CONSTRAINED EXPRESSION ANALYSIS
OF REAL-TIME SYSTEMS

George S. Avrunin*!
Laura K. Dillont:2
Jack C. Wileden?1:3

COINS Technical Report 89-50
April 1989

*Department of Mathematics and Statistics
University of Massachusetts
Ambherst, Massachusetts 01003

tComputer Science Department
University of California
Santa Barbara, California 93106

!Software Development Laboratory
Computer and Information Science Department
University of Massachusetts
Ambherst, Massachusetts 01003

‘This work was supported in part by the following grants:
!National Science Foundation grant CCR-8806970 and ONR grant NC0014-89-J-1064

?National Science Foundation grant CCR-8702905
>National Science Foundation grant CCR-87-04478 with cooperation from the Defense Advanced Research Projects

Agency (ARPA Order No.6104).

Constrained Expression Analysis of Real-Time
Systems

George S. Avrunin!
Department of Mathematics and Statistics
University of Massachusetts, Amherst

Laura K. Dillon?
Department of Computer Science
University of California, Santa Barbara

Jack C. Wileden!
Department of Computer and Information Science
University of Massachusetts, Amherst

Abstract

The constrained expression formalism and its associated analysis tech-
niques were originally developed for describing and analyzing logical prop-
erties of concurrent system behavior. We have recently begun exploring
their application to analyzing timing properties. In this paper we describe
our initial approach to constrained expression analysis of real-time systems
and report the results of a preliminary experiment using this approach.
We then discuss the prospects for extending both the constrained expres.
sion formalism and our existing prototype toolset to support analysis of
real-time concurrent software systems.

! Partially supported by NSF grant CCR-8806970 and ONR grant N00014-89-J-1064

2Partially supported by NSF grant CCR-8702905

3Partially supported by NSF grant CCR-8704478 with cooperation from DARPA (ARPA
order 6104). '

1 Introduction

A wide variety of techniques have been proposed for analyzing the behavior of
concurrent software systems. These differ in their underlying models of con-
current computation, in the questions about behavior they attempt to answer,
and in the stages of the software development process in which they are in-
tended to be applied. Our constrained ezpression formalism and its associated
analysis techniques [6] were developed specifically for analyzing the logical as-
pects of concurrent system behavior. That is, they were tailored to help in
uncovering logical flaws or unintended properties in a system’s behavior, such
as deadlock, process starvation, or synchronization anomalies. We have built a
prototype toolset to automate this kind of constrained expression analysis and
begun applying it to example concurrent systems [5).

Recently we have started to explore the possibility of applying our con-
strained expression formalism and analysis techniques to real-time concurrent
systems. As an initial step, we carried out an experiment in applying our ex-
isting prototype analysis toolset to a simple real-time problem. The results
of this experiment were quite encouraging, and we are therefore beginning to
design appropriate extensions and modifications to our formalism and tools to
automate the kind of analysis that we performed in the experiment. We are
also investigating extensions to the formalism that will permit us to describe
and analyze real-time systems that employ particular scheduling algorithms or
execute on networks of processors or multi-processor machines. In this paper we
report on our experiment and our plans for further development of constrained
expression analysis of concurrent real-time software systems.

The next section of the paper briefly outlines the constrained expression
approach and the third section describes the existing prototype toolset. The
fourth describes our initial approach to applying constrained expression anal-
ysis to real-time concurrent systems and our experiment in analyzing a simple
real-time problem. Finally, we discuss the extensions to the formalism, the
analysis techniques and the toolset that will be required to support constrained
expression analysis of concurrent real-time systems.

2 Constrained Expressions

In the constrained expression approach to analysis of concurrent systems, the
system descriptions produced during software development (e.g., designs in some
design notation) are translated into formal representations, called constrained
ezpression representations, to which a variety of analvsis methods are then ap-
plied. This approach allows developers to work in the design notations and
implementation languages most appropriate to their tasks. Rigorous analysis
is based on the constrained expression representations that are mechanically
generated from the system descriptions created by software developers.

This section contains a brief overview of the constrained expression formal-
ism. A detailed and rigorous presentation is given in [10], and a less formal
treatment presenting the motivation for many of the features of the formalism
appears in [6]. The use of constrained expressions with a variety of development
notations is illustrated in [6] and [12].

The constrained expression formalism treats the behaviors of a concurrent
system as sequences of events. These events can be of arbitrary complexity,
depending on the system characteristics of interest and the level of system de-
scription under consideration. Associating an event symbol to each event, we
can regard each possible behavior of the system as a string over the alphabet of
event symbols.

