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Abstract

In this paper we consider a single server that serves customers, each of which requires
three phases of service. The server alternates between two queues, a batch queue and
an individual queue, giving priority to customers in the latter queue. Customers in the
batch queue are served in batches whereas customers in the individual queue are served
individually. The batches undergo two service phases. During the first phase, the non-
gated phase, any customer entering the batch quene is allowed to join the batch in service.
However, once the batch enters the second phase, the gated phase, no other customer is
allowed to enter service. At the completion of the gated phase, the customers then enter the
individual queue where they acquire their third phase of service. Customers are individually
served in the individual queue after which they depart the system. We derive an expression
for the mean customer sojourn time under the assumptions of Poisson arrivals, and general

service times for each of the three phases.

1 Introduction

In this paper we consider a single server that alternates service between two queues. Customers
arrive at one queue called the batch queue which is a bulk service queue. After departing the

batch queue, customers enter a second FIFO queue lableled the individual queue. Whenever
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there are customers present in both queues, priority is given to customers in the individual
queue. Last, customers in the batch queue receive service in batches of size one or more

whereas customers are served individually in the individual queue.

Krishna and Lee [2] studied such a system under the assumptions of Poisson arrivals, and
exponentially distributed service times for both the batch and individual queues (with different
means). They considered two scheduling policies for the batch queue, 1) an exhaustive non-
gated policy where all customers present in the queue at the end of a service period are released
and 2) an exhaustive gated policy where all customers present at the beginning of service are
served. We generalize their analysis to account for generally distributed batch service times
and individual service times. We also allow customers to go through two service phases while
in the batch queue, a non-gated phase followed by a gated phase. Customers that arrive to
the batch queue while the gated phase is in progress are included in the batch that is being
served at the time whereas customers that arrive during the gated phase are required to wait
until the next non-gated service phase before they can begin service. Last, the the gated phase
times are allowed to depend on the number of customers served in a batch. The primary results
of this paper are expressions for the mean customer sojourn time and the average number of

customers in the system.

A mathematical model of the system is presented in Section 2. The analysis is presented in

Section 3 and the results of the paper are summarized in Section 4.

2 The Model

We consider a server that serves two queues, a batch queue and an individual queue. When a
customer arrives to the system, it enters the batch queue. When it departs the batch queue,
it enters the individual queue. After receiving service at the individual queue, the customer
departs from the system. The server always serves the individual queue while it is non-empty.
When it is empty, the server serves customers in the batch queue. At that time it provides
batch service to all of the customers present in the queue at the beginning of service period. The
batch service period consists of two phases, the non-gated phase followed by the gated phase.
Customers arriving during the non-gated phase are included in the batch undergoing service
and allowed to enter the gated service phase. Upon completion of the gated service phase, the

customers enter the individual quéﬁe where they individually receive service. We observe that
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Figure 1: Behavior of the system.

all customers that arrive during the gated phase are required to enter the queue and wait for

the next time that the server returns to the queue.

We assume that customers arrive according to a Poisson process with parameter A, that the
non-gated batch phase service times {Bj}§ form an i.i.d. sequence of r.v.’s having probability
distribution function Fg(z) = Pr[B < z], 0 < z, and that the individual service times {X;}§°
form an i.i.d. sequence of r.v.’s with distribution function Fx(z), 0 < z. We assume that the
i-th gated batch service time can be expressed as Y; = R;y + R;2 + - -+ + Rin; + H; where
N; denotes the number of customers in the i-th batch, and {H;}& and {R;;,i = 1, N;}§° are
mutually independent i.i.d. sequences of r.v.’s with distributions Fy(z) = Pr[H < z] and
Fp(z) =Pr[R < z).

Time is divided into cycles, each one consisting of an idle period followed by a non-gated batch
phase, a gated batch phase and and an individual queue busy period. Let Ix, By, Yi, and Ij
denote the length of each of these intervals in the k-th cycle. Note that the idle period may
be absent, i.e., Iy takes on value 0 with nonzero probability. Figure 1 illustrates the behavior
of this system. In this example the idle period is absent. Observe that customer 4 must wait

along with customer 5 until the following cycle before receiving service at the batch qucue.

We will drop the subscript on the r.v.’s I, B, Yi, Ii when referring to the stationary

versions of those r.v’s. Let Z denote a continuous valued r.v. We will adopt the convention



that Z = E[Z], 2% = E[Z? and 2"(s) = E[e~*?]. In the case that Z is a discrete valued r.v.,

we will adopt the same convention for the moments and Gz(z) = E[2?).

