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Abstract

It is unlikely that any single approach to analysis of concurrent soft-
ware systems will meet all the needs of software developers throughout
the development process. Thus, experimental evaluation of different con-
current analysis techniques is needed to determine their relative strengths
and practical limitations. Such evaluation requires automated tools im-
plementing the analysis techniques.

This paper describes a prototype toolset automating the constrained
expression approach to the analysis of concurrent software systems. The
results of preliminary experiments with the toolset are reported and the
implications of these experiments are discussed.
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1 Introduction

A wide variety of techniques have been proposed for analyzing the behavior of
concurrent software systems. These differ in their underlying models of concur-
rent computation, in the questions about behavior they attempt to answer, and
in the stages of the software development process in which they are applied. It
is unlikely that any single approach to analysis can possibly meet all the needs
of software developers throughout the development process.

The effective use of analysis techniques during software development requires
an understanding of their relative strengths and practical limitations. While vir-
tually all existing analysis techniqes are known to have limitations of various
kinds, little is known about the practical significance of these limitations. This
determination can only be made through experimental application of the tech-
niques to a wide range of concurrent systems. Clearly, experiments must be
conducted with systems of realistic size and complexity, and so automated tools
implementing the analysis techniques will be required. In this paper, we re-
port on a prototype toolset supporting the consirained ezpression approach to
analysis, and the results of some preliminary experiments with that toolset.

The next section of the paper briefly describes the constrained expression
approach. The third section describes the toolset, and the fourth reports some
of our experience in using the toolset. Finally, we discuss the implications of
these experiments for further work on constrained expressions.

2 Constrained Expressions

In the constrained expression approach to analysis of concurrent systems, the
system descriptions produced during software development (e.g., designs in some
design notation) are translated into formal representations, called consirained
ezpression representations, to which a variety of analysis methods are then ap-
plied. This approach allows developers to work in the design notations and
implementation languages most appropriate to their tasks. Rigorous analysis
is based on the constrained expression representations that are mechanically
generated from the system descriptions created by software developers.

This section contains a brief overview of the constrained expression formal-
ism. A detailed and rigorous presentation is given in [10], and a less formal
treatment presenting the motivation for many of the features of the formalism
appears in [5]. The use of constrained expressions with a variety of development
notations is illustrated in [5] and [12].

The constrained expression formalism treats the behaviors of a concurrent
system as sequences of events. These events can be of arbitrary complexity,
depending on the system characteristics of interest and the level of system de-
scription under consideration. Associating an event symbol to each event, we
can regard each possible behavior of the system as a string over the alphabet of



event symbols.

We use interleaving to represent concurrency. Thus, a string representing
a possible behavior of a system that consists of several concurrently executing
components is obtained by interleaving strings representing the behaviors of the
components. The events themselves are assumed to be atomic and indivisible.
“Events” that are to be explicitly regarded as overlappingin time are represented
by treating their initiation and termination as distinct atomic events.

The set of strings representing behaviors of a particular concurrent system
is obtained by a two-step process. First, a regular expression, called the sys-
lem ezpression, is derived from a description of the system in some notation
such as a design or programming language. The language of the system expres-
sion includes strings representing all possible behaviors of the system. It may,
however, also include strings that do not represent possible behaviors, as the
system expression does not encode the full semantics of the system description.
This language is then “filtered” to remove such strings, using other expressions,
called constraints, which are also derived from the original system description.
A string survives this filtering process if its projections on the alphabets of the
constraints lie in the languages of the constraints. The constraints (which need
not be regular) enforce those aspects of the semantics of the design or program-
ming language, such as the appropriate synchronization of rendezvous between
different tasks or the consistent use of data, that are not captured in the sys-
tem expression. The reasons for this two-step process, which might not seem
as straightforward as generating behaviors directly from a single expression, are
discussed in [12].

Our main constrained expression analysis techniques require that questions
about the behavior of a concurrent systemn be formulated in terms of whether a
particular event symbol, or pattern of event symbols, occurs in a string repre-
senting a possible behavior of the system. For example, questions about whether
the system can deadlock might be phrased in terms of the occurrence of symbols
representing the starvation of component processes of the system.