We use interleaving to represent concurrency. Thus, a string representing
a possible behavior of a system that consists of several concurrently executing
components is obtained by interleaving strings representing the behaviors of the
components. The events themselves are assumed to be atomic and indivisible.
“Events” that are to be explicitly regarded as overlappingin time are represented
by treating their initiation and termination as distinct atomic events.

The set of strings representing behaviors of a particular concurrent system
is obtained by a two-step process. First, a regular expression, called the sys-
tem ezpression, is derived from a description of the system in some notation
such as a design or programming language. The language of this expression
includes strings representing all possible behaviors of the system. It may, how-
ever, also include strings that do not represent possible behaviors, as the sys-
tem expression does not encode the full semantics of the system description.
This language is then “filtered” to remove such strings, using other expressions,
called constraints, which are also derived from the original system description.
A string survives this filtering process if its projections on the alphabets of the
constraints lie in the languages of the constraints. The constraints (which need
not be regular) enforce those aspects of the semantics of the design or program-
ming language, such as the appropriate synchronization of rendezvous between
different tasks or the consistent use of data, that are not captured in the sys-
tem expression. The reasons for this two-step process, which might not seem
as straightforward as generating behaviors directly from a single expression, are
discussed in [12].

Our main constrained expression analysis techniques require that questions
about the behavior of a concurrent system be formulated in terms of whether a
particular event symbol, or pattern of event symbols, occurs in a string repre-
senting a possible behavior of the system. For example. questions about whether
the system can deadlock might be phrased in terms of the nccurrence of symbols
representing the starvation of component processes of the system.

Starting from the assumption that the specified symbol, or pattern of sym-
bols, does occur in such a string, we use the form of the system expression and
the constraints to generate inequalities involving the numbers of occurrences
of various event symbols in segments of the string. If the system of inequali-

ties thus generated is inconsistent, the original assumption is incorrect and the
specified symbol or pattern of symbols does not occur in a string corresponding
to a behavior of the system. If the inequalities are consistent, we use them in
attempting to construct a string containing the specified pattern.

Constrained expression analysis, then, is a static, event-based approach
(though the construction of a behavior from a solution of a system of inequalities
has similarities to dynamic analysis). The constrained expression formalism is
closely related to path expressions [9], event expressions {19], and COSY [18].
More detailed discussion of the relation between constrained expressions and
a variety of methods for describing and analyzing concurrent software systems
can be found in [6] and [21]. The constrained expression analysis techniques
can be regarded as rigorous formulations of methods based on arguments about
the order and number of occurrences of events. Such methods have been widely
used in conjunction with concurrent software systems (e.g., [15]).

In summary, the constrained expression approach is applicable to systems
expressed in a variety of notations and languages. It offers a focused approach to
analysis, which, by keeping the amount of uninteresting information produced
to a minimum, can be very efficient. One potential difficulty in applying the
approach is that it requires that analysts correctly formulate questions about
the behavior of a system in terms of patterns of event symbols in strings rep-
resenting system behaviors. Other potential drawbacks include the difficulty
of automating some aspects of generating and reasoning about the systems of
inequalities. Ongoing research [5] is directed at determining the practical sig-
nificance of these potential problems.

After manually applying the constrained expression analysis techniques to a
number of small examples with encouraging results (e.g., (3], [6], [7], [21]), we
began to construct prototype tools automating various aspects of the analysis.
We briefly describe the current version of the prototvpe toolset before discussing
the application of the formalism, analysis techniques and toolset to analyzing
concurrent real-time systems.

3 The Constrained Expression Tools

The prototype toolset (see Fig. 1) consists of five major components: a deriver
that produces constrained expression representations from concurrent system
designs in a particular design language; a constraint eliminator that replaces a
constrained expression with an equivalent one involving fewer constraints; an
inequalily generator that generates a system of inequalities from the constrained
expression representation of a concurrent system; an integer programming pack-
age for determining whether this system of inequalities is consistent or incon-
sistent, and, if the system is consistent, for finding a solution with appropriate
properties; and a behavior generator that uses the solution found by the integer
programming package (when the inequalities are consistent) to produce a string

CBDL design query “ne bahavios”

3

INEQUALITY
GENERATOR

INTEGER
PROG. PACKAOQGE

DERIVER

inequalities

R

constreined

wolution
oxpression

—

example behavior

CONSTRAINT -
ELIMINATOR

BEHAVIOR
QENERATOR

Figure 1: Diagram of Constrained Expression Toolset

of event symbols corresponding to a system behavior with the desired proper-
ties. The organization of the toolset is illustrated in the figure. \We give brief
descriptions of the tools and their use below. A more detailed discussion of the
toolset and its implementation appears in [5).

