ParaGraph: Graph Editor Support for Parallel
Programming Environments

Duane A. Batley
Janice E. Cuny
Craig P. Loomis

COINS Technical Report 89-53
August 1989

Department of Computer and Information Science
University of Massachusetts
Ambherst, Massachusetts 01003

ParaGraph: Graph Editor Support for
Parallel Programming Environments !

Duane A. Bailey
Department of Computer Science
Williams College, Williamstown MA
bailey@cs.williams.edu

Janice E. Cuny
Craig P. Loomis
Department of Computer and Information Science
University of Massachusetts, Amherst MA
cunyQ@cs.umass.edu
loomis@cs.umass.edu

Abstract: We report here on a graph editor, called ParaGraph, that supports the programming
of massively parallel computations. It provides a flexible mechanism for the concise specification
of families of annotated graphs, addressing the problems of user-annotation and scale independent
graph manipulation. It has been integrated into our programming environment, where it serves as
the basis for tools supporting communication abstractions in program specification and debugging.
Its extension to a number of other parallel programming environments would be straightforward.

Keywords: Editors, parallel programming environments, user interfaces, communication structures,
massive parallelism, graph grammars.

1. Introduction

Programmers will require sophisticated support tools in order to develop massively parallel
computations. Here, we focus on computations designed for message-passing architectures,
considering support for fine grain parallelism in which large numbers of processes commu-
nicate frequently across regular interconnections. For these computations, it is apparent
that programming tools should facilitate the use of graphs.

Graphs naturally represent visualizations used by algorithm designers. Pictures of
graphs, for example, often accompany algorithm specifications in the literature. They

1The Parallel Programming Environments Project at the University of Massachusetts is supported by the
Office of Naval Research under contract NO00014-84-K-0647 and by the National Science Foundation under
grants DCR-8500332 and CCR-8712410.

ParaGraph: Graph Editor Support for Parallel Programming Environments 2

can be used to depict process structures showing potential channels of communication,
or global communication patterns giving high-level views of interprocess communication
behavior [3]. Providing support for the explicit specification of graphical representations
can reduce the disparity between a programmer’s conceptualization of his algorithm and its
implementation. In addition, it can increase the homogeneity of process code [2], eliminate
the possibility of some types of communication errors [3], provide a basis for coherent
graphical displays [15,23], and facilitate the manipulations needed in scaling, animation,
and debugging of parallel programs.

The use of explicit graph specifications in parallel programming environments is not
new |[6,7,8,16,17,20,21,22], but none of the existing tools provide the comprehensive support
needed. Such support must include

* Scalable graph specifications. Programmers typically implement and debug
small versions of their algorithms which are then scaled for massive parallelism.
Even after the program is completed, it is often necessary to rescale it — both up
and down — to reflect problem size or hardware availability. Support for ezplicit
graph representations should facilitate the description of not just graph instances,
but entire graph families.

*x User-specific annotations. Interpretation of a graph requires the labeling of
nodes and edges with user- or tool-specific attributes. Such attributes might, for
example, define process code, actual parameter values, graphical rendition, resource
assignment, channel names and protections, or communication protocols. Support
for explicit graph representations should provide concise, flexible mechanisms for the
annotatton of graphs.

* Graph compositions. Often more than one graphical representation is used in a
computation: a program may have phases of execution that require distinct graphs or
it may be most naturally expressed as the projection of a number of partial graphs. As
programmers become accustomed to massively parallel computing, composition will
be used to form more complex programs. Support for ezplicit graph representations
should include mechanisms for graph composition.

* Graph visualizations. In using graphs to represent the visualizations of algorithm
designers, it is crucial that graph presentations be comprehensible. Support for ez-
plicit graph representations should provide facilities for the management of graph
layouts.

Most of the existing tools allow the user to annotate graph nodes and draw their inter-
connections [17,20,21,22]. Few, however, provide any mechanisms for scaling or layout

ParaGraph: Graph Editor Support for Parallel Programming Environments 3

assistance. Polylith [21] and CODE |[7] provide some scalability, Polylith by instantiating
components before interconnection and CODE by hierarchical descriptions that include
replication nodes. Other approaches provide scalability either with textual descriptions
[16], losing the benefits of graphical rendition, or with library selections [6], losing the flex-
ibility needed for user-annotation. The EDGE graph editor [19], not designed specifically
for parallel programming applications, does provide extensive layout assistance.

We report here on ParaGraph,? a graph editor that is unique in providing the compre-
hensive range of facilities needed to support the explicit use of graph structures in a parallel
programming environment. Figure 1 shows a ParaGraph session in which the family of
complete binary trees is specified (in the windows labeled Start and TreeProd) and two
members of that family are generated (the windows labeled BINTREE(1) and BINTREE(2)).
Details of this figure are discussed more fully later in the paper.

The implementation of ParaGraph is based on a graph grammar formalism specifically
suited to the description of parallel communication structures. In Section 2, we describe
that formalism. In Section 3, we illustrate ParaGraph’s interface to basic graph grammar
mechanisms and, in Section 4, we describe its extensions that facilitate programming. In
Section 5, we discuss the role of ParaGraph within our parallel programming environment
and, in Section 6, we summarize our contributions.

2. Theoretical Foundations

Our editor is based on a graph rewriting formalism called Aggregate Rewriting (AR) Graph
Grammars [1,4]. We describe these grammars briefly, first giving an informal introduction
and then giving the formal details.

2.1 An Introduction to AR Graph Grammars

An aggregate is a set of logically related nodes in a graph; for example, the leaves of a
binary tree form an aggregate, as do its left subtree and a path from its root to a leaf:

2Though the prefix “para” might suggest parallel (either because we use a parallel graph rewriting mech-
anism or because we apply our results to parallel programming), we interpret it to mean “beyond” (as in
“paranormal”), emphasizing the fact that the editor supports the specification of not just single graphs, but

entire graph families.

ParaGraph: Graph Editor Support for Parallel Programming Environments

ety

Maln menu

Mako a view
Make a producton view
Deleto a view

WNHANRINNIIPNNFANANIN

BINTREE(1)

Read in a graph file

Read in graph files...

