following pseudo code.

if CP(Tr) < CP(TH)
then Tk waits
else Tgr aborts Ty
end if

In this protocol, one transaction aborts another one based on the above general decision
rule. By appropriately setting weights to zero it is easy to create various outcomes, e.g.,
where a smaller deadline transaction always aborts a larger deadline transaction. The reader
may refer to [11] for further discussion.

In a disk resident database system, it is difficult to determine the computation time
and I/O time of a transaction. For some of the protocols in the study, we assume that
the transaction length is known when the transaction is submitted to the system. This
assumption is justified by the fact that in many application environments like banking and
inventory management, the transaction length, i.e. the number of records to be accessed and
the number of computation steps, is likely be known in advance. We further assume that

3Lexity is the maximum amount of time that a transaction can afford to wait but still make its deadline.



a transaction consists of a sequence of 1/O-computation operations and the computation
time and [/O time are proportional. In our experiments, we simplify the above formula for
CP calculation as follows:

CP(T:) =cr, * [wl+(t —t;) + w2+ (R-accessedr;/ R-totalt,) — w3 * dr;

where R_totalr, is the total number of records to be accessed by Ti; R.accessedr; is the
number of records that have been accessed.

3.2.3 Protocol 3 (CRP3): Based on deadline-first-then-criticalness

We anticipate that criticalness and deadlines are the most important factors for real-time
transactions. This protocol only takes these two factors into account. Unlike the scheme of
combining transaction parameters discussed above, here we separate deadline and critical-
ness by checking the two parameters one after another. The algorithm for this protocol is
as follows:

if dr, > dry
then Tg waits
else
ifer, ety
then Tr waits
else Tg aborts Ty
end if
end if

3.2.4 Protocol 4 (CRP4): Based on deadline, criticalness and estimation of
remaining execution time :

CRP4 is an extension of CRP3. The protocol is as follows:

if dr, > dry
then Tg waits
else
if Ty < CTy
then Tg waits
else
iferg, =cry
then
if (time-neededr, +t) > dry
then TR waits
else Ty aborts Ty
end if



else Tpg aborts Ty
end if
end if
end if '

where
time_neededr = (t — t,) x (R-totaly — R.accessedr)/R.accessedr

and R_totalr and R.accessedr are the same as defined in CRP2.

3.2.5 Protocol 5 (CRP5): Based on criticalness only

This protocol is a simplification of CRP3. It only takes criticalness into account.

if CTp < CTy
then Tx waits
else Tpg aborts Ty
end if

Note that this protocol is a deadlock-free protocol, since waiting transactions are always
considered in criticalness order. In addition, this protocol implements an elways-abort policy
if there is a system in which all the transactions have the same criticalness.

In summary, the five protocols resolve the data conflict by either letting the lock-
. requesting transaction wait or aborting the lock holder, depending on various parameters
of the conflicting transactions.

3.3 Policies for Transaction Wakeup

According to the locking protocol, no more than one transaction is allowed to hold an
exclusive lock on a data object. Thus as an exclusive lock holder releases the lock, it
is possible that more than one transaction is waiting for the lock. At this point, it is
necessary to decide which waiting transaction should be granted the lock. The decision
should be based on transaction parameters, such as deadline and criticalness, and also
should be consistent with the conflict resolution protocols (CRP) discussed in the previous

section. Here we give the policies for transaction wakeup operation which correspond to
each CRP.

e For CRP1, wake up the waiting transaction with maximum VT() - the value of the
virtual clock.



e For CRP2, wake up the waiting transaction with maximum CP() - the value of the
combined transaction parameters.

o For CRP3 and CRP4, wake up the waiting transaction with the minimum deadline.

o For CRP5, wake up the waiting transaction with the highest criticalness.

By applying these policies at the point of wake-up, real-time transactions are treated
based on their timing requirements or/and criticalness.

3.4 Deadlock Resolution

The use of a locking scheme may cause-deadlock. This problem can be solved by using
deadlock detection, deadlock prevention, or deadlock avoidance. For example, the conflict
resolution protocol 5, presented in the previous section, is a kind of scheme for deadlock
prevention. In this section we focus on the scheme of deadlock detection and describe the
policies for deadlock resolution.

A deadlock detection routine is invoked when a transaction is to be queued for a locked
data object. If a deadlock cycle is detected, one of the transactions involved in the cycle
must be aborted in order to break the cycle. Choosing a transaction for abort is a policy
decision. For real-time transactions, we want to abort such that the timing constraints of
these transactions can be met as much as possible, and at the same time the abort operation
will incur the minimum cost. Here we present five deadlock resolution policies which take
into account the timing properties of the transactions, the cost of abort operations, and the
complexity of the protocols.

Deadlock resolution policy 1 (DRP1): Always abort the transaction which invokes
the deadlock detection. This policy is simple and efficient since it does not need any infor-
. mation from the transactions in the deadlock cycle.

Deadlock resolution policy 2 (DRP2): If a transaction has passed its zero-value
point, abort it; otherwise abort the transaction with the longest deadline.

Recall that a transaction which has passed its zero point may not yet be aborted because
it may not have executed since passing the zero point, and because preempting another
transaction execution to perform the abort may not be advantageous. Consequently, in
DRP 2 and DRP 3 we first abort any waiting transaction that has passed its zero point.

Deadlock resolution policy 3 (DRP3): If a transaction has passed its zero-value
point, abort it; otherwise abort the transaction with the earliest deadline.

Deadlock resolution policy 4 (DRP4): Here we assume that the average execution
time of a transaction is known. Let drr denote the relative deadline of transaction T,
REr the runtime estimate, ¢, the start time, ¢ the current time, and et the elapsed time
(ety = t—t,). A transaction T is feasible if drp 2> REr — ety and tardy if drr < RET —elr.
This policy aborts a tardy transaction with the least criticalness if one exists, otherwise it

aborts a feasible transaction with the least criticalness. The following algorithm describes
this policy.

10



Step 1: trace deadlock cycle;
for each T in the cycle do:
if T; has passed its zero-value point
then abort Tj;
return
else
if T; is tardy
then tardy.list — T
else feasiblelist — T;
end if
end if

Step 2: if tardy.list is not empty
then search tardy_list for T; with the least criticalness
else search feasiblelist for T; with the least criticalness
end if
abort T;;
return

Deadlock resolution policy 5 (DRP5): If a transaction has passed its zero-value
point, abort it; otherwise abort the transaction with the least criticalness.