The current toolset is intended for use with designs written in the Ada-based
design language CEDL (Constrained Expression Design Language) [11). CEDL
focuses on the expression of communication and synchronization among the
tasks in a distributed system, and language features not related to concurrency
are kept to a minimum. Thus, for example, data types are limited. but most of
the Ada control-flow constructs have correspondents in CEDL. We have chosen
to work with a design notation based on Ada because Ada is one of the few
programming languages in relatively widespread use that explicitly provides
for concurrency, and because we expect our work on analysis of designs to
contribute to and benefit from the Arcadia Consortium’s work on Ada software
development environments (20].

The deriver (1] produces constrained expression representations from CEDL
system designs. The system expressions it produces consist of the interleave
of regular expressions, called task ezpressions, representing the behavior of the
various tasks in the svstem. The deriver also generates all required constraints.

The constraint eliminator [13] takes a subexpression of the svstem expression
and certain constraints, and produces a new expression whose langnage is the
set of strings in the language of the subexpression that satisfv the constraints.
It requires that the subexpression and the constraints be regular and not involve
the interleave operator. We typically use the constraint eliminator with a task
expression and constraints that enforce correct, dataflow within that task. This

process facilitates certain aspects of analysis of the constrained expression.

The inequality generator [4] takes a constrained expression representation
and generates a system of linear inequalities representing a large part of the
semantics of the constrained expression. It also provides an interactive facility
allowing the analyst to add additional inequalities representing assumptions or
queries about the behavior of the system and a teporting facility for use by a
human analyst interpreting output of the integer programming package.

The integer programming package we are currently using is a branch-and-
bound integer linear programming system [17] written in FORTRAN. When the
generated system of inequalities is consistent, the integer programming package
produces a solution giving counts for the number of occurrences of the various
event symbols. The behavior generator [14] uses heuristic search techniques to
find a string of event symbols having the given counts and corresponding to a
system behavior, helping the analyst to understand the solution found by the
integer programming package. The behavior generator may also be used by the
analyst for interactive exploration of the system.

4 Applying Constrained Expression Analysis
to Real-Time Systems

The constrained expression formalism models computation as a stream of non-
overlapping atomic events, with no notion of time. We can, though, introduce
time by assigning a duration to each event. The time required for a sequence of
events is then just the sum of the durations of the individual events. Such an
interpretation only makes sensc when the events are nonoverlapping, as when
Lthe processes in the concurrent system being analyzed are running on a single
processor. With this restriction, our prototype constrained expression toolset
can be used, for example, to determine bounds on the maximum possible time
between two events. In this section, we describe the use of the toolset to obtain
information about timing in the CEDL gas station system described in [3] and
[21].

This system is a CEDL version of the example used by Helmbold and Luck-
ham (16} to illustrate their run-time monitoring approach to debugging Ada
tasking programs. It consists of four tasks, representing two customers, a pump,
and an operator. The customers repeatedly prepay, pump gas, and receive
change; the operator accepts pavment, activates the pump, and gives change to
the customers; once activated. the pump dispenses gas and notifies the operator
of the charge. The task declarations and bodies are shown in Figures 2, 3, and
4.

To illustrate the kind of timing questions that constrained expression anal-
ysis can answer, consider a customer who has just finished pumping (i.e., has
Just completed a rendezvous at PUMP . FINISH PUMPING). C'onstrained expression

w

package COMMON is
type C_NAME is (cusi,cus2); -- names for two customers
type COUNTER is (zero,one,two); -- enough for two customers
end COMMON;

use COMMON;

task OPERATOR is
entry PREPAY(CUSTOMER_ID : in C_NAME);
entry CHARGE;

end OPERATOR;

task PUMP is
entry ACTIVATE;
entry START_PUMPING;
entry FINISH_PUMPING;
end PUMP;

use COMMON;

task CUSTOMER_1 is
entry CHANGE;

end CUSTOMER_1;

use COMMON;

task CUSTOMER_2 is
entry CHANGE;

end CUSTOMER_2;

Figure 2: Task declarations for the two-customer system

analysis [3, 21] shows that the customer tasks do not starve (i.e., wait indefi-
nitely for a rendezvous) at the CHANGE entries, so the customer will eventually
receive its change (i.e., rendezvous with the OPERATOR task at the customer’s
CHANGE entry). It is then reasonable to ask how long the customer might have
to wait for change.

