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Abstract

The run-time performance of a blackboard-based application can be significantly im-
proved by selecting an appropriate blackboard database representation. When numer-
ous objects reside on the blackboard, retrieval costs can be signifcantly reduced by
limiting search to the blackboard area containing the desired objects. In this paper, we
detail the blackboard representation and retrieval algorithms used by GBB. GBB al-
lows the blackboard representation to be easily modified to optimize the performance
of blackboard operations. We present empirical results demonstrating the effect of
tuning the blackboard database in a large application. The results underscore the
importance of efficient blackboard database operations and the benefits of a flexible,
instrumented blackboard development environment. We conclude with some general
guidelines for tuning the representation to produce the best performance.

1 Introduction

The performance of blackboard-based applications can be significantly enhanced by an
appropriate blackboard database implementation. The blackboard paradigm relies heavily
on the blackboard for knowledge source (KS) interaction and for holding tentative, partial
results until they are needed. Although published measures are non-existent,! the amount
of processing time devoted to blackboard interaction is significant—even in applications
built with blackboard database machinery that has been customized for speed. Therefore,
the runtime performance of a blackboard-based application is strongly influenced by the
efficiency of placing and retrieving blackboard objects.

The blackboard acts as an associative memory for KSs. Objects are held on the black-
board to be used when and if they are needed by the KSs. When numerous objects reside
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'An cxception is Fennell and Lesser’s measurements with an early version of the Hearsay-II speech
understanding system which showed a blackboard interaction to K$ processing ratio of 10/17 {2]. ‘The
blackboard-interaction/ processing ratios of the Distributed Vehicle Monitoring Testbed (used in these
experiments) range from 8/19 15/3, depending on how efficiently the blackboard is implemented.



on the blackboard, retrieval costs can be signifcantly reduced by limiting search to the
blackboard area containing the desired objects. Partioning the blackboard into levels is
one means of reducing search. The Generic Blackboard Development System (GBB) [3,4]
further reduces search by representing each level as a highly-structured, n-dimensional vol-
ume. Blackboard objects occupy an extent within the n-dimensional volume based on the
values of dimensional index attributes. In this paper, we detail the blackboard represen-
tation and retrieval algorithms used by GBB; we present empirical results demonstrating
the performance improvements that were obtained by tuning the blackboard database in
a large application: the Distributed Vehicle Monitoring Testbed [5,6]; and we present gen-
eral guidelines (based upon blackboard density and blackboard insertion/retrieval ratios)
for tuning the representation to produce the best performance.

2 GBB Blackboard and Unit Representation

GBB represents the blackboard database as a hierarchical tree? of nested blackboards, the
leaves of which are primitive blackboard elements called spaces. For example, spaces would
be used to implement the problem solving levels in the Hearsay-II speech understanding
system [7]. GBB views each space as a structured n-dimensional volume. This space
dimensionality provides a metric for positioning blackboard objects, called units, onto the
blackboard in terms that are natural to the application domain. A space dimension can be
either ordered, real numbers in some interval; or enumerated, members of a set of labels.

Units occupy some n-dimensional extent within the space’s dimensionality. A unit is
located on a space based on the values of its dimensional indexes (often abbreviated to
just indexes). Each index corresponds to a space dimension.® Each unit defines how its
index values will be computed from its slots (attributes). For example, a single slot may
contain both the z and y dimensional indexes for a unit.

There are two types of indexes, scalar indexes and composite indexes. A scalar index
represents a single “atomic” value. For ordered dimensions the scalar index types are
points (a single number) and ranges (two numbers representing minimum and maximum
values). For enumerated dimensions an atomic index value is a single label.

A composite index represents a group of atomic index values. Composite indexes are
divided into two types, sets and series. A set index is an unordered group of dimensional
index values. A series index is a group of dimensional index values where the order of the
elements is determined by the value of another dimensional index. For example, suppose
an application is monitoring a chemical reaction. A series of temperature observations over .
time would be implemented as a series index. The two dimensional indexes in this example
are time and temperature. Time is called the ordering index — it is the index by which
the temperature observations are ordered. Several non-ordering indexes may be ordered
by the same ordering index (e.g., a series of temperature and pressure observations over

time), however the current implementation does not support more than one composite
index.

2 Actually, it can be a forest.

3 . . . .
The set of indexes need not exhaust the set of space dimensions. However, such units can not be
retrieved using the missing dimensions.
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Figure 1: GBB’s Unit Retrieval Steps.

It is important to note that the distinction between scalar and composite values is
not a property of space dimensions; it is a property of indexes. That is, each unit class
specifies whether an index is scalar or composite. To summarize:

e Spaces have dimensions.