3.5 Transaction Restart

A transaction may abort for any number of reasons. A user may abort the transaction.
The transaction can abort itself because of some execution exception, e.g. an arithmetic
overflow. Also, the transaction could be aborted by the system if it has value 0. We
call these kinds of aborts termination aborts. There is another kind of transaction abort,
called non-termination abort, where transaction restart should be considered. For instance,
a transaction may abort from a deadlock, or, a transaction may be aborted by another
transaction because of a data conflict. These aborted transactions should be restarted as
long as they may still meet their deadlines or contribute a positive value to the system.
Based on our transaction model, we propose three policies for transaction restart.

Transaction restart policy 1 (TRP1): Restart an aborted transaction if t < z. In
other words, an aborted transaction will be restarted as long as it still has some value to
the system. Note that the transaction may have already passed its deadline at this point.
This policy is intended to maximize the value that the transaction may contribute to the
system.

Transaction restart policy 2 (TRP2): Ift < z, increase the CPU scheduling priority
of the transaction by one and restart it. This policy dynamically adjusts the CPU schedul-
ing priority of the transaction. This adjustment makes the restarted transaction have a
higher priority than its previous run. Thus the transaction will have a greater chance to
meet its timing constraint after its restart. Note that the performance of other concurrent

11



transactions may be affected by this dynamic change of transaction priority and the priori-
ties no longer accurately reflect the relative values of transactions. The impact this strategy
makes on the system is examined through the performance tests.

Transaction restart policy 3 (TRP3): Assume that the runtime estimate of a trans-
action is known and is denoted by RE.,. The decision on transaction restart is based on
the estimation of whether the transaction can complete by the time z, if it is restarted. We
give the details of the policy by the following algorithm.

ifz-t < RE.,
then terminate T';
else
ifdr —t > RE,,
then restart T
else increase T'’s priority by one;
restart T
end if
end if

With the knowledge of the estimated execution time of a transaction, a better decision can
be made and better system performance is expected than for TRP1 and TRP2 where it is
assumed that no knowledge of execution time is known.

4 The Implementation of a Testbed System

 In this section, we first provide an overview of CARAT testbed system - a distributed
database testbed from which our single node implementation originates. Then we describe
our real-time database testbed, named RT-CARAT. :

4.1 CARAT: A Distributed Database Testbed

CARAT is a simplified but complete transaction processing environment (7]. It was designed
to be a flexible tool for the testing and performance evaluation of distributed concurrency
control, deadlock detection and avoidance, and recovery mechanisms used in distributed
database systems. CARAT contains all the major functional components of a distributed
transaction processing system (transaction management, data management, log manage-
ment, communication management, and catalog management) in enough detail so that
the performance results will be realistic. Some of the protocols previously implemented
in CARAT are: a two-phase locking protocol with distributed deadlock detection, several
distributed versions of an optimistic concurrency control protocol, before-image and after-
image journaling mechanisms for transaction recovery, and a two-phase commit protocol for
global consistency of distributed transactions. Some system utilities were also developed to

12



help dynamically monitor the system and collect data. The CARAT testbed now runs on
a local area network of five DEC MicroVAX computers under the VMS operating system
with DECnet network support. Some of our previous results in this area include {7,6,5,10|.

4.2 RT-CARAT: A Real-Time Database Testbed

The current impiementation of the RT-CARAT testbed is a centralized, secondary storage
real-time database system. With respect to the process structure and communication, RT-
CARAT is basically the same as CARAT. It is implemented as a set of cooperating server
processes which communicate via efficient message passing mechanisms. Figure 2 illustrates
the process and message structure of RT-CARAT.

A pool of transaction processes (TR’s) simulate the users of the real-time database.
Accordingly, there is a pool of data managers (DM’s) which service transaction requests
from the user processes (the TR’s). There is one transaction manager, called the TM server,
acting as the inter-process communication agent between TR and DM processes. The
communications between TR, TM and DM processes are carried out through the mailbox,
a facility provided by the VAX/VMS operating system. In order to speed up the processing
of real-time transactions, the communication among DM processes is implemented using a
shared memory space, called global section in the VAX/VMS.

For concurrency control and recovery, RT-CARAT simply adopts the two-phase locking
protocol (2PL) and after-image (Al) journaling mechanism from the CARAT implementa-
tion.

One of the important features of RT-CARAT is the ability to schedule real-time trans-
actions. RT-CARAT is not a time-sharing system. Instead, CPU is scheduled based on
transaction priority with preemption. The scheduling process of RT-CARAT is carried out
through the underlying VAX/VMS operating system. In the VAX/VMS, process scheduling
- priority is used in determining the relative precedence of processes for execution. Priority
is a value in the range from O to 31, with 31 being the highest priority. The range of 32
priority levels is divided evenly between the normal process levels of 0 to 15 and the real-
time process levels of 16 to 31. The execution behavior of a process is significantly affected
by the type of process (normal or real-time) and its assigned priority level. With real-time
priority scheduling, an executing process controls the CPU until one of the following events
occurs:

e It is preempted by a higher or equal priority computable process.

o It enters a resource or event wait state.

In RT-CARAT, to reflect the nature of priority scheduling for real-time transactions, we
implement TR’s, TM and DM’s as real-time processes with priority levels 16 to MAX_-PRI
(16 < MAX_PRI < 31). TM, the transaction manager, is in charge of CPU scheduling as well
as the communication between TR and DM processes. To avoid bottleneck, the priority of
TM process is set to MAX_PRI. DM processes execute on behalf of the transactions. Their
priority varies from 16 to MAX_PRI, which is determined and set by the CPU scheduler

13



Workload
Driver
Transaction
Workload TR
}

Global

Section

Target
System

Figure 2: RT-CARAT processes and message structure

14



embedded in TM (the details are discussed in the following paragraph). Since the system
performance should not be affected by the behavior of its user processes, we set the priority
of all TR’s at MAX_PRI. Being on top of VAX/VMS, the process priority setting scheme
of RT-CARAT enables the real-time transactions to be processed in the order of their
priorities. Note that an executing transaction with high priority can be blocked by a
low priority transaction because of data conflict. The blocking is resolved by the conflict
resolution protocols embedded in the DM.