To answer such a question. we have to assign durations to each event in
the system. For simplicity, we assume that each event takes one unit of time;
although the worst-case waiting time may be different if events have different
durations, the method for obtaining it will be the same. Since the two customer
tasks are treated symmetrically in the gas station system, there is no loss of
generality in assuming that it is the task CUSTOMER_1 that has just completed

task body PUMP is
begin
loop
accept ACTIVATE;
accept START_PUMPIMNG;
accept FINISH_PUMPING do
ven == compute charge for this transaction
end FINISH_PUMPING;

OPERATOR.CHARGE; -~ report charge to operator
end loop;

end PUMP;

use COMMON;
task body CUSTOMER_1 is
begin
loop
OPERATOR.PREPAY(cus1);
PUMP.START _PUMPING;
PUMP.FINISH_PUMPING;
accept CHANGE;
end loop;
end CUSTOMER_1;

use COMMON;
task body CUSTOMER_2 is
begin
loop
OPERATOR.PREPAY(cus2);
PUMP.START_PUMPING;
PUMP.FINISH_PUMPING;
accept CHANGE;
end loop;
end CUSTOMER_2;

Figure 3: Bodies of the PUMP and CUSTOMER Tasks

the rendezvous at the entrv PUHP.FINISH PUNMPING.

Our procedure is to modify the constrained expression representation of
the system to reflect the activity of the system beginning with the time this
rendezvous is completed, generate a system of inequalities from this modified

use COMMON;
task body OPERATOR is
CUSTOMERS : COUNTER := zero;
CURRENT, WAITING : C_NAME;
begin
loop
select
accept PREPAY(CUSTOMER_ID : in C_NAME) do
CUSTOMERS := COUNTER’succ(CUSTOMERS);

if CUSTOMERS = one then ==~ if no previous customer
-- is waiting
CURRENT := CUSTOMER_ID; -- mark this one as current
PUMP . ACTIVATE; == and activate the pump
else
WAITING := CUSTOMER_ID; —-- otherwise, mark this one
== as next in line
end if;
end PREPAY;
or
accept CHARGE;
if CUSTOMERS > one then -=- if another customer is
-- waiting,
PUMP . ACTIVATE; == activate the pump
end if;
if CURRENT = cusi then
CUSTOMER_1.CHANGE;
else
CUSTOMER_2.CHANGE;
end if;
CUSTOMERS := COUNTER’pred (CUSTOMERS) ;
if CUSTOMERS > zero then -- if another customer is
CURRENT := WAITING: -- waiting, promote that one
-- to be current
end if;
end select;
end loop;

end OPERATOR;

Figure 4: Body of the OPERATOR task

representation, and then use the integer programming package to find a solution
to those inequalities. The objective function used for the integer programming
package is set to maximize the number of events (or, more generally, the total
duration of the events). This maximum gives an upper bound on the amount
of time the customer has to wait for change, rather than the precise worst-case
time, for reasons discussed below.

In this case, the task expression for CUSTOMER_1 can be reduced to symbols
representing only the rendezvous at CUSTOMER_1.CHANGE, since we assume that
the customer has just completed a rendezvous at PUMP.FINISH_PUMPING and
. is therefore waiting for the rendezvous at CUSTOMER_1.CHANGE. Unfortunately,
the modifications required for the other task expressions are not as simple.
In the experiment described here, we mnade these modifications manually, after
analysis of the possible states of the system at the time that CUSTOMER_1 finishes
pumping. We discuss the possible automation of this process in the next section.

We begin by considering the activity of the task CUSTOMER.2. The task
expression for CUSTOMER 2 is shown in Figure 6, using symbols whose interpre-
tations are given in Figure 5. This is essentially the task expression produced
by the deriver, after some minor simplification. As shown in the figure, several
“starvation alternatives” and an “abort” alternative are produced to represent
the possibility that the task terminates abnormally. (No normal termination
alternative is produced because of the infinite loop in the task body.) The anal-
ysis of [3, 21), however, shows that the abnormal termination alternatives never
contribute to a behavior of the system. That is, the system has no finite behav-
iors., For our purposes here, however, we are interested in.the number of events
occurring between two rendezvous in a (presumably) “infinite” behavior. We
can regard an infinite behavior of this system as a limit of a chain of finite pre-
fixes, where the activity of the task CUSTOMER .2 is described in each of the finite
prefixes by a string from the language of the expression obtained by deleting
the abnormal termination alternatives in the task expression in Figure 6 and
each of the finite prefixes satisfies the constraints.

As a first step in transforming the task expression of Figure 6, we therefore
eliminate the subexpression containing the abnormal termination alternatives.
We then proceed to consider the activity of the task CUSTOMER 2 beginning with
the completion of a rendezvous between the tasks CUSTOMER.1 and PUMP at the
entry PUMP .FINISH PUMPING.