Write the graph files (database)
Writs the graph files (graph)...
Printa view

X Camplle product
% Apply productd

‘

Ses osa e e e e,

Describo soloct
Predicato menu

'’

™~
/
/

AAARARAAALIIAINAANAALA)
., o, o000 >,
07000 0%6% %0 %000 % %0 %00 5024 % "% e %0 Se %

Pull a graph

Pull a graph differendy
oot Center a graph

Roduco a graph

EINTREE(2)

QX VY XY X2

Figure 1: ParaGraph specification of the family of complete binary trees and the
first two generated members of that family.

ParaGraph: Graph Editor Support for Parallel Programming Environments 5

INVINIV D

AR graph grammars rewrite entire aggregates in a single step. Each rewriting rule is
extrapolated from a production that transforms a small, fixed size subgraph; in applying
that production, the aggregate of all instances of its left-hand side is replaced by an
aggregate of instances of its right-hand side. Each application of the production

R
. ’ $(2) = 1
i
3 4
L L

for example, rewrites the entire frontier of an appropriately labeled tree:

R
R
R R R
L R R
i} RfRYRLR
LL LL

LLLLLLLL

The production consists of two graphs. Using standard terminology, we call its left-hand
side the mother graph and its right-hand side the daughter graph; the production is used to
rewrite a host graph into an image graph. Nodes in the production are uniquely numbered
for identification. The labels L and R used here are annotations specific to this gram-
mar. In general, labels on the mother graph are interpreted as expressions containing free
variables. Occurrences of the mother graph are isomorphic subgraphs whose labels match
with consistent bindings of the free variables. In this case, the expression is a constant
matching all nodes labeled L.

The function ¢ describes inheritance that will govern the introduction of edges connect-
ing newly created daughter graph instances to each other and to the graph that remains
after removal of the mother graph aggregate. For this production, ¢ indicates that an

ParaGraph: Graph Editor Support for Parallel Programming Environments 6

instance of the node labeled 2 (the root of a daughter graph) inherits edges from the corre--
sponding instance of the node labeled 1 (the single node of a mother graph). In the second

step of this derivation, for example, inherited edges connect the root with the first level of

interior nodes.

In tree derivations from this grammar, the host graph never contains edges between
instances of the mother graph (the aggregate of the leaves of a tree is a disconnected
collection of nodes). When the host graph does contain edges between instances of the
mother graph, which pairs of inheriting nodes in the corresponding daughter graphs should
be connected? If all pairs are connected, the daughter graph instances are joined by
crossbars; if no pairs are connected, the daughter graph instances are disconnected. For the
structures normally encountered in parallel computation, neither alternative is appropriate:
crossbars are expensive and unconnected nodes cannot coordinate their computations. In
AR graph grammars, we introduced the notion of partitioned inheritance to provide a
balance: the inheritance function is partitioned and inheritance respects partitioning (that
is, pairs of inheriting nodes from corresponding daughter graphs are connected only when
they inherit under the same partition) 3 Partitioning is used in the following production
to generate the family of hypercubes:

2

(2 1

I = I ¢2(3g =1
3

The inheritance function here is partitioned into ¢; and ¢,; instances of pairs of nodes
corresponding to node 2 and node 3 are in the domain of different partitions and, therefore,
will not be connected by inheritance. Using solid lines for edges introduced by the daughter

graph and dashed lines for edges introduced by inheritance, this production results in the
following derivation:

Partitioning allows the copying of graph structures. Each application of the cube produc-
tion copies the existing graph and creates edges between corresponding nodes of the copies.

3This decision does not preclude the construction of either crossbars or disconnected daughter graphs.

ParaGraph: Graph Editor Support for Parallel Programming Environments 7

Edges introduced by the daughter graph connect the copies; edges introduced by inher-
itance preserve the connections within each copy. Without partitioning, this production
would have generated the family of complete graphs on 2* nodes, for k£ > 0.

Nodes can be annotated as they are generated. Bindings of variables established in
matching occurrences of mother graphs are used as context in labeling the corresponding
instances of daughter graphs. Thus, for example, to generate “standard” binary addresses
for the cube, the above (partitioned) production can be modified to

2
Cc
-—>]°° $1(2) = 1
1 3c1 $:(3) = 1

For each application of the production, the variable ¢ is bound to the current label of the
mother graph node and then used in generating the label of the replacing daughter graph
nodes:

0 00 01 o1 _ 011
]\ 7t 000 1010 "}
bulai i DT
= : : 1101 5 51113
———s '
1 10 11 10010

This brief introduction to AR grammars should be sufficient for the casual reader who
may wish to skip the formal details presented next.

2.2 AR Graph Grammars: Formal Description

A grapht is a system G = (Vg, Eg, Lg,"¢), in which Vg is a finite set of vertices, Eg is
a set of two element sets on Vg, and Lg is a set of vertex labels identified with vertices
by a total labeling function ¢ : V¢ — Le. Graphs G and H are tsomorphic if there is
a bijection ¢ : Vg — Vg which induces the natural bijection between Eg and Ey. An
occurrence of G in H is a subgraph G' of H which is isomorphic to G; for the moment, we
assume that this isomorphism is label-preserving.

An aggregate |G C H] is a graph consisting of the union of the occurrences of G
in H (Figures 2a,b). A aggregate rewriting production P = (M,D,¢ = ¥, ¢:) rewrites

4For the purposes of this paper, we work with undirected, connected graphs without self-loops or multiple
arcs. Although, the definitions may be subjected to obvious extensions.

ParaGraph: Graph Editor Support for Parallel Programming Environments 8

occurrences of a mother graph, M, to copies of a daughter graph, D, under the direction
of an inheritance function ¢ : D — M. The inheritance function ¢ is a partial, surjective
function that indicates, for some nodes of a daughter graph, a node in the mother graph
that will provide connecting edges. It is often useful to consider a fixed partitioning of ¢
into one or more ¢;, each of which is also surjective.’