In RT-CARAT, the functional components associated with real-time transaction pro-
cessing are the transaction generator, the CPU scheduler, the conflict resolution protocol,
the deadlock resolution policy, the transaction wake-up policy and the transaction restart
policy. The block diagram in Figure 4.2 shows these functional components and their inter-
actions. In the following, we describe the functionality of two components: the transaction
generator and the CPU scheduler. The functionality of other components can be understood
by reading the algorithms and policies discussed in Section 3.

o Transaction generator. The transaction generator generates transactions according
to a configuration file where transaction type (read, write, or read/write), length
(the number of records to be accessed and the length of computation time), the
range of criticalness and deadline are specified. It submits a transaction for execution
by synchronously sending/receiving a sequence of messages to/from TM process. A
transaction performs a certain number of predefined operations, called tdo steps, and
each operation may access a certain number of records and do a certain amount
of computation. A transaction terminates upon completion or abort (self-abort or
zero-value abort). In the tests described here, the transaction generator submits a
new transaction immediately after the previous transaction has terminated, i.e. the
generator generates real-time transactions in the form of a closed network.

e CPU scheduler. Upon receiving a transaction execution request, the CPU scheduler
schedules the transaction based on the transaction priority. The scheduling operation
consists of three steps: assigning transaction priority, mapping transaction priority
to DM process priority, and setting the priority of DM process(es).. First, the sched-
uler assigns a priority to the transaction. The priority assignment is determined by
the parameters and the current state of that transaction (see the scheduling policies
discussed in Section 3.1). Then, the scheduler maps the assigned transaction priority
to a certain level of VAX/VMS real-time process priority. Finally, according to the
mapped real-time priority, the scheduler sets, through a system call, the priority of
the DM process which serves the transaction execution. At this point, the underlying
VAX/VMS operating system schedules the transaction execution by the newly set
priority of DM process(es). An executing transaction will be preempted if its DM
process priority is not the highest at the moment, otherwise it will continue to run.

The scheduler considers not only the incoming transaction but also the transactions
that are currently running in the system. For example, under the policy of earliest
deadline first scheduling, the priority of all the concurrent transactions is re-calculated
upon arrival of a new transaction, and the priority of corresponding DM processes

15



:‘din_{_‘ Transaction | td0 ) CPU
| zero Generator b Scheduler
t value !
' abort :
|
restart |
}
L}
|

termi. ;
e Transaction |,

TR process TM process

DM process

e m o am er - = e e e em = e == ==

conflict abort

lock request

access
conflict

Conflict

Restart

deadlock abort

grant
lock

tdo
done

database
operations

1

Resolution

Deadlock .

Detection/
Resolution

Transaction
Wake-Up

Figure 3: The real-time related functional components in RT-CARAT

16

wait



is re-mapped. According to the adjustment, the scheduler resets the priority of DM
processes one by one if it is different from the previous setting.

During its execution, a transaction may be aborted by another concurrent transaction
because of data conflict or in order to resolve deadlock. This kind of abort is detected by
the aborted transaction itself. Each transaction checks its status flag in the global section
at certain points along the course of its execution. The transaction immediately aborts
once it discovers that it has been asked to abort by another transaction. In that case, the
DM process that is executing the transaction will release all the locks it holds, rollback the
transaction by discarding the after-image and notify its corresponding TR process. Note
that before the rollback operation, the exclusive locks held by the aborted transaction can
be granted to other transactions. In other words, the aborted transaction will not block
other transactions even though it has not really released its locks.

One issue should be mentioned before we close this section. An important operation in
the secondary storage database system is the file I/O which supports both synchronous and
asynchronous write to non-volatile disk storage. Asynchronous write is used for database
read/write operations while synchronous write, also called force-write, is primarily used
for journaling operations to ensure that the log records are safely stored on disks before a
process can continue executing other operations . From the real-time point of view, espe-
cially for I/O bound real-time database systems, these I/O operations should be scheduled
according to the characteristics of real-time transactions. But, in our testbed, the disk
access is under the control of disk controllers instead of the operating system, i.e. there
is no way to directly manipulate the disk access through the system utilities. Thus in the
current implementation, there are no components dealing with disk I/O operations. One
scheme for controlling the disk access is to associate an 1/O queue to each disk. The I/O0
requests will go through the queue before reaching the disk controller. In this case, we can
schedule the I/O operations by manipulating the I/O queue. This or other schemes remain
~ for future work. In this work, the impact of lacking control over I/O operation on system
performance is studied through the experiments.

5 Experimental Results

5.1 The Test Environment

The performance tests are carried out on the RT-CARAT testbed. The database consists
of 3000 physical blocks (512 bytes each) with each block containing 6 records for a total
of 18,000 records. In all the experiments, the maximum multi-programming level in the
system is 8, i.e., there are up to 8 transactions running concurrently. We express the length
of a transaction T by the notation T(z,y, z), where z is the number of tdo steps, y the
number of records accessed in each tdo step, and z the amount of computation units per
tdo step with 1 unit = 50 ms. To stress the real-time protocols and policies, a high access
conflict situation was modelled by letting all the transactions perform write operations.

‘In RT-CARAT, two separate disks are used, one for the database and the other for the log.

17



The transaction deadline is randomly generated from a uniform distribution within a
deadline window, [d-base, & x d.base|, where d-base is the window baseline and ais a variable
determining the upper bound of the deadline window. To model different workloads, d.-base
was specified by either of the two formulas:

d_base = avg.rsp or d-base = avg.rsp — stnd-dvi

where avg.rsp is the average response time of non-real-time transactions which run in a
non-real-time database environment, and strd.dvi is the standard deviation of the response
time.

Besides the deadline, each transaction, when initiated, is randomly assigned a criti-
calness. In the experiments, there were up to 8 levels of criticalness and accordingly, the
transactions were classified into 8 classes (with class 1 being the most critical). Based on a
simple linear weighting scheme, the criticalness of a transaction is inversely proportional to
its class number, i.e. the criticalness of transactions in class 1 has value 8, the criticalness
in class 2 has value 7, etc. As the deadline and criticalness are specified, the value function
of the transaction is fixed and the transaction value can be computed at any time (see
Section 2).