Since we are interested in worst-case times, we can ignore the cases where
CUSTOMER.2 has begun a rendezvous but not yet completed it. The reason
for this is that, if such a rendezvous has hegun before the event marking the
beginning of the interval being timed (i.e., the completion of the rendezvous at
PUMP .FINISH_PUMPING), we can find another behavior in which the rendezvous
begins efter the beginning of the interval. Since the duration of the interval
will be greater in the second case, we may ignore the first one. Similarly, the
duration of the interval will be greater in the case where CUSTOMER 2 has just
completed a rendezvous at OPERATOR. CHANGE than in the case where CUSTOMER 2

| Symbol | Associated event]

def(V,v) Variable V is assigned the value v

uae(V,v Variable V is assumed to have the value v
Seg_loop(L) Begin executicn of lvop L

cal{ T,E) Task T calls entry B

calll ﬁ,v) Task T calls entry E with actual input value v

beg.rend(T,B) Begin rendezvous with task T at entry E
beg.rend(T E,v Begin rendezvous with task T at entry El assuming input value v
end_rend(T,E) End rendezvous with task T at entry E

resume({T,E Resume task T after _{cndezvous at entry E
:taruc(ﬁ Task T starves on call to entry B _
:lcne,(ﬁj Task starves waiting to accept a call at entry E

kill. rend(E) Rendezvous at entry B is aborted
dead_rend(T,E) | Rendezvous with task T at entry E is assumed to abort
stop(T) Execution of task T stops

In the symbols used in the task expressions, the task name CUSTOMER.i is abbreviated to Ci,
PUNP is abbreviated to P, and OPERATOR is abbreviated to 0. Variable and entry names are also
abbreviated.

Figure 5: Event Symbols and Associated Events for CEDL

has not yet started its execution (i.e., is about to call OPERATOR. PREPAY for the
first time), since in the first case the OPERATOR has more statements to execute
before accepting the next call from CUSTOMER 2 to the entry OPERATOR. PREPAY.
Finally, it is not possible for CUSTOMER 2 to have just completed a rendezvous at
PUMP . START_PUNPING, since we are assuming that the PUMP has just completed
a rendesvous at PUMP . FINISH_PUMPING with CUSTOMER_1, and it is casy to show
that successive rendezvous at PUMP.START PUMPING and PUMP.FINISH _PUMPING
must involve the same customer task.

‘This leaves three cases to consider:

1. CUSTOMER.2 has just completed a rendezvous at OPERATOR. PREPAY,
2. CUSTOMER.2 has just completed a rendezvous at PUMP . FINISH_PUMPING,
3. CUSTOMER 2 has just completed a rendezvous at OPERATOR . CHANGE.

In each of these cases, it is then necessary to determine the subsequent activity of
the PUMP and OPERATOR tasks, and to appropriately modify the task expressions
of these three tasks and the constraints tn reflect that activity. The modified
task expression for CUSTOMER 2 corresponding to the first ~f these cases is shown
in Figure 7. Determining the activities of the PUHP and OPERATOR tasks. given
those of the two customer tasks. is straightforward.

We now have three constrained expression representations, corresponding to
the three cases. After applying the constraint eliminator to the individual task
expressions, we use the inequality generator to produce svstems of inequalities.

10

beg_loop(C2) (call(CZ, O.prepay, cus2)resume(C2, O.prepay)call(C2, P.start)

resume(C2, P.start)call(C2, P.finish) resume(C2, P.finish)

beg-rend(O, C2.change)end_rend(O, CZ.change))

(atarvec(CZ, O.prepay)stop(C2)

Veall(C2, O.prepay, cus2)dead _rend(C2, O.prepay)stop(C2)

Veall(C2, O.prepay, cus2)resume(C2, O.prepay)starve (C2, P.start)
stop(C2) \

Vveall(C2, O.prepay, cus2)resume(C2, O.prepay)call(C2, P.start)
resume(C2, P start)starve.(C2, P.finish)stop(C2)

Veall(C2, O.prepay, cus2) resume(C2, O.prepay)call(C2, P.start)

resume(C2, P.start) call(C2, P.finish)resume(C2, P.finish)

starvea(C2.change)stop(C2))

Figure 6: Task Expression for CUSTOMER 2

For each of these three systems, we use the integer programming package to
find the solution with the maximum number of events (or, if the events have
different durations, the maximum total duration). The maximum of the number
of events in the three solutions is the upper bound we seek.

There are two reasons why this upper bound may not be sharp. First, the
inequalities produced by our tools do not reflect the full semantics of constrained
expressions, and the solution found by the integer programming package mav
not correspond to a behavior of the system that is actually possible. In these
cases, we manually generate additional inequalities that eliminate such spurious
solutions and improve the bounds. Second, we do nnt vet know how to “stop”
the other tasks in the system exactly at the occurrence of the event marking
the end of the interval being timed. Thus, in the gas station example, the other

call(C2, P.start)resume(C2, P.start)call(C2, P.finish)

resume(C2, P finish)beg_rend(O, C2.change)end_rend(O, C2.change)
(call(CZ, O.prepay, cus2)resume(C2, O.prepay)call(C2, P.start)

resume(C2, P.start)call(C2, P.finish) resume(C2, P.finish)

beg.rend(O, C2.change)end_rend(O, CZ.change))

Figure 7: Task Expression for CUSTOMER 2 in Case 1

tasks in the system may continue to run after CUSTOMER_1 receives change. This
also makes it impossible, in general, to use these methods to obtain valid lower
bounds for the time between two events. Ongoing research addressing these
problems is discussed in the next section.