We now describe the mechanics of the parallel rewrite rule. All occurrences of the
mother graph are removed from the host graph - yielding the rest graph (Figure 2). The

Figure 2: (a) A host graph with a — b occurrences, (b) an aggregate of a — b graphs,
(c) the rest graph and (d) the interface. Note that graph occurrences
overlap.

interface is the graph induced by the set of edges which either are incident to both the rest
graph and an occurrence of the mother graph, or are incident to two distinct occurrences
of the mother graph. For each occurrence of the mother graph found in the host graph,

a daughter graph is (disjointly) added to the rest graph. The interface is rewritten using
the following:

o If the edge ¢ = {u,v} is incident to the rest graph at u and an occurrence of the
mother graph at v, an edge is introduced between u and all instances of nodes v' € Vp
for which v' € dom(¢;) and ¢;(v') = v :

o If the edge e = {u,v} is incident to two occurrences of a mother graph, an edge is
introduced between copies of the daughter graph incident instances of u' € Vp and
v' € Vp whenever v',v' € dom(¢;) and ¢;(v') = v and ¢;(v') = v.

Various applications of the inheritance function are depicted in Figure 3. In each example,

5The trivial partitioning ¢; = ¢ is used when no logical partitioning of ¢ is desired.

ParaGraph: Graph Editor Support for Parallel Programming Environments

b b b

b 2

- , $(2) = 4(3) =1 a a (b)
b
3 b b
b b b

b 2

7, h@=14@=1 = a ()
3 b b
b b b

b 2

1| he@=1 a = @
3c c c

Figure 3: The various effects of inheritance functions on production application. The
effect of rewriting the same host graph(a), using a total inheritance func-
tion without partitioning (b), a total inheritance function with partitioning
(c), and a partial inheritance function (d).

ParaGraph: Graph Editor Support for Parallel Programming Environments 10

the a — b edges are inherited from interface edges between the rest graph and instances
of the mother graph; the b — b edges are inherited from interface edges between distinct
instances of the mother graph. In (b), the inheritance function was not partitioned so all
pairings of nodes in the domain of ¢, from different daughter graphs inherited the host
b — b edge; in (c), the inheritance function was partitioned so only nodes in the same
partition inherited the host b — b edge; in (d), the inheritance function was not total and
nodes labeled ¢ did not inherit any edges.

 An aggregate rewriting graph grammar is a system G = (I,A, P, S) where ¥ is a
nonempty label set, A C T is a terminal label set, P is a set of aggregate rewriting
productions, and S is a start graph. A graph H directly derives a graph K, written
H = K, if there exists a production that transforms H into K as described previously.
The reflexive, transitive closure of = is written =. A graph H derives K if H = K. A
graph K is a sentential form of a grammar G = (£,A,P,S) if S = K. The language of
G is the set of all sentential forms that are labeled only from A. (In our application, we
ignore the set of terminal symbols and, instead, use patterns of production sequences to
select the subset of sentential forms that are to be included in the language.)

In describing the formalism, we have assumed that nodes are labeled with single labels
and that the isomorphism used in matching occurrences of the mother graph depends on
simple label matching. Our applications demand multiple node labels and more complex
rules for label matching and generation, requiring a logical extension of our formalism. For
the purposes of this section, we have avoided this distraction.

3. The ParaGraph Interface to AR Grammars

AR graph grammars provide a rewriting mechanism particularly suited to the construction
of graphs commonly used in parallel programming (graphs typified by low degree, low
diameter, and near symmetry). This mechanism is, however, difficult for programmers to
use directly. The ParaGraph editor provides an accessible user interface.

Using ParaGraph, the programmer begins by specifying the smallest member of his
graph family. He then describes the set of transformations needed to convert that graph
into the next larger family member and he develops a script to direct the order of their
application. The initial graph becomes the start graph of an underlying graph grammar,
the transformations become its productions, and the script determines allowable derivation
sequences.

In this section, we illustrate ParaGraph’s support for the basic AR rewriting mecha-

nisms with two examples, corresponding to the complete binary tree and cube grammars
given above.

ParaGraph: Graph Editor Support for Parallel Programming Environments 11

Example 1: Complete Binary Trees. We begin by specifying the smallest, nontrivial
member of the family of complete binary trees — a three node tree.® Individual graphs
are drawn (using a mouse) in separate windows, called views:

DA I I T IS I DT I IIII LTI
& &

»

SO0
9.
2,

5 %
“
q«‘:

;;s‘ﬂo
.‘ »
>
L) - & ‘..QIO
..
-
R

RAIR

Q)
2 e
o
1 <
o 1 2 SN
PN it
¥ ' DT
3
". A O X
R A A AR AR LA AR R AU LML AUSRRRANR
R A LR S R

Graphs can be annotated with both system- and user-defined attributes. The numeric
labels here, for example, give the values of a system-defined attribute, id, which uniquely
identifies nodes within a view. Since only limited amounts of information can be dis-
played on the graph itself, the values of all attributes are given in pop-up windows called
scorecards. Initially, the scorecard for this graph contains

&

N
':t:‘

Ude
$id*

. .
$id ¥
$id’ &

T
DR 55335.‘5@.&5“~!~.~2~.~:<.u.§$§
A S L

degroo

R

-
-
0

<<

N‘—-Oa

2
Node 1 |1
1

3

° 10“:.

oo
DR
>
”
»

where degree has the usual graph theoretic meaning and title names the attribute, if
any, to be displayed on the graph. User-defined attributes can be added by filling in a
“global” attribute template. An attribute of string type, for example, can be created with

SIf it were useful, we could just as easily have based our specification on the trivial, single node tree.

12

ntype
string

Node

reate attribute (string value).
Create attribute (integral value).

’

Attribute name
Attribute type :
Default value :

Context name

C

Graph Editor Support for Parallel Programming Environments

Once an attribute is introduced, it appears on the scorecard and can be given values (by

editing the appropriate column)

ParaGraph

T

s

e

o
e e

R A P PR
A P

3
e C R
T

'1'*".4\04‘"‘ .1‘

et
f

-
k
w

AR RO
R e A e
B A S AR AN AR A A AAIA A A A

ish

(rather than the normal left /right orientation). For the
, we use dark, solid nodes for the mother graph and lighter nodes for

in a
. Annotation is done with scorecards. Inheritance is shown as a dashed

ingu

th AR grammars. Currently,

i

f the three-node graph completes the
ded to convert it into the seven

ing o
ion nee

thin that window, color is used to dist

i

label

15

.

th
ified as productions. Each production is drawn

| window, called a production view. W

mother and daughter graph nodes

purposes of this paper
the daughter graph

1

tree specification
start graph. Next, we must describe the transformat

node tree.