In the experiments each test consists of two to six runs where each run was two hours
long. The data was collected and averaged over the total number of runs. The number of
runs for each test depends on the stability of the data. Our requirement on the statistical
data is to generate 95% confidence intervals for the deadline guarantee ratio whose width
is less than 10% of the point estimate of the deadline guarantee ratio.

5.2 Baseline and Metrics

For these tests, the performance baseline is a non real-time transaction processing system.
Here transactions still possess the real-time properties (i.e., the deadline, criticalness and
value function), but are not processed by any real-time related protocols and policies. In
this non real-time transaction baseline, the standard two-phase locking protocol is used.
In the baseline there is no access conflict abort. For deadlock detection, it is always the
transaction requesting the new lock that is aborted. It should be noted that there do exist
zero-value aborts, since a value function is attached to each transaction. In addition, an
aborted transaction will restart as long as it has not passed its zero-value point.

For the results presented in this paper we use the following metrics.

o Deadline guarantee ratio - the percent of transactions that complete by their deadline.

o Average deadline guarantee ratio - an average value of deadline guarantee ratio over
all transactions in different classes of criticalness.

e Weighted value - the total value of all transactions in each class of criticalness that
complete by their deadline divided by the total value of all invoked transactions.

18



e Total weighted value - the total value of all transactions in all classes of criticalness
that complete by their deadline divided by the total value of all invoked transactions.

e Total abort ratio - percent of transactions aborted for any reason.

e Throughput - the number of transactions that complete by their deadline per minute.

5.3 Experiments

The following four sets of experiments were conducted.

e CPU scheduling: The effect of CPU scheduling on the performance of real-time
transactions was studied by varying transaction length, varying deadline setting, mix-

ing transactions with different lengths, and changing the system from CPU bound to
I/0 bound.

* Conflict resolution: In these experiments we compared the performance of all the
conflict resolution policies by varying workloads, varying deadline settings, and chang-
ing the level of criticality.

* CPU scheduling vs. conflict resolution: In these experiments we studied the
impact of CPU scheduling versus conflict resolution on the performance of real-time
transactions.

e Deadline setting: In these experiments the effect of deadline distributions on trans-
action performance was examined.

Besides the above studies, we also investigated the proposed deadlock resolution policies
- through experiments. The results show that the performance of all the policies are similar
because the deadlock cycle involves only.two transactions most of the time. Remember
that to keep the decision consistent with the conflict resolution policies, we never abort the
transaction which directly blocks the lock-requesting transaction. We also did experiments
for the three transaction restart policies, and found no significant difference between them.
Thus, to save space, we do not show these experimental results here. For all the experiments
discussed below, we used DAP1 for deadlock resolution and TRP1 for transaction restart,
respectively.

5.3.1 CPU Scheduling

Figures 4-7 compare four scheduling schemes with respect to the metrics of deadline
guarantee ratio, weighted value, total abort ratio, and throughput. In this experiment,
all the transactions were equal in length, i.e. T(12,4,10). The deadline setting was
d.base = avg.rsp — stnd.dvi = 65 - 30 = 35 (sec.) and a = 3. The conflict resolution policy
was CRP4. Figure 4 plots the deadline guarantee ratio versus the transaction class classified
by criticalness. Our first observation is that with CPU scheduling, transactions perform

19



better than the baseline, except the transactions in class 7 and 8 that executed under the
scheduling algorithms MCF and CDF. As compared with the baseline and the scheduling
algorithms EDF and LEF, both MCF and CDF promote higher deadline guarantee ra-
tio for the transactions with high criticalness, but incur a lower deadline guarantee ratio
for the transactions with low criticalness. This is simply because the two algorithms take
the criticality of transactions into account. As we expected, the high critical transactions
perform better when they compete with low critical transactions. Of the two algorithms,
CDF performs better than MCF, since CDF considers not only the criticalness but also the
relative deadline of a transaction. With the scheduling algorithm EDF, the performance
was basically the same over all classes of transactions. This is understandable since the
algorithm totally ignores criticalness. Under the specified workload, LEF perform neither
as well as EDF over all classes of transactions nor as well as MCF and CDF for high critical
transactions, but it still better than the baseline.

Figure 5 depicts the weighted value that each class of transactions contributed to the
system. The performance results indicate that the system gains more value through CPU
scheduling compared with the baseline. Overall, the higher the criticalness of a transaction,
the larger the value it imparts to the system. The performance relation of the four scheduling
algorithms is similar to what we observed in Figure 4.

The transaction total abort ratio is shown in Figure 6. Here the performance of the
scheduling algorithms is basically the inverse of the performance on the deadline guarantee
ratio, i.e., the higher the deadline guarantee ratio, the lower the abort ratio. For MCF
and CDF, the low abort ratio for high critical transactions is achieved by aborting more
low critical transactions. The abort ratio with EDF is low over all classes of transactions.
This comes from the fact that in the experiments transaction deadline and transaction
arrival time are highly correlated. Thus, under EDF, transactions execute in an FCFS
(First-Come-First-Serve) manner most of the time.

Figure 7 shows the transaction throughput of the various algorithms. The results again
show that the real-time scheduling algorithms outperform the baseline.

With the same deadline setting that was used in the above tests, two more experi-
ments were performed by varying the length of transaction, with one having a short length,
T(4,4,10) and the other a large length, T'(20,4, 10). Figures 8-11 illustrate ti:e deadline
guarantee ratio and weighted value for the two experiments, respectively. Amoug the four
CPU scheduling algorithms, EDF performs best for short transactions and worst for long
transactions, with respect to deadline guarantee ratio. As we discussed above. for these
workloads EDF schedules the transactions approximately in an FCFS manner. It performs
well when deadline is not tight and poorly when tight (EDF performs even worse than the
baseline when deadline is extremely tight. The results are not shown here due to space
limitations.) For short transactions, MCF and CDF do not perform as well as EDF with
the specified deadline setting and even worse than the baseline for the transactions with
very low criticalness (class 8). This is understandable as MCF and CDF always attempt
to preempt the low critical transactions; the preemption is not necessary in a system which
runs short transactions with loose deadlines. Note that frequent preemption will slow down
transaction execution, which may increase data access conflicts and the chance for dead-

20



lock. The performance of LEF is directly related to the length of transactions. Comparing
Figures 4, 8 and 10, the reader can see that LEF improves in performance as transactions
become longer.