For the system analyzed here, the upper bound occurs in the case where
CUSTOMER.2 is assumed to have just completed a rendezvous at OPERATOR. PREPAY
when timing starts. The solution found by the integer programming package
does correspond to a real system behavior, with the following sequence of ac-
tivities:

CUSTOMER .2 prepays; OPERATOR activates the PUMP; CUSTOMER _1 pre-
pays; CUSTOMER._1 starts pumping; CUSTOMER _1 finishes pumping [tim-
ing begins]; PUMP reports the charge; OPERATOR activates the PUMP;
CUSTOMER.2 starts pumping; CUSTOMER 2 finishes pumping; OPERATOR
gives change to CUSTOMER 2; CUSTOMER 2 prepays; PUMP reports the
charge; OPERATOR activates the PUMP; CUSTOMER_2 starts pumping;
CUSTOMER 2 finishes pumping; OPERATOR gives change to CUSTOMER _1
[timing ends]; PUMP reports the charge; OPERATOR gives change to
CUSTOMER 2.

Events taking place before the start of timing are eliminated by the modifi-
cation of the task expressions and do not contribute to the bounds. but events
occurring after the end of the timed interval are included in the calculation of
the bound. Thus, the bound we obtain is inflated bv the inclusion of the events
involved in the last report of charges by the PUMP and the return of change to
CUSTOMER_2. (Of course, CUSTOMER_2 can continue to prepay, pump gas, and
receive change repeatedly after the end of the timed interval. We impose a limit
on the number of times CUSTOMER.2 prepays in order to find solutions to the

12

I

integer programming problems.) The reader will also have noticed that the cus-
tomers receive the wrong change in this behavior. This version of the gas station
represents one stage in an iterative process of development used by Helmbold
and Luckham [16] to illustrate their debugging method; at this stage, design
flaws in earlier versions that led to possible starvation have been corrected but
the problem with the distribution of change remains.

5 Current Research

The experiment reported in this paper demonstrates that it is possible to apply
constrained expression analysis techniques and some components of our pro-
totype toolset to obtain useful information about real-time properties of con-
current systems. At the same time, it indicates several research directions that
should be pursued in order to increase the applicability of constrained expression
analysis to real-time systems. We are currently seeking to develop better con-
strained expression formulations of those aspects of concurrent system behavior
that are relevant to real-time properties. We are also exploring extensions to
the constrained expression approach to behavior description that will permit us
to analyze real-time properties of additional classes of concurrent systems. In
particular, we are considering ways to express specific scheduling policies in a
constrained expression behavior representation and techniques for representing
the execution of multi-processor systems, in which event occurrences on differ-
ent processors may be regarded as overlapping in time. Finally, we are working
on improving automated support for constrained expression analysis of real-
time concurrent systems. Our ongoing research in each of these areas is briefly
described below.

In the experiment reported in this paper, we used a simple, expedient ap-
proach for associating real-time properties with pre-existing constrained expres-
sion representations of the gas station system’s behavior. That approach re-
sulted in a somewhat complicated analysis procedure, parts of which may be
difficult to automate. Alternative approaches to capturing real-time properties
in a constrained expression could improve the effectiveness and efficiency of our
analyses. We are therefore investigating improved constrained expression for-
mulations of the aspects of concurrent system behavior relevant to real-time
properties. For example, we are exploring various alternatives for representing
the passage of time by “tick events”, rather than time durations associated with
event symbols. One possibility is to have global clock ticks emitted by a single
“clock task expression”, with constraints introduced to cnsure that event. svm-
bols from Lhe same task expression are separated by the appropriate number of
clock ticks. Another is to have lncal clock ticks emitted as part of each task ex-
pression, with constraints to enforce the synchronization of corresponding ticks
from different tasks. The different alternatives mav have implications for the
types of analysis that can be performed. We are also investigating alternate ways

13

of modifying the constrained expression representation of a system to reflect the
timing property of interest. For example, we are considering the possibility of
inserting a “start timing” event symbol and a “stop timing” event symbol into
a constrained expression, then using appropriate constraints to filter out all be-
haviors except those that are delimited by this pair of event symbols. Under
such an approach, the analysis performed in our experiment would reduce to
finding the longest such behavior. The interaction between this approach and
our current treatment of constraints has many subtleties, however, and its po-
tential benefits have yel to be investigated in detail. We are currently trying
to understand how these different formulations affect constrained expressions
analysis.