Eventually, we expect to provide a set of conceptually primitive transformations that
specia

will make the editor accessible to programmers not familiar w

however, transformations are spec

For the binary
line between a daughter graph node and the mother graph node from which it inherits:

ParaGraph: Graph Editor Support for Parallel Programming Environments 13

AR

RS 3

2 SANNAD 2 NANINRNNNNN
;:sgigs?:?’.%..ms::::uss SRS

N

'kt"'ﬁ TreoProd %
f

“3‘ KR4
‘.

o'’

%)

>
X3

V X
| L)
|
.l
o S G JINRY
d e QXX
)| L . SR S
..... O
R XX
Q
.

L
RRRX
NN

5’

55
-
o}

)

-

A0y
%
-

»
-
-

*
)
7S

oy
e
"

R
Qe e

=

'e’$ e
%
X

)
-

2
X
.‘.

Y

0
%
J

PRR R

reee e ele'e’

X -
$oe

‘l

"‘
RN

P50
$Se%e%s
X

£

*
L/

This transformation corresponds to the single production of the tree grammar defined

above. We can apply it to the start graph to generate the seven node graph which will be
displayed in a new view. Application of the transformation is independent of host graph
size, and, thus, we may iteratively reapply it to create any desired member of the tree
family. :
Derivation sequences for this grammar are simple: there is only one production and each
of its applications yields a new family member. Often, however, grammars have multiple
productions and not all derivation sequences produce meaningful graphs. Within the
grammatical formalism, undesirable graphs are precluded with the use of terminal symbols
and label matching, but often this is cumbersome. ParaGraph lets the user control graph
generation directly with parameterized expressions, called scripts. Each script contains
a start graph and an expression denoting allowable derivation sequences. Expressions
range over the set of transformation names (taken from the title bars of production views)
and use operations of concatenation and iteration. Concatenation is implicit. Iteration is
indicated by parenthesis; each parenthesized expression is followed by a parameter that
will determine the number of iterations used in a given derivation sequence. There can be
more than one parameter in a script and a single parameter can be repeated.

For the binary tree specification, the (trivial) script is

Start : (TreeProd)n

where Start and TreeProd are as defined above and the value of n determinss the number
of applications needed to generate a specific family member. Naming this script BINTREE,
we can refer to the first two generated graphs, shown in Figure 1, as BINTREE(1l) and
BINTREE(2).

ParaGraph: Graph Editor Support for Parallel Programming Environments 14

It should be noted that our transformation produces graphs which have the idiosyn-
chratic “leaves-down” orientation. This stems from the “local” placement strategy Para-
Graph employed during rewriting. It is similar to that used in shape grammar derivations
[25] and takes in to account the orientation of the mother and daughter graphs as well as
that of the matched mother graph instance. In this generation of the binary tree, we used
an optional constraint which scales the “real estate” of the daughter graph instance to fit
within the real estate of the mother graph occurrence. We expect that many other graphs
will have recursive layouts paralleling their construction in this manner. Where such local
node placement techniques are not successful, more traditional graph layout mechanisms
can be invoked (as in the next example).

Example 2: Hypercubes. The ParaGraph specification that corresponds to the cube
grammar given above has a trivial start graph and a single transformation:

B A KR AR R R R R A e A NN ORI AR AR R AR R RN
R A
v} start_Cube options [s¥VIY; «,:s*“%";i:;%fg? RSN '12%':'3 % 2)
o R NSNS A A
Qk:: . vvzv §, (}
g » N3 2 b \“ O:; \]
";’3”3’; 8 NN
oo node scoreboard for graph Start_Cube I
-"br X A
RYRx I o degree | id | pid | Ute R
PUITEININE I IRy Node 0 |0) pld’ a0
}' ¢} R Q‘Q’ (X% p OO
R «:::’::::'&::’é::‘:i?::‘é.:......,.«gg' OO AR o0
A T A S S T v
Nevol Transformation options [t ettt iots %
AR KUKK X o)
N KXY YA
Ton R HESLLLLLY
ot TN NN R
o R RRRRRRER
B R R R R A
Y KK QA]
PR R AR
RO Y R)R s:‘:’ \: q'.’q’q‘ 'Q" O
RS A R 2R R R A
0 alelde X RARAARIIKRKIKN KKK
2::«.% :’0,’.;7.'5:::;::% S :" 1‘ "::::3; O:Es". “.
%&'o ::; ? .":. NANRN Yo ,'::ﬁo,p'o A%
W R
k ; ::,t:'gb 'o““ A SN ‘sgs:‘
Q0% node scoreboard for graph Transformaten
R R A RN RRRY R0
R KRR R degroo [1d [pid | ute B
A e AT I R - &
) A ERIIERN {44 KX ::‘ Nodo0 |2 0 |lc:b|pid Y
B RN K
X x4 veeved Node 1 |2 1 |1c0 {pid’ %
. {5
SRS 3 é& ¥ 2 2 [icl |pld’ R <<
.u W WX 02K A & :.k:’q ﬁ“ﬂz - il l:“d' q'q’«
Dol XX N A N A R RN AR,
S R R R R

Partitioning of the inheritance function is indicated by the shadings of the daughter graph
nodes: all nodes with the same shading are in the domain of the same partition. (Partitions

ParaGraph: Graph Editor Support for Parallel Programming Environments 15

are created by “selecting” their constituent nodes.)

For label matching and generation, ParaGraph uses a simple string matching mech-
anism [24]. As the attributes on mother graph nodes are matched, subexpressions are
bound to variables providing the context for label generation; bindings are constrained to
be consistent across a mother graph instance. In this example, the pid attribute is used
for standard labeling of the cube. The expression

le:b

is translated into an expression that matches any binary string. During the matching of
the mother graph, the matched string is bound to the identifier ¢ (b indicates Boolean).
During the generation of the daughter graph instances, the bound value is used in creating
new labels which either end in 2 0 (!c0) orend in a 1 (!c1).