With the workloads, T'(4,4,10), T'(12,4,10) and T(20, 4, 10), as applied in the above
experiments, we further conducted tests for a narrow deadline window setting where d_base
= avgrsp = 23 sec. for T'(4,4,10), 65 sec. for T(12,4,10) and 97 sec. for T(20,4,10),
and a = 0.2. The results (not included due to space limitations) show that the scheduling
algorithms performed basically the same as what we saw and discussed above, except that
overall performance of transactions are better due to the larger value of deadline base and
less variation of deadlines. o

Another test made in this set of experiments was to examine the overall effects of the
scheduling algorithms on all classes of transactions. Figures 12 and 13 show, respectively, the
total weighted value and the average deadline guarantee ratio over 8 classes of transactions
versus the transaction length (tdo steps), where the deadline setting was d_base = avg_rsp—
stand.dvi and a = 3. The reader can see that the total value that the system gained under
CPU scheduling is far more than the value gained under the baseline. Similarly, under CPU
scheduling, the transaction average deadline guarantee ratio gets higher compared to the
baseline. When transactions become longer, the performance degrades because of higher
data conflict, higher chance for deadlock, and relatively tighter deadlines.

All the experiments presented thus far were carried out for workloads consisting of
equal length transactions. The scheduling algorithms were also tested for the transactions
of different length. The workload consisted of two the transactions with length T'(4, 4, 10),
four with length T'(12,4,10), and two with length T'(20,4, 10). In this case, the deadline
was generated according to the length of a transaction, with d_base = avg.rsp = 23 sec. for
T(4,4,10), 65 sec. for T(12,4,10) and 97 sec. for T(20,4,10), and a = 0.2, 3. Figures 14-17
show the performance results for this mixed workload, with a deadline setting a = 3. Here
~ we have two observations. First, LEF performs no better than the baseline, because the pri-
ority of long transactions can be much higher than that of short transactions, which blocks
the execution of short transactions, thus lowering the performance of short transactions.
Second, there is a large variation in throughput (see the curve for CDF in Figure 17) that
does not reflect itself in higher deadline guarantee ratio. This means that the transaction
response time under different algorithms is different even though the deadlines are met.

The previous experiments were designed to make the system CPU bound, where CPU
utilization was always above 92% and the 1/O utilization of the database disk ranged from
25% to 30%. In this next experiment, we changed such a CPU bound system to an [/O
bound system by eliminating the computation in each tdo step of a transaction.

Figures 18 and 19 illustrate the performance of the CPU scheduling algorithms for the
transactions with length T(12,4,0) and deadline setting: d.base = avg.rsp - stnd-dvi = 25
- 12 = 13 (sec.) and a = 3. The measured CPU utilization and 1/O utilization are 73% and
81%, respectively. Comparing the performance results with the ones from the preceding
experiments (see Figures 4 and 5 for the same workload), we see that the CPU scheduling
algorithms do not perform as well in an I/O bound system as in a CPU bound system. This
performance degradation is due to the lack of I/O scheduling in the current implementation

21



of RT-CARAT system. This experiment confirms our discussion in Section 4, i.e., for 1/O
bound real-time database systems, there is a need for 1/O scheduling.

The observations and discussions presented above lead to the following points:

e CPU scheduling by MCF and CDF largely improves the overall performance of real-
time transactions for the tested workloads. Further, MCF and CDF achieve good
performance for more critical transactions at the cost of losing some transactions that
are less critical. This trade-off reflects the nature of real-time transaction processing
that is based on criticality as well as timing constraints. To get better performance,
the information of both criticalness and deadline of a transaction is needed for CPU
scheduling.

o EDF offers an even performance over all classes of transactions. It is useful only when
the deadlines are loose.

e LEF outperforms the baseline only in the situation where all the transactions are
long and equal in length. However, the idea used in LEF is important to real-time
transaction processing.

e When the system is I/O bound, CPU scheduling does not significantly improve the
performance for real-time transactions.

5.3.2 Conflict resolution

This set of tests consisted of two experiments with respect to transaction criticality. The

first experiment concerried the situation where a workload consisted of transactions with

different levels of criticalness, while the second considered the case of the single level of
criticality.

In the first experiment, we studied the performance of conflict resolution protocols
by varying transaction length and deadline settings. The CPU scheduling algorithm used
in the experiment was CDF. Different from all other experiments, the baseline compared
in this experiment was chosen to be NRTCDF - non real-time, applying CPU scheduling
(CDF) only, i.e., no conflict resolution protocol is applied in the case of data conflict.

Figures 20 and 21 show the performance results from testing of short transactions,
T(4,4,10), with the deadline setting: d.base = avgrsp = 23 (sec.) and a = 0.2. As
can be seen from the figures, all the protocols perform basically the same, and there is
no significant improvement on the performance as compared with NRTCDF. This is not
surprising since with short transactions, the data access conflict is low, and thus, none of
the conflict resolution protocols play an important role.

To create a high conflict situation, we increased the length of transactions to
T(16,4,10). It was observed, as shown in Figures 22 and 23, that all the protocols im-
prove the performance for high critical transactions. Among the five protocols, CRP5, the
simplest one, performs best. This is largely due to the fact that CRP5 is a deadlock-free pro-
tocol by which all transaction aborts result from conflict resolution but not from deadlock



resolution. Here the point is that if a transaction will be aborted, then it should be aborted
as early as possible in order to reduce the waste in using the resources (i.e. CPU, /0O, and
data). Since the conflict resolution is applied before deadlock resolution in the course of
transaction execution (see Figure 3), an early abort from conflict resolution decreases the
amount of resources that would be wasted if the transaction is aborted later from deadlock
resolution. With CRP5, in addition, transaction execution benefits from eliminating the
overhead for deadlock detection.

The performance of CRP2 is not as good as CRP5 but is better than other protocols.
This is because the dominant factor in CRP2 is criticalness, which results in the transaction
abort in a way similar to that of CRP5, i.e., the large percentage of transaction aborts come
from conflict resolution. But because CRP2 is not a deadlock-free protocol, there are still
some aborts due to deadlock, and the operation of deadlock detection cannot be ignored.