When analyzing logical properties of concurrent software systems it is not
appropriate to assume any particular scheduling policy; tasks can run at their
own unpredictable rates, and so all possible interactions must be considered
equally likely to occur. Similarly, analysis of logical properties of concurrent
systems seldom requires explicit attention to the possibility that two events
may actually overlap in time; modeling concurrency by arbitrary interleaving
of events is generally sufficient to uncover any possible logical flaws. Hence
our constrained expression behavior descriptions have never expressed schedul-
ing policies and have only represented overlapping event executions by way of
interleaved, atomic initiation and termination events. In analyzing real-time
properties of concurrent systems, however, we would like to account for the ef-
fects of a specific scheduling policy or the degree of multiprocessing available.
Hence, we are exploring extensions to the constrained expression approach to
behavior description that will capture these aspects of a system.

Our approach to describing scheduling policies is to introduce constraints
that enforce a particular ordering on events based upon the task to whose be-
havior they belong. For example, with our student Susan Avery, we are currently
investigating a constraint that enforces round robin scheduling by forcing suc-
cessive events in a behavior to come from successive tasks in the round robin
sequence. A more complicated constraint to enforce a simple static priority
scheduling policy is also being explored. This approach to describing scheduling
requires the introduction of new kinds of event symbols, with corresponding
modifications to the existing set of constraints and the translation schemes that
generate constrained expressions from other descriptions (e.g., CEDL). Detailed
investigation of the ramifications of these extensions, their applicability to ad-
ditional scheduling policies and their impact on the analysis techniques remains
to be done.

We are exploring several approaches to constrained expression representation
of the event overlap that can occur in multiprocessing svstems. tC'ne of these is
based on the “tick events” discussed above. Under the global clock formulation,
simultaneity would be expressed by using a single clock tick to represent passage
of time for all tasks. Under the local clock formulation. simultaneity would be
expressed by constraints that ensure tasks have emitted the same number of

14

local clock ticks at the points where they synchronize. Another approach to
representing simultaneous activity in multiprocessing systems relies on divid-
ing all events into equal-duration “quantum” units, then using a constraint like
that used for round robin scheduling to enforce a “perfect shuffie” of quantum
events. Each complete cycle through the round robin would then correspond
to the passage of the same time quantum on each processor. Our investigation
of both these approaches, their compatibility with our current behavior repre-
sentation and analysis techniques, and their interaction with the approaches to
representing scheduling policies is still in the preliminary stages.

Our approaches to automating real-time analysis involve both increasing the
automation of the technique used in our example and developing automated
support for other, extended techniques. Regarding the former, it seems unlikely
that the type of reasoning that led to the identification of the three cases repre-
senting the subsequent activity of the task CUSTOMER 2 in the example above will
be readily automated. Given the last event that each task engages in, however,
we believe that we may be able to automate the kind of “stripping” of prefixes
used in our experiment by employing a technique similar to Brzozowski’s regular
expression derivative technique [8]. Such an approach has already been applicd
to constrained expressions in one of the early prototype implementations of the
behavior generator tool [2]. Automating the approach to enforcing stopping that
was used in our experiment is more complicated. We may, however, be able to
use a sort of “successive approximation”, in which inequalities imposing suc-
cessively shorter execution lengths on tasks are successively introduced until an
impact on behavior is noted. As our experiment demonstrated, once these two
aspects of modifying the constrained expression have been completed, the re-
mainder of the analysis can be carried out using our current prototype toolset.
The probable difficulty of automating these two steps, however, has inspired
the various alternative approaches to capturing real-time properties in a con-
strained expression that were described earlier in this section. The prospects for
automating analysis of behaviors described using these alternative constrained
expression formulations are currently being investigated.

6 Conclusions

The constrained expression formalism and its associated analysis techniques
were originally developed for describing and analyzing logical properties of con-
current system behavior. Our previous research has demonstrated that the con-
strained expression approach is applicable to descriptions written in a wide range
of notations, covering asynchronous message-passine: as well as svnchroneus
communication mechanisms (as in CEDL), and including such notations as
Petri nets and CSP [12]. We have also recently produced a prototype toolsect
that automates much of our constrained expression analvsis, and experimentally
demonstrated that its performance is adequate to support practical automated

15

analysis of interesting concurrent systems [5). In this paper, we have described
a preliminary experiment in using constrained expression analysis techniques
to analyze timing properties of concurrent software systems. With only mi-
nor modifications to standard constrained expression analysis techniques, we
were able to obtain upper bounds on the maximum total elapsed time between
designated event occurrences.