The first four applications of the transformation are shown in Figure 4.

For this cube grammar, local layouts did not perform well. Instead post-generation,
user-assisted placement heuristics were employed. Currently our heuristics are modifica-
tions of an approach in which the graph is viewed as an assemblage of steel rings (the
nodes) and springs (the edges) that is allowed to relax into a minimal energy configu-
ration [10]. ParaGraph includes a standard interface for experimenting with placement
algorithms and, eventually, we hope to provide a wide selection of heuristics.

The ParaGraph editor, thus provides usable interface to our graph grammar formalism.
We have been careful to adhere to the formalism of aggregate rewriting in our construc-
tion of its graph grammar “engine”. Furthermore, we have confined the implementation
of graph rewriting to a module which could be easily replaced to support alternate char-
acterizations of graph rewriting.

4. ParaGraph Extensions

ParaGraph, as described above, is often quite cumbersome as a parallel programming tool.
In this section, we describe a number of extensions that have been included to facilitate
programming.

Again, we proceed with a series of examples. For clarity and brevity, we omit scorecards
and, instead, label graphs directly. We also omit step-by-step instructions on the use of
ParaGraph and assume that the reader already has the flavor of its interface. Unless
otherwise indicated, the layouts in this section were not generated automatically.

16

] ts

nvironmen

]
4

2%
R
o o)
3K

04l
3223

2

2 LT LTt N

100
]

0

AR

uw»uvu,n»n.nn ..»9.?...
e
ARSI

1101

il e P
$ax3
5324

~

ith

t

1p

ly generated by the scr

mil

ion of the family of hypercubes together w

ficat

i

tor Support for Parallel Programiming E

Graph Ldi

ParaGraph

Transformation

1001

ParaGraph spec

4

igure

F

the first four members of that fal

(Transformation)n.

Start

ParaGraph: Graph Editor Support for Parallel Programming Environments 17

Example 3: Butterflies and Banyans. In this example, we introduce a mechanism
for providing restrictions on the domain of a transformation.

To describe the family of butterfly graphs, we begin with a four node start graph
annotated by a single, user-defined attribute giving its rank:

rank=0 rank=0

rank=1 rank=1

There are three transformations. The first begins a new rank of the butterfly by adding
a row of nodes connected along the top level:

rank=0
(B1)
rank=0 l

~
~
-~

rank=0

The transformation applies only to nodes in the top level because labels of matched mother
graph instances must have rank=0. Its first application results in

rank=0 rank=0
rank=0 rank=0
rank=1 rank=1

The second transformation:

(B2) rank=!{r:i} ,.\

/ \

/ \
rank=!r+1 D rank=!r+1

should make a connected copy of the original host graph by rewriting nodes on the bottom
{wo ranks:

ParaGraph: Graph Editor Support for Parallel Programming Environments 18

=

However, with the given labeling and ParaGraph'’s simple string matching facilities, it is not
possible to restrict rewriting to just the lower ranks. Additional labels could be introduced
but this is often cumbersome. Instead, ParaGraph allows the user to limit the domain of
a transformation directly with an associated restricting predicate. The transformation is
only applied to those nodes for which the associated predicate evaluates to TRUE.

Restricting predicates are most often specified by example: the user selects a subset of
nodes from a sample graph and heuristics are used to convert his selection into a general-
ized, closed form expression [26,27]. Our heuristics generate predicates which are conjunc-
tions and disjunctions of base predicates of the form attribute = value or attribute # value
(attributes can be limited to an “interesting” subset). Predicates are determined both for
the selected subset and for its complement. They are generalized by replacing integer at-
tributes with simple expressions involving MIN and M AX (the minimum and maximum
values respectively over the current graph instance) where appropriate. A list of applicable
predicates — ranked by generality and simplicity — are presented to the user who can
either choose a selection from the list or enter his own alternative.

For this butterfly transformation, the user would select the two lower ranks of nodes

rank=0 rank=0
rank=0 rank=0
rank=1 rank=1

and the editor would generate the list of expressions:

A ODARNINNINNN NANNNNNRNNS

it::?ﬁ‘ Predicate choices X E::
WM (degroel=MIN) ¢
Yovy] (degree = MAXD) or (degree = MAX-1) it
gody (rank = 1) or (degres = MAX) ORRKK
:’:.:' ¥ (rank|=0) or(degree = MAX) g ;‘:

ParaGraph: Graph Editor Support for Parallel Programming Environments 19

We have found that these simple heuristics are quite adequate. In most cases, the
highest ranked choice is an appropriate predicate for the transformation.

Once a restricting predicate is associated with a transformation, it is used whenever
that transformation is applied, regardless of host graph characteristics.

The first application of the restricted version of transformation B2 results in the graph

rank=0
rank=1
rank=2

where all nodes at the same level have the rank attribute value shown to the left of the
graph.
The third transformation:

(B3) rank=0 !

/ N\
\

rd
rank=0 [] [0 rank=0

makes a connected copy of the nodes in the top rank to complete the butterfly. It does
not use either partitioning or restricting predicates.
These three transformations can be iterated in the order specified to generate any

butterfly:

ParaGraph: Graph Editor Support for Parallel Programming Environments 20

If they are taken out of order, however, unwanted graphs occur. To control the derivation
sequence, we define the BUTTERFLY script as

StartButterfly: (B1 B2 B3)n

where StartButterfly is the 4 node start graph from above. BUTTERFLY(2) and BUT-
TERFLY(4), then, are the 32 and 192 node butterflies respectively.

An alternate layout of the butterfly is shown in Figure 5. It was generated automatically
and differs in orientation from the layout we have described above. Eventually, we expect
to provide a menu of local layout options that will enable the user to have more control
over placement. ,

Note that the transformations (B2) and (B3) of this grammar could be trivially modified
to create any desired number of copies and thus they could be used in generating other
SW-banyan networks [12]. In forming regular banyans, for example, the number of copies
created by the second transformation controls the fan-in (f) and the number of copies
created in the third transformation controls the spread (s). To specify the family of
SW-banyans with f = 3 and s = 2, for example, we would have to modify the second
transformation to

N
l\
[}

O B

rank=!i+1 rank=!r+1 rank=!i+l

rank=!{r:i}]
(B2°) ,

Vg N

where the selection needed to generate the appropriate restricting predicate is shown to
the right. This new version of the transformation (together with an appropriately modified
start graph) would result in the derivation

ParaGraph: Graph Editor Support for Parallel Programming Environments 21

23484
OO0 \l Q
Maln menu

Makeoa view
Make a production view
Readin agraph file
Delsta a viaw
Printa view
Writa the graph files (database)
Write tho graph files (graph)

oS
"% %e"e

RIS

'I.I '.' 9% %%y l" () "0‘.'0'5'!".