¢ Units have indexes.

o An index is a particular value or set of values for a dimension.

In database terms, indexes are keys, but in the case of composite indexes, a single key can
be quite complex.

3 Blackboard Retrieval

3.1 Overview of Blackboard Retrieval

GBB retrieves units from a space based on a retrieval pattern. The pattern specifies an n-
dimensional volume of the blackboard in which the desired units will be found. In addition
to the pattern, a retrieval request can specify two procedural filters, called the before-filter
and the after-filter. These filters check for conditions that can not be expressed in the
pattern. For example, a filter might compute a complex predicate on the unit, or check
attributes that are not represented in the dimensionality of the space.

The retrieval process is divided into four steps: primary retrieval, before-filter filtering,
pattern-based filtering, and after-filter filtering (Figure 1). To simplify the exposition, we
will describe each step as if the result of one step is passed on to the next step. In fact,
the steps are interleaved to avoid creating temporary lists of intermediate results. In the
following description, we will concentrate on the retrieval mechnanisms used for ordered
dimensions.

The primary retrieval step sclects a set of units that might satisfy the pattern. This
is called the candidate set. Each member of the candidate set is then passed through the
three filtering steps. Units that satisfy all the remaining steps are collected into a list
and returned as the result of the retrieval. Because the filtering steps consider only units
in the candidate set, the primary retrieval step must select all units that could possibly
satisfy the remaining steps.

The pattern-based filtering step compares each unit to the pattern to see if the unit
satisfies the constraints of the patiern. 'Chis step is necessary because membership in the
candidate set does not guarantee that a unit will satisfy the pattern. The before-filter
and after-filter filtering steps simply apply the filter predicates to each unit. If a predicate



returns false then the unit is removed from further consideration. The goal of efficient
retrieval is to efficiently minimize the number of units in the candidate set which do not
satisfy the pattern. This will minimize the number of units that must be examined in the
remaining steps.

Each space has a unit mapping which specifies how the storage of units on that space
is implemented. The simplest implementation strategy is to store all a space’s units in a
list. In this case the primary retrieval step is very simple — the candidate set is simply the
entire list of units on the space. However, the filtering steps must be applied to every unit
on the space. This is an ineffecient strategy when many units do not satisfy the retrieval
constraints.

The problem with the simple list strategy is that the primary retrieval doesn’t reduce
the candidate set at all. A better strategy is to partition a space’s storage into buckets or
cells based on its dimensional attributes. (This is similar to the partition and grid range
searching strategies [1].) The primary retrieval step can then examine the pattern to
determine which buckets should be included in forming the candidate set. These buckets
are called candidate buckets. The candidate set is the union of the contents of all the
candidate buckets.

The bucket technique is appropriate for ordered indexes, which have the property of
neighborhood. That is, there is 2 notion of one index value being “near” another index
value. Examples of such indexes are physical dimensions such as z and y location and
time. A hash table can not easily represent this neighborhood relationship among index
values.

On the other hand, a hash table is appropriate for indexes which are unordered such
as GBB’s enumerated dimension type, which is simply an unordered set of labels.

3.2 Details of Primary Retrieval

As mentioned above, there is a unit mapping which specifies exactly how the storage is to
be arranged for each unit class that can be stored on space. In particular, the unit mapping
specifies what space dimensions will be used in the primary retrieval step. It specifies how
to partition these dimensions into separate buckets and the exact arrangement of the data
structures.

If a unit mapping specifies that no space dimensions are to be used to locate units on
a space then the space is implemented as a list. To retrieve units from the space in this
case the three filtering steps are applied to every unit on the space because the candidate
set is the entire list of units. Units that satisfy the filtering steps are then collected into a
list of retrieved units. This representation is desirable only if there are very few units on
the space. Typically, however, there will be hundreds or thousands of units on a space.

When one or more space dimensions are specified for the unit mapping then the space is
implemented as one or more arrays. Each array dimension represents one space dimension
and each array element represents one bucket. Each element contains a list of all the units
which fall into that bucket. For example, if a space has the dimensions time, , and y then
one possible unit mapping would use three vectors, one for each of the space dimensions.
Another representation would use a two-dimensional array for z and y and a vector for
time. Note that a unit may fall into several buckets in a single array depending on the
values of the dimensional indexes for that unit, so the lists of units in each bucket are not
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A two dimensional space (x, y) containing two units (A and B). The boxes
on the right and the bottom represent two vectors of buckets and show which
buckets the two units fall into. Note that the bucket sizes need not be uniform.