Starting from the assumption that the specified symbol, or pattern of sym-
bols, does occur in such a string, we use the form of the system expression and
the constraints to generate inequalities involving the numbers of occurrences
of various event symbols in segments of the string. If the system of inequali-
ties thus generated is inconsistent, the original assumption is incorrect and the
specified symbol or pattern of symbols does not occur in a string corresponding
to a behavior of the system. If the inequalities are consistent, we use them in
attempting to construct a string containing the specified pattern.

Constrained expression analysis, then, is a static. event-based approach
(though the construction of a behavior from a solution of a svstem of inequalities
has similarities to dynamic analysis). The constrained expression formalism is
closely related to path expressions [7], event expressions [19], and COSY (18].
More detailed discussion of the relation between constrained expressions and
a variety of methods for describing and analyzing concurrent software systems



can be found in {5] and [22). The constrained expression analysis techniques
can be regarded as rigorous formulations of methods based on arguments about
the order and number of occurrences of events. Such methods have been widely
used in conjunction with concurrent software systems (e.g., [15)).

In summary, the constrained expression approach is applicable to systems
expressed in a variety of notations and languages. It offers a focused approach to
analysis, which, by keeping the amount of uninteresting information produced
to a minimum, can be very efficient. One potential difficulty in applying the
approach is that it requires that analysts correctly formulate questions about
the behavior of a system in terms of patterns of event symbols in strings rep-
resenting system behaviors. Other potential drawbacks include the difficulty
of automating some aspects of generating and reasoning about the systems of
inequalities.

After manually applying the constrained expression analysis techniques to a
number of small examples with encouraging results (e.g., (2], (5], [6], [22]), we
began to construct prototype tools automating various aspects of the analysis.
An important goal of this automation effort is to support experimentation di-
rected at determining the practical significance of the potential problems cited
above. This paper describes the first complete version of the prototype toolset
and reports the results of some experiments with it.

3 The Constrained Expression Tools

The prototype toolset (see Figure 1) consists of five major components: a deriver
that produces constrained expression representations from concurrent system
designs in a particular design language; a constraint eliminator that replaces a
constrained expression with an equivalent one involving fewer constraints; an
inequality generator that generates a system of inequalities from the constrained
expression representation of a concurrent system; an integer programming pack-
age for determining whether this system of inequalities is consistent or incon-
sistent, and, if the system is consistent, for finding a solution with appropriate
properties; and a behavior generator that uses the solution found by the inte-
ger programming package (when the inequalities are consistent) to produce a
string of event symbols corresponding to a system behavior with the desired
properties. The organization of the toolset is illustrated in the figure.

The current toolset is intended for use with designs written in the Ada-based
design language CEDL (Constrained Expression Design Language) [11]. CEDL
focuses on the expression of communication and svnchronization among the
tasks in a distributed system, and language features not related to concurrency
are kept to a minimum. Thus. for example, data types are limited, but most of
the Ada control-flow constructs have correspondents in CEDL. We have chosen
to work with a design notation based on Ada because Ada is one of the few
programming languages in relatively widespread use that explicitly provides
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Figure 1: Diagram of Constrained Expression Toolset

for concurrency, and because we expect our work on analysis of designs to
contribute to and benefit from the Arcadia Consortium'’s work on Ada software
development environments [21]. Those aspects of the toolset that depend on
CEDL are noted below.

The deriver [1] produces constrained expression representations from CEDL
system designs. It is written in Ada, and was developed using Arcadia-produced
versions of standard compiler construction tools and the Graph Definition Lan-
guage and GRAPHITE processor [8]. The deriver generates a graph representing
the constrained expression. Eventually, this will be the standard internal rep-
resentation for constrained expressions. Currently, however, the prototypes of
the other tools expect input in other formats, and small utility programs con-
vert between the formats. For a CEDL design, the system expression of the
constrained expression representation produced by the deriver consists of the
interleave of task ezpressions representing the behavior of the tasks in the sys-
tem. The deriver also generates all required constraints.