18 oplons

Compile production
Apply production

Describe selection T
Predicate menu .

Pulla graph

Center agraph oy BABAABARARBIRINYS oy,

AANNAANN

]
X
1

Mako an auribute pad
Add a global atribute

Editeditor cptions
Rodraw

Help

Quit

OO IR

'e%e%e’e’

AAAAAR AL
IIOSOSSSISD a:n‘Ao:n

Figure 5: Butterfly grammar and the results of the first iteration of the script (Steps
1 through 3).

ParaGraph: Graph Editor Support for Parallel Programming Environments 22

from the script StartButterfly': (B1 B2’ B3)n.

Example 4: Database Trees. In this example, we introduce edge inheritance.
We specify a family of graphs, called database trees, that are formed by identifying the
leaves of two complete binary trees:

We begin with a four node start graph:

code=Upper

code=Leaf code=Leaf

code=Lower

The obvious transformation — in which leaves are replaced with four node database trees
— does not work, however, because the top root of the daughter graph needs to inherit
just the upward connections of the leaf it replaces while the bottom root of the daughter
graph needs to inherit just the downward connections of the leaf it replaces.

ParaGraph: Graph Editor Support for Parallel Programming Environments 23

Using the basic AR rewriting mechanism, inheriting daughter graph nodes always in-
herit all of the edges of the associated mother graph node. ParaGraph refines this mech-
anism to allow partial inheritance: daughter graph nodes can inherit selected subsets of
nodes. To distinguish these subsets with a minimum of context, we introduce the notion
of a junction which is the incidence of an edge and a node. Each edge has two junc-
tions. Junctions can be labeled with sets of attributes and their labels can be matched
and rewritten in the same manner as node labels.

For the current example, the desired transformation with partial inheritance is

up
Wwo_-7 code=Upper
code=
code=Leaf Leaf code=Leaf
- o code=Lower
down ~ -
down

where the junctions are shown as partial edges labeled up and down.

This transformation indicates that the top node of the daughter graph inherits just
those edges with junctions labeled up from the mother graph node and the bottom node of
the daughter graph inherits just those edges with junctions labeled down. Junctions par-
ticipate only partially in occurrence matching: where the corresponding edges are missing
from the mother graph instances (as, for example, at the edges of a graph), they are
not required for matching; where they exist, however, their labels are matched and possi-
bly rewritten. This mechanism aids in uniform rewriting of graphs that are not entirely
symmetric.

Note that the two junctions of an edge need not be labeled the same: junctions provide
local views of edges. They are thus closely related to the concept of a port that has been
used, for example, in Poker. In our view, a port is a set of similarly labeled junctions; it has
no significance in the graph description but it may be relevant for particular applications.
For these applications, “Show ports” has been included as a display option; if invoked, it
would render the graph

where all junctions on the lower node are similarly labeled, as

ParaGraph: Graph Editor Support for Parallel Programming Environments 24

Example 5: Grids. In this example, we introduce edge partitioning.

There are a number of ways of describing the family of grids. Perhaps the most obvious
is to define a four node instance and then repeatedly add columns and rows. Assuming
that nodes are annotated by row and column attributes, the transformations to add a new
column

(62)

require restricting predicates (shown by the sample selections to the right of the transfor-
mations), as well as node inheritance (at the unshaded daughter graph nodes) and edge
inheritance (at the shaded daughter graph nodes).

Since junctions missing from mother graph occurrences are ignored, all nodes — in-
cluding boundary nodes which do not have the full complement of four neighbors — are
rewritten with this same transformation. Thus, the script

Start.Grid :(G1 G2)n

ParaGraph: Graph Editor Support for Parallel Programming Environments 25

describes the set of square grids, while the script
Start_Grid :(G1)n(G2)m

describes the set of (n + 2) x (m + 2) rectangular grids.

An alternate method of describing a square grid is to use recursion, expanding each
node to a 2 x 2 subgrid. This transformation requires the introduction of edge partitioning.
In a manner analogous to node partitioning, junctions are partitioned and inherited edges
between instances of daughter graphs respect this partitioning. The required transforma-
tion is

Ry, 1 G
.Y |'l\\ /,Fﬂ Y
gL N ’ | Hadl

N N v ’
\\ up /'

\ Vs
left | , <\ right

’ down |

’ VIEEN N

e ’ N IR
7 Y

S

R G

where the central node is replaced (“expanded”). The junctions of the daughter graph are
partitioned into four sets. As before, partitioning is indicated by color; for the purposes
of this paper we use labels R, B, G and Y (for red, blue, green and yellow). Nodes
corresponding to nodes 1 and 2 of the daughter graph, as an example, inherit upward
edges that are connected to downward edges from nodes 3 and 4 of other daughter graph
instances within the same partitions. Thus in transforming a 4 node grid into a 16 node
grid, only the dashed connections are made:

o un e

[l

ParaGraph: Graph Editor Support for Paralle] Programming Environments 26

The above transformation can be selectively applied to subsets of nodes to generate
grids with non-uniform refinements:

Fj i | 1 H__l

r_-.ll | S B JJLB

In a manner consistent with node inheritance, edges connecting refined grids to other
refined grids respect partitioning while those connecting refined grids to unrefined nodes
ignore partitioning.

Refinements such as these are not easy to describe in conventional facilities for rep-
resenting graphs. We expect that they will be important, especially in the future as we
consider support for dynamic changes to graph structures.