Figure 2: Mapping Units to Buckets

disjoint. For example, a dimensional index value may be a range which spans a bucket
boundary (Figure 2, unit A), or the elements of a composite index may fall into different
buckets (Figure 2, unit B).

A unit mapping may specify that only a subset of the space dimensions will be used in
the primary retrieval step. For example, another unit mapping for the three dimensional
space above would be two vectors, one for z and one for y.4

By examining the pattern, GBB can determine the candidate buckets in each array.
This is a straightforward computation based on the values for each dimensional index
in the pattern. A minor complication arises when elements of a composite index in the
pattern overlap one another. Without special attention, a bucket could be included more
than once because separate index elements fell into the same bucket. To avoid unnecessary
search, duplicate buckets are removed.

To aid in retrieval processing, each unit has a special internal slot called the mark slot
which contains a small integer. During the retrieval process, this slot is used to record the
status of each unit.

If a space is implemented as a single array then the candidate set is simply the union of
the contents of all the candidate buckets. 'To avoid creating temporary lists each candidate
bucket is processed one at a time. Fach unit in the bucket is tested by the three filtering
steps and marked as having passed or failed. If a unit has alrcady been marked as tested
it is not tested again. Those units which pass the filtering steps are collected into a list of
retrieved units.

If a space is implemented as more than one array then the candidate set is the intersec-
tion of the contents of the candidate buckets for cach array. A straightforward intersection

*One reason this might be done is that a space may store several different unit classes and all space
dimensions may not be useful primary retricval keys for all classes.



;; Clear the mark in the first array’s candidate buckets.
(clear-unit-marks (bucket-selection (first space-arrays)))

(let ((count 0))

;; Update the mark in the remaining arrays’ candidate buckets.
(dolist (array (rest space-arrays))
(dolist (unit (bucket-selection array))
(vhen (= (get-unit-mark unit) count)
(incf (get-unit-mark unit))))
(incf count))

;; Collect the units in the intersection.
(dolist (unit (bucket-selection (first space-arrays)))
(when (= (get-unit-mark unit) count)
(filter-and-collect unit))))

Figure 3: “Tag-based” Intersection

algorithm would require time O(n™), where n is the number of units on the space and m
is the number of separate arrays, as well as space O(n). By using the mark slot associated
with each unit we can reduce the time to O(n) and the space to a constant.

This “tag-based” intersection is computed as follows. Select one array as the initial
array and set the mark to zero for all units in its candidate buckets. Then consider each
unit in the second array’s candidate buckets. If the unit’s mark is zero then set the mark to
one otherwise leave it unchanged. Then consider each unit in the third array’s candidate
buckets. If the unit’s mark equals one then set the mark to two. This continues until we
have exhausted all the arrays. Finally, return to the initial array and examine each unit
in its candidate buckets. If the unit’s mark is equal to n (where n is the number of arrays)
then the unit is a member of the candidate set and the three filtering steps are applied.
(See Figure 3.) Because the mark was initialized to zero for each unit in the initial array’s
candidate buckets, only those units that fall into the candidate buckets for all arrays will
have the proper value in their mark slots.

As in the single array case above, each unit in the bucket is tested by the three filtering
steps and marked as having passed or failed. If a unit has already been tested it is not
tested again. Those units which pass the filtering steps are collected into a list of retrieved
units.

To illustrate the tradeoffs, consider the three tracks (A, B, and C) depicted below,
and suppose the application is looking for tracks which pass through the point (5,3).

A B




o~

If the space is represented simply as a list of units then the primary retrieval step retrieves
all three units, which must be compared with the pattern. If the space is represented as
two vectors (one for z and one for ¥), with each bucket one unit wide, then the primary
retrieval step selects all units that occupy the z = 5 bucket (in this case B & C). This set
is intersected with the set of units occupying the y = 3 bucket (A & B), for a primary
retrieval result set (B). Pattern-based filtering is then applied to each element of this result
set.

3.3 Details of Pattern-Based Filtering

The pattern-based filtering step compares, in detail, each unit with the pattern to deter-
mine if the unit satisfies the constraints of the pattern. The pattern primarily specifies
an n-dimensional blackboard volume (or set/series of volumes) in which the desired units
will be found. The constraints imposed by each dimension are tested independently. If a
unit fails to satisfy the constraints of any dimension, the unit is eliminated from further
consideration. The pattern specifies an element match criterion which determines how
units are compared to the pattern. The four element match criteria are:

Exact The unit must exactly match the pattern.
Includes The unit must entirely include the pattern.
Within The unit must be entirely within the pattern.