Our results are encouraging for several reasons. First, they demonstrate a
potentially useful approach to carrying out the specific kind of real-time analysis
on the particular class of concurrent systems that was the subject of our exper-
iment. More importantly, our current research suggests that we will be able to
generalize both the kind of analysis and the class of real-time systems to which
the approach can be applied. Furthermore, the performance data from exper-
iments with our existing toolset plus our current research on automating the
real-time analysis techniques suggest that it may be possible to provide much
of the constrained expression approach to analysis of concurrent real-time sys-
tems via practical automated tools. Finally, given our previous demonstration
of the broad applicability of the constrained expression approach, the benefits
of this work will not be restricted to a single real-time system design notation or
programming language, but should be applicable with a wide range of system
description techniques.

References

{1] S. Avery. A tool for producing constrained expression representations of
CEDL designs. In preparation.

[2] S. Avery. Development of a behavior generator for constrained expressions.
Software Development Laboratory Memo 84-2, Department of Computer
and Information Science, University of Massachusetts, Ambherst, June 1984.

(3] G.S. Avrunin. Experiments in constrained expression analysis. Technical
Report 87-125, Department of Computer and Information Science, Univer-
sity of Massachusetts, Amherst, November 1987.

[4] G.S. Avrunin and U. Buy. An inequality generator for constrained expres-
sion analysis. In preparation.

[5] G.S. Avrunin, L. K. Dillon, and J. C. Wileden. Experiments in automated
analysis of concurrent software systems. Submitted.

(6] G.S. Avrunin, L. K. Dillen. J. C. Wileden, and V. E. Riddle. Constrained
expressions: Adding analvsis capabilities to design methods for concurrent
software systems. JEEE Trans. Softw. Eng., SE-12(2):278-292, 1986.

16

[7) G. S. Avrunin and J. C. Wileden. Describing and analyzing distributed
software system designs. ACM Trans. Prog. Lang. Syst., 7(3):380-403,
July 1985.

[8] J. A. Brzozowski. Derivatives of regular expressions. J. ACM, 11(4):481-
494, Oct. 1964,

(9] R. H. Campbell and A. N. Habermann. The specification of process syn-
chronization by path expressions. In E. Gelenbe and C. Kaiser, editors,
Operating Systems, volume 16 of Leclure Notes in Computer Science, pages
89-102. Springer-Verlag, Heidelberg, 1974.

(10] L. K. Dillon. Analysis of Distributed Systems Using Consirained Ezpres-
sions. PhD thesis, University of Massachusetts, Ambherst, 1984.

[11] L. K. Dillon. Overview of the constrained expression design language.
Technical Report TRCS86-21, Department of Computer Science, University
of California, Santa Barbara, October 1986.

(12] L. K. Dillon, G. S. Avrunin, and J. C. Wileden. Constrained expressions:
Toward broad applicability of analysis methods for distributed software
systems. ACM Trans. Prog. Lang. Sysi., 10(3):374-402, July 1988.

[13] L. K. Dillon and G. Walden. A prototype constraint eliminator for con-
strained expression representations. In preparation.

[14] M. Greenberg and S. Avery. A behavior generator. Software Development
Laboratory Memo 89-1, Department of Computer and Information Science,
University of Massachusetts, 1988.

[15] A. N. Habermann. Synchronization of communicating processes. Commun.
ACM, 15(3):171-176, 1972.

[16] D. Helmbold and D. Luckham. Debugging Ada tasking programs. IEEE
Software, 2(2):47-57, March 1985.

[17) A. H. Land and S. Powell. Fortran Codes for Mathematical Programming:
Linear, Quadratic and Discrete. John Wiley & Sons, Ltd., London, 1973.

(18] P. Lauer, P. Torrigiani, and M. Shields. COSY: A system specification
language based on paths and processes. Acte Informatica, 12(2):451-503,
1979.

(19] W. E. Riddle. An approach to software system hehavier modeling. Com-
puler Laenguages, 4:29-47. 1979.

[20] R. N. Taylor, F. C. Belz, L. A. Clarke, L. J. Osterweil, R. W. Selby, I. C.
Wileden, A. L. Wolf, and M. Young. Foundations for the Arcadia envi-
ronment architecture. In Proceedings SIGSOFT '88: Third Symposium on
Software Development Environments, pages 1-13, December 1988.

[21] J. C. Wileden and G. S. Avrunin. Toward automating analysis support for
developers of distributed software. In Proceedings of the Eighth Interna-
tional Conference on Distributed Computing Systems, pages 350-357. IEEE
Computer Society Press, June 1988.

18