Example 6: Hexagonal Mesh. In this example, we do not introduce any new features
but instead demonstrate a more complicated instance of edge inheritance with partitioning.
Our specification of the family of hexagonal meshes [18] uses the same recursive tech-
nique used above — individual nodes are expanded to 2 x 2 submeshes.. In this case,
however, the required transformation is more complicated and, as a result, we show it in
stages.
We begin by defining the mother and daughter graphs along with their junction labels:

ParaGraph: Graph Editor Support for Parallel Programming Environments

cout BIn
Aln AOut

BOut Cln

COut \
L

AIn

COut

Aln

BIn
L =

BIn

L

BOut

:'\ AQut

Cin

1|:L\ AQut

Cln

BOut

Cln

27

The definition of inheritance requires the introduction of 14 intergraph edges, connect-
ing all pairs of similarly labeled junctions. Because it is difficult to display this many
edges coherently, ParaGraph permits a hierarchical display: partial inheritance is indi-
cated by dotted intergraph edges which can be individually expanded in order to specify
their details with junction-to-junction edges. For the purposes of this paper, we assume
that inheritance edges have been defined between all pairs of mother and daughter graph

junctions having the same label.

To complete the transformation, we must partition the edges; using the letters R, Y,

B, G, T, P, and O to denote colors, we have

P R o B

Y

T
G

-

N\

L

AN

L

N

R O B P

L

indicating that only the dashed connections are to be made:

ParaGraph: Graph Editor Support for Parallel Programming Environments 28

N
NN

(As this example illustrates, we have not resolved all of the issues inherent in the
display of complex graph structures. We expect to be able to address these issues more
satisfactorily as we accumulate experience with the editor.)

Example 7: Database Trees revisited. In this last example, we use an alternate
specification of the database tree of Example 4 to introduce a mechanism for graph com-
position.

We construct the graph family tree as the composition of two families. We begin by
specifying binary tree families for both the upper and lower trees (these specifications are
obviously similar to that of Example 1 and we omit them). We next generate appropriately
sized graph instances from each grammar separately and then “glue” them together at their

“leaves. Gluing identifies nodes with the same values for some set of attributes:

00 01 10 11 ;

00 01 10 11 COMPOSITION

In identifying two nodes, we create a merged node having the union of their edge sets.
The attribute values for the new node are determined by combining the values from the
original nodes: where they agree, the common value is chosen (in most cases); where they
disagree, a handler is invoked to resolve the discrepancy. Thus, for example, attributes
representing parameters might be joined into a parameter list, attributes representing
node degree might be recalculated, and attributes representing code segments might be
concatenated into a program segment. A standard collection of handlers is available.

ParaGraph: Graph Editor Support for Parallel Programming Environments 29

This same mechanism of node identification will enable users to form composite graphs
for programs that include a variety of subcomputations.

ParaGraph thus extends the AR mechanism in a number of ways — adding restricting
predicates, edge inheritance, and graph composition — to make it a more convenient tool
for the programmer. In the next section, we briefly discuss ParaGraph’s integration into
a parallel programming environment.

5. Using ParaGraph in a Paralle]l Programming Environment

Our motivation for designing the graph editor was to provide support for the explicit
representation of graphs for use within parallel programming environments. ParaGraph is
central to the programming process in our environment [9]. Its output — in the form of
both annotated graphs and underlying graph grammars — is accessible to tools supporting
all phases of program development. We currently use it in three activities:

e Specifying Parallel Programs. Following the approach used in Poker [22], we view a
parallel program as an annotated graph. Annotations might, for example, include
code segments, run-time parameters, port associations, or compile-time constants.
This form of programming reduces the disparity between a programmer’s concep-
tualization of his algorithm and its implementation, increases the homogeneity of
process code [2], and forms the basis for coherent graphical displays [15,23]. It is
only feasible, however, if the program descriptions are scalable.

ParaGraph permits the user to specify an annotated family of programs. Specific
programs are generated as graph family instances and then preprocessed into an
form appropriate for compilation. Currently, we produce a set of C programs and
channel declarations suitable for execution by the Simon Multiprocessor Simulator
[13,14] but extensions to other environments are straightforward.

e Specifying Canister Communication. For many massively parallel algorithms, in-
terprocess communication is often quite structured: streams of related data are
pipelined along sequences of channels, values are broadcast to (and aggregated from)
sets of processes, or messages are routed through intermediate processes to their
intended destinations. In each case, communications are best understood not as iso-
lated point-to-point message transmissions, but as components of global patterns of
communication. These patterns are fundamental to our understanding of parallelism
but they are not supported by existing parallel programming environments.

ParaGraph: Graph Editor Support for Parallel Programming Environments 30

Previously, we introduced a programming construct, called canister communtcation,
that supports the explicit description of global communication patterns [3]. To use
canister communication, the programmer must describe annotated paths through
a process array, called itineraries. ParaGraph provides two mechanisms for these
descriptions: the first defines a path through an existing process structure and the
second defines an itinerary separately as a directed subgraph (implicitly defining the
process structure as the composition of all such graphs) [26,27).

o Parallel Debugging. Parallel debugging for massively parallel, message-passing sys-
tems is extremely difficult: the programmer must contend with an overwhelming
amount of potentially relevant information and he cannot rely on consistent global
states or reproducible behavior. Often these systems are best approached by mod-
eling their behavior: the programmer determines the extent to which models of the
intended behavior correspond to models of the actual behavior [5)].

To facilitate this modeling for message-passing behavior, we have developed a pattern-
oriented parallel debugger [15], called Belvedere.” Belvedere allows the user to define
abstract communication events which are then automatically animated. Belvedere
utilizes ParaGraph in two ways. Editor specifications of process interconnection
structures are used in generating displays for animation and editor descriptions of
itineraries are used in defining abstract communication events.

While we have just begun to integrate ParaGraph into our environment, it is clear that
graphical specifications and representations are useful in a variety of support tools.

6. Status and Conclusions

ParaGraph is the first graph tool to provide the comprehensive range of support needed
within a paralle] programming environment. Most significantly, it provides scalability,
allowing the user to concisely describe not just graph instances, but entire graph families.
It also features flexible mechanisms for graph annotation and composition, and it supports
graph visualization with a variety of layout heuristics. ParaGraph has been successfully
integrated into a parallel programming environment where it is used by tools for program
specification and debugging.