3 Analysis

Let W denote the stationary time that a customer spends in the system until it enters the gated
batch phase. Let T denote the stationary customer sojourn time, i.e., time until it leaves the
system. Last, let S denote the time that the customer spends in the individual queue. We have
T=W+Y + S and as a consequence,

T=W+Y +35. (1)
We focus on W first. Consider a randomly chosen customer, J, and define the following events.

o Eg - the event that J finds the server idle at arrival,
e E, - the event that J finds the server in the non-gated batch phase at arrival,
o Ej - the event that J finds the server in the gated batch phase at arrival,

o E, - the event that J finds the server at the individual queue at arrival.

We condition W on each of these events. The conditional expectations of W conditioned on

each of these events are

EW|E)] = B, (2)
EW|E) = B/ (2B), (3)
EW|E,) = Y?/(2¥)+T+5, (4)
EW|Es] = 37/ (2%) +B. (5)

Consider the gated batch phase time. We have expressed Y as a sum of H and a random

number of R’s. Hence results from [1, pp. 111-112] allows us to write

=l
I

H+RN, (6)

Y2 = MR +(RP-R)N+H:+2ERN. (7)



Consider the individual queue busy period, £. We can express ¥ as the sum of N individual
service times. Hence, from (1, pp. 111-112]

N X, (8)

™
I

2 = (NM-WMX'+N X2 (9)

We focus now on the probabilities of the events Ey, E;, E;, E3. Let C denote the length of a
cycle, C =1+ B +Y + X. The probabilities of the four events are

Pr[E,] = I/C, (10)
Pr{E,] = B/C, (11)
Pi[E;) = (NR+H)/C, (12)
Pr[Es] = I/C. (13)

We know the statistics of B and we have expressed the statistics of ¥ in terms of the statistics
of N; hence we focus on I. Let A denote the number of customers that arrive during a gated
batch phase and an individual busy period. The event I > 0 corresponds to the event that
A = 0. Hence we write

T=Pr{[A=0]/)

Because of the assumption that customers arrive according to a Poisson process, we have
Ga(z) = GN(X™(A(1 = 2))R™(A(1 - 2))). Consequently Pr[A = 0] = G4(0) = Gn(D*(}))

and

B[l

il

Gn(D™(A))/A,
GN(D*(A))+B+N(X+R)+H

Il

E[C]
where D*(s) = X~(s)R"(s).

We now remove the conditioning on W to obtain

poB/A+B?/2+22/24Y?/24+ (Y +B)+YB

W= S S S Sl Mo S
P/A+B+N(X+R)+ 1

(14)

where

po = Pr[A = 0] = Gn(D™(A)). (15)



Consider the individual queue sojourn time, S. J arrives as part of a batch of jobs and waits
for all customers ahead of it to be served. The nunber of customers ahead of J corresponds to

the residual number of customers in a batch that depart the batch queue. Hence, we have
= [¥ 1)<
== - X . 16
5=zt 2] (16)

We are left with the task of determining the statistics of N.

Theorem 1 The p.g.f Gn(z) satisfies the following functional equation
Gn(z) = [GN(D"(M1 - 2)) E*(M1 - 2)) + (z = 1)poH"(A)] B*(A(1 - 2)). (17)

where py is given by the ezpression in equation (15).

Proof. Let N; denote the number of customers served during the i-th cycle. Observe that this
corresponds to the number of customers that arrive during the gated and individual service
phases of the (i — 1)-th cycle and the non-gated phase of the i-th cycle. Hence {N;}{2q is a
Markov chain. The chain is ergodic whenever A(X + R) < 1. Let =;, j = 1,2,--- denote the
stationary distribution for this Markov chain. These probabilities satisfy

[~ ]
= Zw,-qj,;, 1=0,1,--- (18)
i=0
where
oo . oo () t—-1 _
g = [T+ fle )i [ O ey
0 o (1-1)

S 202 g ag [7 OB .
+lz=;/(; Te f-r(:c’J)d.'B/o‘ (i—_l)fe Any(y)dy, i=1,2,-

Here 7 denotes the length of the gated and individual service phases, T = H + 2{21(){1 + Ri)
and f-(z,7) is the probability density function of 7 conditioned on N = j. Letting D; = X;+ R,
we have E[e~"*|N = j] = H*(s)D*(s)}, j = 1,---. Multiplying both sides of equation (18) by