The constraint eliminator [13] is written in Common LISP, and shares a com-
mon front end with the behavior generator. It takes a “generator expression”,
which is a subexpression of the system expression, and constraints involving
symbols from the generator expression, and produces a new expression whose
language is the set of strings in the language of the generator expression that
satisfy the constraints. The constraint eliminator converts the generator expres-
sion and constraints into finite state automata (the constraints in a constrained
expression representation of a CEDL system are regular), from which it pro-
duces a new automaton accepting the intersection of the appropriate languages.
It then returns an expression corresponding to this automaton. In principle, the



generator expression need only be regular, and so could be the full system ex-
pression. However, the process of intersecting the finite state automata quickly
becomes intractable if the generator expression involves the interleave operator.
For this reason the current constraint eliminator will only accept generator ex-
pressions that use the standard regular expression operators. When analyzing
constrained expressions derived from CEDL designs, the constraint eliminator
is typically used with a task expression and the constraints that enforce cor-
rect dataflow within tasks. The input task expression is then replaced with
the expression returned by the constraint eliminator and the intra-task data
low constraints are eliminated. This process facilitates certain aspects of the
analysis of the constrained expression, as indicated below.

The inequality generator {3], which is also written in Common LISP, takes a
constrained expression representation in essentially the same format as that ac-
cepted by the constraint eliminator, and generates a system of linear inequalities
representing part of the semantics of the constrained expression. The inequality
generator builds an abstract syntax tree representing each task expression, and
generates inequalities reflecting the semantics of regular expressions. It then
generates additional inequalities derived from some of the constraints. The full
system of inequalities thus involves both the total numbers of occurrences of
various event symbols and the numbers of times various branches in the ab-
stract syntax trees are traversed. However, these inequalities do not reflect
the complete semantics of the constrained expression. For example, not all the
information about the relative order of event symbols is represented, so that
the constraints that enforce correct dataflow are not reflected in the generated
system of inequalities. (The significance of this problem for intra-task dataflow
is reduced by application of the constraint eliminator.) In addition, the gen-
erated system of inequalities does not completely reflect the semantics of the
alternation operator when one of its operands is the Kleene star of an expres-
sion. The full semantics would require quadratic inequalities, and the integer
programming package we are currently using only handles linear systems. As
mentioned below, we are currently investigating another integer programming
package that may eliminate this problem.

The inequality generator also provides an interactive facility allowing the
analyst to add inequalities representing assumptions or queries about the be-
havior of the system. The inequality generator produces an output file giving
the system of inequalities in the format required by the integer programming
package, as well as a human-readable report giving the correspondence between
variables in the system of inequalities and event symbols. If the integer pro-
gramming package finds a solution to the system of inequalities, the inequality
generator uses this correspondence to report the solution to the analyst in terms
of traversal of the abstract syntax trees and the numbers of occurrences of event
symbols. Certain aspects of the inequality generator, including the representa-
tion of various constraints, depend on features of CEDL. Its basic structure,
however, is compatible with all constrained expressions
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The integer programming package that we are currently using is a branch-
and-bound integer linear programming system [17] written in FORTRAN; it
was chosen because it had already been installed as part of a previous project
at the University of Massachusetts. We have encountered some problems with
its branch-and-bound strategy, as described in the next section, and with the
limitation to linear systems. We are currently implementing integer program-
ming on top of the MINOS optimization package (20].

The behavior generator {14] is a Common LISP program for producing sys-
tem behaviors with certain properties. Input to the program consists of a con-
strained expression and counts for certain event symbols (counts produced by
the integer programming package). The behavior generator builds finite state
automata corresponding to the task expressions and constraints of the con-
strained expression. It then uses heuristic search techniques to find a string of
event symbols representing a system behavior with the given numbers of sym-
bol occurrences. 1t can be used with any constrained expression having regular
constraints.