The performance of CRP3 and CRP4 is almost identical, since CRP4 checks only one
more condition than CRP3, i.e., CRP4 checks the condition on the amount of time that the
transaction needs to finish before its deadline. It is clear now that this additional condition
does not help in improving the performance.

CRP1 only outperforms NRTCDF for transactions with high criticalness, but it per-
forms slightly better than CRP3 and CRP4, and as well as CRPS5, for low critical trans-
actions. This is because CRP1 does not take into account the criticalness of the lock-
requesting transactions. When the deadline of lock-requesting transaction is earlier than
that of lock-holding transaction, CRP1 allows the lock requester with high criticalness to
wait for the lock holder with low criticalness, thus lowering the performance for high critical
transactions. This situation never happens with the other conflict resolution protocols.

In the second experiment we investigated the performance of the conflict resolution
protocols under the situation where all the transactions have the same criticalness. Here
we used EDF for CPU scheduling. Figure 24 shows the performance of the protocols on the
transaction deadline guarantee ratio, with a variation of transaction length froin T'(4, 4, 10)
to T(20, 4, 10). The reader can see that although all the protocols outperform :he baseline,
only CRP1 performs better than NRTEDF (“CPU scheduling only”) as transa«t:ons become
long. This is because the protocols (CRP2, CRP4 and CRP5) cause many unnecessary
conflict aborts. For example, CRP5 always abort the lock holder if the two :onflicting
transactions are in the same class of criticalness. Clearly, this kind of abort is a negative
factor for transactions which are making efforts to meet their deadlines. Note that the blind
abort policy used in CRP5 is much worse than the blind wait - a conflict resolution policy
used in NRTEDF.

For CRP1, the VT value of a transaction is simply equal to ¢, the current time, as c, the
criticalness, is equal to 1. This means that the protocol implements a minimum-deadline-
first policy before the deadline of the lock holder is surpassed. This conditional minimum-
deadline-first policy, plus the minimum-deadline-first policy used by EDF, achieves the best
performance.

CRP3 performs the same as NRTEDF. This is understandable since CRP3 is identical
to NRTEDF when all the transaction have the same criticalness.

23



The experimental results indicate that

e conflict resolution protocols play an important part in real-time transaction processing
only when the data conflict rate is high,

e the performance of the protocols depends on how the criticalness is specified in the
workload, and

o for a workload consisting of transaction with many different values of criticalness, the
criticality is the most important factor in conflict resolution.

5.3.3 CPU scheduling vs. conflict resolution

To distinguish the effects of CPU scheduling and conflict resolution on system performance,
we conducted an experiment which tested four different schemes for real-time transaction
processing: (1) NRT - the baseline; (2) NSCRP5 - no real-time scheduling but applying
conflict resolution protocol (CRP5); (3) NRTCDF - applying CPU scheduling (CDF) only;
and (4) CDFCRPS5 - applying both CPU scheduling (CDF) and conflict resolution protocol
(CRP5). The workload for the test presented here is T(12,4,10) with deadline setting:
d_base = avgrsp = 65 (sec.) and a = 0.2.

It was observed, as shown in Figures 25 and 26, that NSCRP5 improves the perfor-
mance only for the transactions with very high criticalness (class 1 and 2), but it severely
degrades the performance, much worse than NRT, as transactions become less critical.
NRTCDF, on the other hand, greatly improves the performance of transactions in most
classes. CDFCRP5, the combination of NSCRP5 and NRTCDF, provides the best per-
formance. The observation indicates that CPU scheduling dominates the performance of
real-time transactions and there is a need to combine the CPU scheduling scheme with the
method of conflict resolution so as to achieve a better performance. )

5.3.4 Deadline setting

In addition to the performance measures of CPU scheduling and deadlock resolution, we
are also interested in the effect of transaction deadline distributions on the performance of
transaction execution. In this experiment the transactions were equal in length T'(12, 4,10)
and had the same criticalness. We let d_base be equal to avgrsp - stnd.dvi = 65 - 30 = 35
(sec.) and varied a from 2.0 to 3.4 in increments of 0.2. The CPU scheduling algorithm
used ‘was EDF.

Figure 27 shows the deadline guarantee ratio versus the a value for the baseline and two
conflict resolution protocols, CRP2 and CRP4. It is easy to see that with a fixed workload,
the deadline guarantee ratio becomes higher as the a value increases. Transactions under
the control of CPU scheduling and conflict resolution protocols outperform the baseline only
when « is large enough. Clearly, the deadline distributions strongly impact the performance
of real-time transactions and the design of protocols for real-time transaction processing.

24



6

Conclusions

Real-time transaction processing is complex. Many issues arise as both data consistency
and timing constraints are required for the transactions. In this paper, we have developed
several algorithms with regard to the issues of CPU scheduling, data conflict resolution,
transaction wakeup, deadlock resolution, and transaction restart. We have presented the
integration and implementation of the proposed algorithms on the RT-CARAT testbed.
Our experimental results from the testbed indicate that

the CPU scheduling algorithm has the rost significant impact on the performance of
real-time transactions, and to get better performance the information of both criti-
calness and deadline of a transaction is needed for CPU scheduling;

various conflict resolution protocols which directly address deadlines and criticalness
produce better performance than protocols that ignore such information;

deadlock resolution and transaction restart policies tailored to real-time constraints
seem to have negligible impact on overall performance;

criticalness is a very important factor in real-time transaction processing; and

deadline distributions strongly affect the transaction performance.

References

(1]
(2]

31

[4)

15]

(6]

Abbott, R. and H. Garcia-Molina, “Scheduling Real-Time Transactions,” ACM SIG-
MOD Record, March 1988.

Abbott, R. and H. Garcia-Molina, “Scheduling Real-Time Transactions: A Perfor-
mance Evaluation,” Proceedings of the 14th VLDB Conference, 1988.

Buchmann, A.P. et. al., “Time-Critical Database Scheduling: A Framework For Inte-
gerating Real-Time Scheduling and Concurrency Control,” Data Engineering Confer-
ence, February 1989.

Dayal, U. et. al., “The HiPAC Project: Combining Active Database and Timing Con-
straints,” ACM SIGMOD Record, March 1988.