2 and summing over £ yields

R < : ° (Azz)! _,, ) © (Ayz)-t _ y
Gn(z) = ;7’:12;1/; e A fr(z:J)dz./o G-  fp(y)dy

o0 o) . oo () =1
+)m; /o ze” 3 f,(z,7)dz fo (is'%)l)!-e""’fs(y)dy

= (

H*(M1 - 2))B*(A\(1 - z))f:w,-p*(,\(l - 2))
J=1

+(z-1)B"(A\(1 - 2))H*()) f: x; D*(AY

i=1

H*(A1 - 2))B*(A(1 - 2))Gn(D"(M(1 - 2)))
+(2 - 1)B*(A(1 - 2))H*(A)GNn(D"(}))
which yields equation (17). a
We define the function g : [0,1] — [0,1],
o(z)=D"(M1-2)), 0<z<1 (19)

and the notation g;(z) to denote the i-th fold composition of g, i.e.,

z, i=0,
(=) = { 9(gi-1(2)), i=1,2,---. (20)

The p.gf. Gn(2) can be expressed as

Gr() = (Ma(2) - po (A Na(2)) B (A1 - ) (1)
where
M) = [[E O a(=)B A1~ g2,

Na(z) = (1-2)+ 3 dla)(t - gi(2)),

i=1

di(z) = [[H-(M1-g:(2))B"AQ - D" (M1 = gi(2))).
=0
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This is verified by substituting (21) into'(17). The unknown constant, pp = GN(D"(})) is

obtained from the above expression to be

__ M(D())B(D*(M)
Po= 17 H~(\)B*(D*(\))Na(D=(X))

(22)

The expression for Gn(z) is well behaved in [0,1] when A(X + R) < 1. This is because g can
be shown to be a contraction mapping from [0, 1] into itself with a unique fixed point at z =1
when A(X + E) < 1. The evaluation of py requires a numerical calculation of N1(D*(})) and
Ny(D*())) which are expressed as an infinite sum and infinite product respectively. In practice,
these are approximated by a finite sum and product. If we use the superscript (n) to denote
such approximations based on the first n terms, then the following expressions provide error

bounds on the truncated values of Ny() and N5() respectively

Ny(D*()) = N{M(D™(A)

IA

pM(1-D*(A)/(1-p), n=0,1,---,

exp(p™*! /(1 - p)[H/(1 - p"H) + pB/(1 - p"'B)},
n > min{0,-InH/Inp,—In/p - 1}

Ny(D*(X))/NIY(D*(N))

IN

where p = AM(X + R).

By differentating both sides of equation (17) and making use of the moment generating prop-

erties of the p.g.f., we obtain

7 - ME+B) +pH ()

1-p (23)
_ = 2UTF L BVE LT L 22 L B2 e B2
7 N1+22%(X +R)(B+H)+ (X2 +R*-X -R")] (24)
1-p?
B2+ 202BH + 22BpoH()) + \?H?
2 H + 2)BpoH"(}) + . (25)

1-p?

Substitution of the expressions for N and N2 into equations (6), (14), (16), and (1) yields
T. It is possible to obtain expressions for the p.g.f. for the distribution of the total number

of customers in the system and the Laplace transform for the sojourn time of a randomly
chosen customer using similar calculations. In this case, care must be taken to capture the

dependencies between the statistics of I, Y, and X.



In the remainder of this section, we adapt the above results to the two models considered in

[2].

Exhaustive non-gated service: In this sytem, the gated phase is nonexistant, i.e., Y = 0.

The mean customer sojourn time is

T_poﬁ/,\+ﬁ/2+§/2 WYJrf
"~ p/A+B+NX 2N 2
where
N = ’\B+P0’
1-p
7 - Nl1+2)B +X(X7-X%)]+ B + 20Bp

1-p2 ’
po = Gn(X7(})),
p = IX.

The quantities T and T2 are given by equations (8) and (9).

Exhaustive gated service: In this sytem, the non-gated phase is nonexistant, i.e., B = 0. In
addition, the gated phase service time is independent of the number of customers served. he

mean customer sojourn time is

= (Z2+H)/2+Th . N°X X
T = L v — + =
A+ B+Nx TR T3
where
T2 -
= - M 4plH (A),
1--p
- 3 o2
77 - N4+2Xh+ X(X?-X )]+/\2h2,

1-p?
po = GN(X"(})),
p - AX.

The quantities T and 32 are given by equations (8) and (9).



4 Summary

In this paper we have presented and analyzed a model of a system in which customers receive
three phases of service. This work generalizes the results of Krishna and Lee for two phase
service systems. Their two models are obtained by restricting the service times to be exponential

r.v.’s and by setting the appropriate service phase to be of zero duration.
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