The editor, as described here, has been designed and its implementation is largely
complete.® We continue, however, to investigate a number of issues, including the display

" Belvedere comes from the Latin bellus meaning “beautiful” and vedere meaning “view.”

8 At the time of this writing, the implementation of edge inheritance is the only significant section of code
missing.

ParaGraph: Graph Editor Support for Parallel Programming Environments 31

and storage of very large graphs, the identification of predefined graph transformations,
the use of more powerful labeling mechanisms, and the introduction of additional facilities
for graph manipulation. We are also investigating the generalization of our techniques to
less regular graphs and to graphs that change dynamically.

Acknowledgements. We would like to thank a number of people for their
contributions to ParaGraph. John Hagerman developed several early prototypes which
influenced our design; Jim Ahrens, David Black, Nandakumar Varadaraju and Qing Yu
contributed to the current design and implementation. Lawrence Snyder, a continuing
source of ideas and suggestions, made extensive comments on earlier drafts of this paper.

References

1. Bailey, D. A. Specifying Communication for Massively Parallel Ensemble Machines.
Ph.D. Thesis, University of Massachusetts, Amherst, September 1988.

2. Bailey, D.A. and Cuny, J.E. Visual Extensions to Parallel Programming Languages.
Technical Report 89-69, COINS Department, University of Massachusetts, 1989.

3. Bailey, D. A. and Cuny, J. E. Canister Communication in Parallel Programs. Tech-
nical Report 88-42, COINS Department, University of Massachusetts, October 1988.

4. Bailey, D. A. and Cuny, J. E. Graph grammar based specification of interconnection
structures for massively parallel computation. Proceedings of the Third International
Workshop on Graph Grammars, Springer-Verlag, Berlin (1987), pp. 73-85.

5. Bates, P. C. and Wileden, J. C. High-level debugging of distributed systems: the
behavioral abstraction approach. Journal of System Software 3 (1983), pp. 255-244.

6. Berman, F., Goodrich, M., Koelbel, C., Robison III, W. J., and Showell, K. Prep-P:
a mapping preprocessor for CHiP architectures. 1985 International Conference on
Parallel Processing (August 1985), pp. 731-733.

7. Browne, J. C., Azam, M., and Sobek, S. CODE: a unified approach to pa.rallél
programming. IEEE Software (July 1989), 10-19.

8. Couch, A. Graphical Representations of Program Performance on Hypercube Message-
Passing Multiprocessors. Ph.D. Thesis, Tufts University, Medford, Massachusetts,
1988.

ParaGraph: Graph Editor Support for Parallel Programming Environments 32

10.

11.

12.

13.

14,

15.

16.

17.

18.

19.

20.

Cuny, J. E, Bailey, D. A., Hagerman, J. W., and Hough, A. A. The Simple Simon
Programming Environment: A status report. Proceedings of the Twenty-Fifth Annual
Allerton Conference on Communication, Control and Computing (September 1987),
PP. 238-247.

Eades, P. A heuristic for graph drawing. Congressus Numeratium 42 (May 1984),
pp.149-160.

Gisi, M., Cuny, J. E., and Bailey, D. A. Canister communication as a vehicle for par-
allel debugging. In Proceedings of the First Annual IEEE Sympostum on Distributed
and Parallel Processing (May 1989), pp. 198-199.

Goke, R.L. Banyan Networks for Partitioning Multiprocessor Systems.Ph.D. Thesis,
University of Florida (1976).

Fujimoto, R. M. SIMON: Simulator of Multicomputer Networks. Technical Re-
port UCB/CSD 83/140, University of California at Berkeley, August 1983.

Heller, D.E. Multiprocessor Stmulation Program SIMON. Shell Development Corpora-
tion, 1985.

Hough, A. A. and Cuny, J. E. Initial experiences with a pattern-oriented parallel
debugger. In ACM SIGPLAN and SIGOPS Workshop on Parallel and Distributed

Debugging (May 1988). Also appeared as SIGPLAN Notices 24(1) (1989), pp. 195-
205.

Li, H., Wang, C. C., and Lavin, M. Structured Process: A new language attribute
for better interaction of parallel algorithm and architecture. Proceedings of the 1985
International Conference on Parallel Processing (August 1985), pp. 247-254.

Jablonowski, D. and Guarna, V.A. GMB: A Tool for Manipulating and Animating

Graph Data Structures. Software - Practice and Ezperience 19(3) (March 1989), pp.
283-301.

Kung, H. T. and Leiserson, C. Systolic arrays (for VLSI). In Mead, C. and Conway,

L., editors, Introduction to VLSI Systems, Addison-Wesley, Reading, Massachusetts,
1980.

Newbery, F. J. An interface description language for graph editors. Proceedings IEEE
1988 Workshop on Visual Languages, 1988, pp. 10-12.

Nichols, K. M. and Edmark, J. T. Modeling multicomputer systems with PARET.
Computer 21(5) (May 1988), 39—48.

ParaGraph: Graph Editor Support for Parallel Programming Environments 33

21.

22.

23.

24.
25.

26.

27.

Purtilo, J., Reed, D.A., and Grunwald, D.C. Environments for Prototyping Parallel
Algorithms. Proceedings of the 1987 International Conference on Parallel Processing
(August 1987), pp. 431-438.

Snyder, L. Parallel programming and the Poker programming environment. Com-
puter 17(7) (July 1984), 27-37.

Socha, D., Bailey, M. and Notkin, D. Voyeur: Graphical views of parallel programs.
Proceedings of SIGPLAN/SIGOPS Workshop on Parallel and Distributed Debugging
(May 1988), pp. 216-225.

Stallman, R. GNU Emacs Manual Emacs Version 18 for Unix Users. 1986.

Stiny, G. Pictortal and Formal Aspects of Shape and Shape Grammars. Birkhauser
Verlag, Basel and Studgart, West Germany, 1975.

Yu, Q. and Cuny, J. E. Support for subgraph identification in a parallel programming
environment. Proceedings of the First IEEE Regional Symposium on Distributed and
Parallel Processing (May 1989), pp. 196-197.

Yu, Q. Subgraph Identification in a Parallel Programming Environment. Technical
Report 89-30, COINS Department, University of Massachusetts, 1989.