Jenq, B.P., “Performance Measurement, Modeling, and Evaluation of Integrated Con-
currency Control and Recovery Algorithms in Distributed Database Systems,” Phk.D.
Thesis, University of Massachusetts, Amherst, February 1986.

Kohler, W. and B.P. Jenq, “Performance evaluation of Integrated Concurrency Control
and Recovery Algorithms Using a Distributed Transaction Processing Testbed,” In
The 6th International Conference in Distributed Computing Systems, IEEE Computer
Society, Cambridge MA, June 1986.



(7] Kohler, W. and B.P. Jenq, “CARAT: A Testbed for the Performance Evaluation of
Distributed Database Systems,” Proc. of the Fall Joint Computer Conference, IEEE
Computer Society and ACM, Dallas Texas, November 1986.

[8] Molle, M. L., and Lenonard Kleinrock, “Virtual Time CSMA: Why Two Clocks are Bet-
ter than One”, IEEE transactions on Communications, Vol. COM-33, No. 9, September

1985.

[9] Sha, L., R. Rajkumar and J.P. Lehoczky, “Concurrency Control for Distributed Real-
Time Databases,” ACM SIGMOD Record, March 1088.

(10] Shih, C.S., A. Dan, W. Kohler, J. Stankovic and D. Towsley, “Comparison of Dis-
tributed Concurrency Control Protocols Under a Testbed Environment,” submmited
to IEEE Transaction on Computers, March 1989.

[11] Stankovic, J.A. and W. Zhao, “On Real-Time Transactions,” ACM SIGMOD Record,
March 1988.

(12] Zhao, W. and K. Ramamritham “Virtual Time CSMA Protocols for Hard Real-Time
Communication”, IEEE Transactions on Software Engineering, Vol. SE-13, No. 8, Au-
gust 1987.

26



0.57
“I
c .
i O.Z)-‘
g A
h
t 0.157
(o]
d .
0.10
\'%
a
1 0.05q
u
e
0.C0
1 2 3 4 s 6 7 8
Transaction Class (Cri ticalness) Transaction Class (Criticalness)
—e— NRT —e— NRT
--0-- MCF --0-- MCF
-—&— EDF —-a— EDF
-.--o_.-. CDF -.-.O-.-. CDF
Qe LEF —0-~- LEF
Figure 4. CPU scheduling with CRP4, T(12,4, 10), Figure 5. CPU scheduling with CRP4, T(12,4, 10),
d.base = avg.rsp — stnd_dvi,a = 3 d.base = avg.rsp ~ stnd-dvi,a = 3
T
T 1.2" I: !l I-O'J
. s ’ v 9‘}\ O
v ‘ u e Al = R
a 1.0 jo] P ogl B g )
] ’ E .
l 4 ; u. >‘~ ~ \"(3\
08t 4 , t S E v
A ’ g i RN ST SN A——R -
b , s ( 06 &= e e e T~y
o a2 d . AN ::.‘6_-__
° 05 e o N SN <
x .9 ‘ 0.4t 5
t 0.4+ o B e ~ : < \.‘.
- A g™
R - e o ° v 0.21 Y
a 0.2# . 84' . "_’." / \\.\“
t s A s Sy - W m %
io0 4 } } } } : y . 00 } } ' ; y : i
o1 2 3 4 5 6 T & > o1 2 3 4 5 6 7 8
Transaction Class (Criticalness) Transaction Class (Criticalness)
—e— NRT —&— NRT
--0-- MCF --0-- MCF
-—0— EDF —=0-— EDF
-.-.o-.-. CDF ---.o-.-. CDF
—o-— LEF -~0--- LEF
Figl.i\". 6. CPU Scheduling with CRP4, T(12, 4, 10), Figurc 7. CPU SCthuling with CRP4' T(l2, 4, 10),

dbase = avg.rap — stnd.dvi,a = 3 d.basc = avgrsp ~ stnd-dvi,a =3



D
L
G
u
a
r
a
n v Y
t \ kY
e 041 ' e
e \
\
R 0.21 \‘
2 \
O I
5T 2 3 4 5 6 7 8
Transaction Class (Criticalness)
—e&— NRT
--0-- MCF
—n— EDF
----O---- CDF
-—O0— LEF
Figure 8. CPU scheduling with CRP4, T(4,4,10),
d.base = avg.rsp ~ stnd.dvi,a=3
D 1
L 107
G OII;\‘ -a
| T
u 0.8t N 0.
a .
r
a
n
t
e
e
R 0.2 =3 N Y
: 2
i 00 + ' : 4 : —3
o 1 2 3 4 5 6 7 8

Transactionrn Class (Criticalness)

—&— NRT
--0-- MCF
—-8—~- EDF
-:=-Q--=- CDF
—o— LEF

Figure 10. CPU scheduling with CRP4, T'(20, 4, 10),
d.base = avg.rsp — stnd.dvi,a = 3

0.101

cocappHpen O

R 0.C57

a

t

i 0.0 + ¢ }
o 1 2 3 4

Transaction Class (Criticalness)

—~&— NRT
--0-- MCF
~-p~— EDF
..-.O-.-. CDF
-+=0--= LEF

Figure 9. CPU scheduling with CRP4, T'(4,4, 10),
d.base = avg.rsp — stnd.dvi,a = 3 :

[o]
o
@

BE-P < OOGTR MO =
o
&

o
8

"
[ V]
w
KN
wn
(o]
X]
0

Transaction Class (Criticalness)
—e&— NRT
-=-0-- MCF
-~=8~— EDF

-~-O--~- CDF
~-0-— LEF

Figure 11. CPU scheduling with CRP4, T(20,4,10),
d.base = avg.rsp — stnd.dvi,a = 3



A
v
T 3
o D
t 103
1
0.8+ G
"v u
e a
i 0.6+ :'
£ n
2 t
t 0.41
e .
d
0.27 L
v l: 0.2 .
a
t
1 0.0 : ; ; i i o. : : ; —
u 4 8 12 5 7o) o 4 8 2 15 D
e
tdo steps (x) tdo steps (%)
—&— NRT —e— NRT
--O-- MCF --0-- MCF
—o— EDF -—na— EDF
«--Q-- CDF ----0--+ CDF
~—0—- LEF ~-~0— LEF