4 Using the Toolset

We have begun to use the prototype toolset in the analysis of concurrent systems.
The table in Figure 2 gives CPU times for the application of the components
of the toolset to several versions of the dining philosophers problem. All times
were obtained on a Sun 3/60 workstation.

The first six rows of the table give the times for versions of the standard din-
ing philosophers problem with three, four, five, six, eight, and ten philosophers,
respectively. In the analysis reported here, we seek to determine whether a par-
ticular philosopher task can wait indefinitely for a rendezvous with a second fork
task, and thus starve (in both the concurrent systems and metaphorical senses).
These systems do not have a doorkeeper or host to prevent all the philosophers
from trying to pick up forks at the same time, and are therefore subject to dead-
lock in which each philosopher task starves waiting to rendezvous with a second
fork task. The dining philosophers systems without host use rendezvous simply
for synchronization purposes, and involve no intratask dataflow. We therefore
do not use the constraint eliminator in these cases,

The size of the constrained expression representations of these systems goes
up linearly with the number of philosophers, as does the execution time of
the inequality generator and the size of the system of inequalities generated.
We have successfully applied the deriver and inequality generator with svstems
containing up to twenty philosophers (ie., forty concurrent tasks). and expect
no difficulties with even larger systems. However, the integer programming
package we are currently using is unable to solve the svstems of inequalities
generated in the cases with more than eight philosophers, due to failure of an
accuracy test in the course of solving a linear programming relaxation of the



constraint | inequality [ int. prog. | behavior | total GPU

system | deriver | eliminator | generator package | generator time
DP-3 74 — 11 4 19 108
DP-4 82 —_— 13 5 26 126
DP-5 94 - 15 6 32 147
DP-8 109 —_ 18 9 38 174
DP-8 142 —_ 24 14 54 234
DP-10 177 —_ 30 — —_— et
DPH-3 123 77 23 7 —_ 230
DPH-4 133 194 62 41 et 430
DPH-5 152 330 102 103 —_ 687

Figure 2: Sun 3/60 CPU times, in seconds, for the constrained expression tools
in analysis of several dining philosophers systems

integer linear programming problem. We discuss the implications of this failure
below. In the cases where a solution to the system of inequalities is found, the
behavior generator produces a behavior exhibiting the deadlock.

The final three rows of the table give times for analysis of three-, four- and
five-philosopher versions that have a host task to prevent all the philosophers
from entering the dining roomn and trying to pick up forks at the same time.
Again, the analysis seeks to determine whether a particular philosopher can
starve. In these cases, the constraint eliminator is applied to the task expression
for the host, along with the constraints enforcing consistent use of the variable
that counts the number of philosophers in the dining room. The resulting task
expression is used in the input to the inequality generator. Because the task
expression for the host must represent the effects of all possible execution paths
on the variable that counts philosophers in the dining room, the size of the
system of inequalities goes up rapidly with the number of philosophers, and is
significantly greater for the five-philosopher system with a host than for the
eight-philosopher system without a host. Due to the detailed structure of the
particular system of inequalities, however, the integer programming package
does not encounter accuracy problems here, and, in each of the three cases,
reports that no philosopher starves. Thus, it is not necessary to use the behavior
generator in these cases.

We have also applied the toolset to the gas station system examples of [2, 22].
In these cases, we use the constraint eliminator with the task expression repre-
senting the operator of the automated gas station and the constraints enforcing
consistent use of the variable that counts the number of the customers pump-
ing gas. Even with only two customer tasks in the svstem, the behavior of
the operator is considerably more complex than that of the host in the dining
philosophers systems, and the svstem of inequalities produced by the inequality
generator is too large to be expressed in the input format of the Land-Powell



integer programming package. We expect that improvements in the constraint
eliminator and the conversion to an integer programming package based on MI-
NOS will very soon allow us to apply the complete toolset to these systems as
well.

5 Conclusions

These initial experiments with the prototype constrained expression toolset are
encouraging. The toolset provides complete analysis of both versions of the din-
ing philosophers problem, with and without a doorkeeper. Even the prototype
versions of the tools are efficient enough to be useful to software developers
on examples of moderate size. Furthermore, earlier experiments show that the
constrained expression approach can detect a variety of errors and can be used
with a broad range of design notations and programming languages.