Overlaps The unit must overlap with the pattern.

The distinctions between the different match criteria are only meaningful when one or both
of the index elements from the pattern and the unit are ranges. If both the pattern’s and
the unit’s index elements are points or labels then these match criteria are all equivalent.

Several options are available to control the comparison of composites. The match and
mismatch options apply to both set and series indexes. The remaining options only apply
to series indexes.

Match This determines how many index elements in the pattern must be matched
by index elements in the unit.

Mismatch This is the upper limit on the number of index elements in the pattern
that may be mismatched with index elements in the unit. '

Skipped This is the upper limit on the number of index elements in the pattern that
may be skipped in the unit.

Before and After Extras These options determine how many index elements may
appear in the unit either before or after the composite index in the pattern.’

Contiguous This determines whether the composite index elements that match must
be contiguous or whether mismatching clements may appear between the matching
elements.

*For example, suppose the pattern has a series of temperature obscrvations starting at time = 6 and
the unit has a serics starting at time = 4. This unit would pass only if the the before extras option allowed
two or more before extras.



Note that, the index element to index element comparisons are still governed by the
element match criterion specified in the pattern.

As with unit indexes, indexes in the pattern can be of type scalar, set, or series. So,
the following six combinations of unit index and pattern index can occur. The order here
is not important. (Comparing a scalar unit index with a set pattern index is treated
identically to comparing a set unit index with a scalar pattern index.)

Scalar/Scalar  Set/Set
Scalar/Set Set/Series
Scalar/Series Series/Series

To avoid subtle conceptual errors, Scalar/Series comparisons are not allowed.® We consider
the comparison rules for the remaining five cases below.

Scalar/Scalar In the simplest case, when an index is a scalar in both the pattern

and the unit, GBB simply compares the value of the index in the unit with the value

of the index in the pattern to see if they match with respect to the match criterion
* from the pattern.

Scalar/Set The comparison of a scalar index with a set index reduces to a set mem-
bership test. This is the case when the index is a scalar in the unit and a set in the
pattern or vice versa. If the scalar index is a member of the set index then the com-
parison succeeds. Each index element from the set is compared with the scalar index
element in the same way as for scalar/scalar comparison above.

Set/Set and Set/Series For both these cases the comparison is treated as a set
intersection. The size of the intersection set must be greater than the number of
matches required by the pattern. In addition the number of elements from the pattern
that are not in the intersection set must be less than or equal to the mismatch criterion
from the pattern.

Series/Series In the series/series case the index elements for corresponding values of
the composite index aré compared. Continuing the time/temperature/pressure example
from above, the values for temperature and pressure at time = 6 in the pattern would
be compared with the corresponding values for temperature and pressure at time = 6
in the unit. This continues for each element in the pattern. The unit will pass the
pattern-based filtering step if the match, mismatch, skipped, before extras, and after
extras criteria are satisfied.

Several patterns can be conjoined. The effect of this is that a unit must satisfy all the
patterns to pass the unit /pattern comparison. For conjoined patterns the primary retrieval
is based on all the component patterns. Then, during the pattern-based filtering step, GBB
will compare each unit to the simplest component patterns first in the expectation that
this will “cheaply” eliminate some units early.

®For example, in comparing a scalar pattern index with a series unit index, the composite index of
the series may not be present in the scalar. It is not immediately apparent whether this situation should
be treated as an error. However, the restriction causes the user to be explicit about what is intended.
Transforming one type of index to another is a simple operation, so this is not a great limitation.



3.4 Comparison with Other Representations

The partition and grid techniques used in GBB work best when the units are located so
that the buckets are uniformly loaded. Two other representation strategies that have been
proposed for blackboard database systems are the k-d tree (1] and the quadtree [8]). They
are appealing because they readily adapt to the data, providing more selectivity where
there is more data, and give good performance when little is known, e priori, about the
distribution of data or queries.

Both quadtrees and k-d trees are hierarchical data structures which recursively divide
space. There are two general types of quadtrees: region quadtrees and point quadtrees.
The region quadtree is inappropriate for a blackboard database because the entire quadtree
represents just one object. The point quadtree is a multidimensional generalization of a
binary search tree. Each node in the tree stores one datapoint and has 2" children. Each
child represents one ‘quadrent’ of the space represented by its parent.

The k-d tree is also a generalization of a binary search tree. At each level of the tree
@ different dimension is tested when determining which branch to take. For example, in
the two dimensional case the z dimension is tested at even levels in the tree and the ¥
dimension is tested at odd levels. The adaptive k-d tree is a refinement of the k-d tree
where, instead of cycling through the dimensions in a fixed order, choose the dimension
that best divides the datapoints in the best way for each node.