Figure 13. CPU scheduling with CRP4, T(z,4,10),
d_base = avg.rsp — stnd-dvi,a =3

Figure 12. CPU scheduling with CRP4, Tz, 4, 10),
d.base = avg.rsp - stnd.dvi,a =3

.o 9
84

o)
.

o
3

PEFP < MO CGETR™O =E

R o0.21 R 0.051 |
a . .
t Y k
i t + + ' + — 0.00 .
T2 3 4 s s T 8 1 2z 3 4 5 6 7 8
Transaction Class (Criticalness) Transaction Class (Criticalness)
--0- gg; --0-- MCF
—-a— EDF -—a—-- EDF
-0~ CDF <=0+ CDF
——0-—~ LEF -e-O---- LEF

Figure 14. CPU scheduling with CRP4, T°(4.12.20, 4, 10),
dbase = avg.rsp - stnd_dvi,a=3

Figure 15. CPU scheduling with CRP4, T(4-12.20,4, 10),
d_base = avg.rsp — stnddvi,a =3



1 127

t I
a 1.0" . ’

1 %]

4 08F ,',

b ,

° o.&;,/O-\..\.__"A. .- <
by ’
t 04

R _ -

a 021 &= 87 g Q-7 °

T TEES e at S S
> 00 4 ' ; 4 ; ; i
° 1 2 3 4 S 6 7 8

Transaction Class (Criticalness)

—e&— NRT
--0-- MCF
—&—— EDF
---0O---- CDF
-—<©-— LEF

Figure 16. CPU scheduling with CRP4, T(4.12.20, 4, 10)
d.base = avg.rep - stnd.dvi,a = 3

OB PHPeO O

o X + + + + 4 +
01 2 3 4 5 6 7

O+ ctp

Transaction Class (Criticalmess)

—&— NRT
--0-- MCF
—a— EDF
-:=:O---- CDF
—=0-=-- LEF

Figure 18. CPU scheduling under I/O bound system

with CRP4, T(12;4,0),d.base = avgrsp — stnd-dvi,a = 3

PERpP S OOETR R =
o
[
Q

2,07

1.5 70 ' . N,

0.0 4 + $ + t t 'C.
o T T L] 8

v rBENctBOrA~ ccucso-

Transaction Class (Criticalness)

—e— NRT
-=-0-- MCF
—4f— EDF
----0---- CDF
—<o— LEF

Figure 17. CPU scheduling with CRP4, T(4-12.20, 4, 10),
d.base = avg.rsp — stnd-dvi,a =3

o
&

;

o
8

[
N
w
»

Transaction Class (Criticalness)

—e— NRT
--O-- MCF
~--6—- EDF
~-=-O-=+ CDF
-—0--- LEF

Figure 19. CPU scheduling under I/0 bound system
with CRP4, T(12,4,0),d.base = avg.rsp — sind.dvi,a=3

£



cocanprpe TO

R
a
t 1 3 ]
- 0.0 t 4 } + 4 t {
1 1 2 3 4 5 6 7 8
o
Transaction Class (Criticalness)
—e— NRTCDF
--0-- CRP1
—au— CRP2
----O---- CRP3
-—0— CRP4
—vV— CRPS

Figure 20. Confiict resolution under CDF, T'(4, 4, 10),

d.base = avg.rsp,a = 0.2

dcoadprHpec FO

0.0 t + +

1 2 3 S4

O pPcrp

Transaction Class

(Criticalness)

—— NRTCDF

--0-- CRP1
—&— CRP2
----0---- CRP3
—-0—- CRP4
—V— CRP5

Figure 22. Conflict resolution under CDF, T(16,4, 10),

dbase = avgrsp,a = 0.2

o)
&

oL HHP << AN PR Mo =
o
L]

o
8

-t
N
W
N

Transaction Class

———
-=-0--

(Criticalness)

NRT CDF
CRP1
CRP2
CRP3
CRP4
CRPS

Figure 21. Conflict resolution under CDF, T(4,4,10),

d.base = avgrsp,a = 0.2

—
1
u

v OB
e -
1 0.7
24
h
t 0.15]
e
d
0.101
A"
2.
1 0.0
u
¢ 0. } : ;
1 2 3 4
Transaction Class
————
--0--
—-—-.A-—-
---.o..-.
..._..o..._

—_——

Figure 23. Conflict resolution under CDF, T(16, 4, 10)

d.base = avgrsp,a = 0.2

n
o
N
0

(Criticalness)

NRT CDF
CRP1
CRP2
CRP3
CRP4
CRPS



D
L
B 1.0;
G
u
b g 0.8
- a
2 2 06
a »
: 2
e t
e 0.4
g 2] .
2
R
t 0.0 t J } { 0.21
i 4 8 12 16 20 t
o .
tdo steps (x) : 0.0

—e— NRT

--0-- NRTEDF Transaction Class (Criticalness)
—a— CRP1 .
--=O---- CRP2 ——e— NRT
~—o-— CRP3 --0-- NSCRPS
—O—— CRP4 —a— NRTCDF
----¥---- CRPS ' ----0---- CDFCRPS
Figure 24. Conflict resolution with single level criticality, Figure 25. CPU scheduling vs. conflict resolution,
under EDF, T'(z,4,10),d.base = avgrsp,a = 0.2 T(12,4,10),d_base = avgrsp,a = 0.2
D
O.E-; L
W B
e ."\..:.‘ G
i 0.@‘3 N u
\ o a
g \\ % ': T 0. - - r
t 0.15+ Y, N \."G_ a
e v ., :
d
0.10] e
v e
a
. R
L 0.5 a
by L=t [ A
e0cc ' . . - T i
A ¥ T T T T T 1] o
1 2 3 4 5 6 7 8

Transaction Class (Criticalness) (e &

—&—— NRT

—e&— NRT
--0-- NSCRPS

--0O-- CRP2
—A— NRTCDF wp—— CRP4
-:--0---- CDFCRPS
Figure 26. CPU scheduling vs. conflict resolution, Figure 27. Deadline setting, with single level criticality,

T(12,4,10),d.base = avg_rsp,a = 0.2 under EDF, T(12,4, 10), d.base = avg.rsp