However, some weaknesses of the prototype toolset are evident. The most
significant of these involve the branch-and-bound integer programming package
we are currently using [17], and include the limitations on the size of system of
inequalities that the package can handle, the accuracy problems noted in the
previous section, and the restriction to linear inequalities. This package is an
implementation in FORTRAN 66 of the first branch-and-bound algorithm for
general integer programs [16]. Its division scheme has been replaced, in virtually
all commercial integer programming codes, by the variable dichotomy scheme
first proposed by Dakin [9], and we believe that some of its strategies for se-
lecting a branching variable and for exploring the tree may be poorly suited to
our systems of inequalities. For these reasons and others, including the ability
to handle quadratic inequalities, we expect a considerable improvement in per-
formance from the integer programming package we are currently implementing
using the MINOS optimization package [20].

Other drawbacks of the prototype toolset were not as significant in the ex-
periments described here, but may become more important when the toolset is
applied to a wider range of concurrent systems. These include the facts that
the system of inequalities produced by the inequality generator does not reflect
the full semantics of the constrained expression representation (though the use
of quadratic inequalities with the MINOS system addresses part of this issue)
and that the task expressions returned by the constraint eliminator may lead to
larger systems of inequalities than other, cquivalent expressions.

We are now beginning to address these issues, and a number of improve-
ments to the toolset are planned. In addition to replacing the Land-Powell
integer linear programming package with one based on AMINOS that will allow
quadratic inequalities, we intend to modify the behavior generator to use all the
information contained in a solution to the system of inequalities, rather than
Jjust the total numbers of occurrences of the various event symbols. We will be
modifying the inequality generator to produce the quadratic inequalities needed

te



to express the semantics of the alternation operator when one of its operands
is the Kleene star of an expression, and are investigating other ways to improve
the generation of inequalities so that they reflect more of the full semantics of
constrained expressions.

In addition, improvements to the interfaces between the human analyst and
the toolset and between the tools are underway. Clearly, analysts should be able
to formulate behavioral queries in terms of elements from the original system
description and at a higher level of abstraction than is currently possible, and
a common internal representation would help in integrating the various tools.
Eventually, the tools now written in LISP will be reimplemented in Ada to
facilitate integration of the tools with each other and with the Arcadia software
development environment.

While starting to improve the prototype toolset, we have also begun to ex-
plore additional applications for constrained expression analysis, some of which
may lead to enhancements to the underlying formalism and further modifica-
tions to the tools. In particular, we have begun to study the application of
the constrained expression approach to various scheduling and real-time prob-
lems [4]. Because expressing some of these scheduling and timing problems, as
well as the semantics of certain programming languages for concurrent systems,
involves constraints that are not regular expressions, we hope to be able to
climinate the regularity restrictions in some of the tools.

For a more complete understanding of the strengths and weaknesses of the
constrained expression approach and the prototype toolset, we need to evaluate
the performance of the toolset on a wider range of examples. The problem of
designing an appropriate suite of benchmark problems for concurrent software
analysis tools has not been carefully studied; we hope to develop some criteria
for such a suite in the course of collecting additional examples for experiments
with the constrained expression toolset. It is unlikely that a single approach
to analysis will meet the needs of developers of concurrent software, and such
a test suite would be of significant value in comparing various approaches and
determining the types of problems for which each approach has the greatest
value.

Based on the prototype toolset and the initial experiments described in this
paper, we are very encouraged about the prospective value of the constrained
expression approach to automated analysis of concurrent software systems. We
therefore plan to pursue the toolset improvements, enhancements to the for-
malism, and more extensive experimental evaluation outlined above. We ex-
pect that these activities, in conjunction with similar =xperimental evaluations
by other researchers developing other analysis technigques, preferably all based
on a common Lest suite, will result in improved understanding of the relative
strengths and weaknesses of the constrained expression approach and alternative
concurrent system analysis techniques.
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