While the quadtree and k-d tree may use less space than the grid method, there is no
speed advantage. The grid method requires O(R) steps on average (where R is the number
of objects found), but quadtrees and &-d trees require O(R + log N )- In addition, deletion
and balancing are quite complicated and time consuming operations on the quadtree and
k-d tree.

4 An Example of Performance Tuning

In this section we present empirical results demonstrating the the effect of tuning the
blackboard database in a large application: the Distributed Vehicle Monitoring Testbed
(DVMT) [5,6]). These results are interesting because they were obtained without changing
any of the problem solving or control activities of the DVMT. Each set of experiments
executed the same sequence of KSs, created and retrieved the same blackboard objects,
and generated the same solution. The only difference between each experiment was the
processing time required to insert and retrieve blackboard objects.”

Because the DVMT is implemented in GBB, the database implementation can be eas-
ily changed without recoding (or even recompiling). Such flexibility is important for two
reasons. First, the application writer may not initially understand the insertion/retrieval
characteristics of the application; so the representation of blackboard objects is subject
to change as design intuition evolves into application experience. Second, the inser-
tion/retrieval characteristics may change from those of the prototype as the application

"Several systems such as Joshua [9], MRS [10], and KEE [11) provide abstraction mechanisms for mod-
ifying the representation of data structures without changing rules. However, performance improvements
using Joshua often involve reductions in the number and changes in the sequence of rule firings; MRS is
tailored to logic programming; and KEE leaves you to write your own procedural storage and retrieval
functions.
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Figure 4: The DVMT Node Architecture.

is placed into service. This can again require changes to the blackboard representation to
maintain high performance under operational conditions.

Before describing how the DVMT’s blackboard implementation was tuned using GBB,
we present a brief overview of the DVMT’s problem-solving architecture, concentrating
on its blackboard structure, blackboard objects, and blackboard retrieval characteristics.
With this background in place, we describe our experiences tuning the DVMT operating

on a two relatively small scenarios followed by the results of scaling these results to a
larger scenario.

4.1 An Overview of the DVMT

The Distributed Vehicle Monitoring Testbed (DVMT) simulates a network of blackboard-
based problem solving nodes working on the vehicle monitoring task. The objective of
the network is to. generate an answer map containing the identity and movement of ve-
hicle patterns based on passively sensed acoustic data. Each network node is a complete
Hearsay-II architecture [7] with KSs and blackboard levels appropriate for the task of
vehicle monitoring. The basic control components of Hearsay-II have been augmented by
goal-processing and planning capabilities (}Figure 4). In this paper, we concentrate on the
ma jor blackboard components: the data, goal, consistency, and ghyp blackboards.
Hypothesized vehicle movements are represented by hypotheses placed on the data
blackboard (D-BB). KSs perform the basic problem solving tasks of abstracting, extending,
and refining these hypotheses. The D-BB is partitioned into four data abstraction levels:
signals (containing minimally-processed sensory data), groups (representing harmonically-
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grouped signal hypotheses), vehicles (containing vehicle types hypothesized from related
group hypotheses), and patterns (containing spatially-related vehicles, such as vehicles
moving in formation). Each of these abstraction levels is split into a level for location
hypotheses (which have one sensed position) and a level for track hypotheses (which have
a compatible sequence of sensed positions over time) for a total of eight D-BB levels: SL,
ST, GL, GT, VL, VT, PL, and PT.

KSs combine hypotheses to form more encompassing hypotheses on the same or higher
levels. Decisions of which KSs to execute are made using a unified data- and goal-directed
framework [12]. The control components of the DVMT (primarily the planner and goal
processor) create goals on the goal blackboard (G-BB), which mirrors the 8-level organi-
zation of the D-BB. Each goal represents a request to create a one or more hypotheses on
the D-BB within the (corresponding) area covered by the goal. KSs serve as the “actions”
for achieving goals on the G-BB.

In addition to the D-BB and G-BB, the DVMT includes two “hidden” blackboards for
instrumentation. The consistency blackboard (C-BB) contains hypotheses representing
the correct solution hierarchy as precomputed from the input data. This oracle is invisible
to the KSs and control components, but is used to evaluate the developing solution by
simulation measurement tools. The ghyp blackboard (GH-BB) contains a complete cen-
tralized set of the sensory data. Again these hypotheses are only used by measurement
tools.

The details of hypotheses and goal objects are also important for tuning the applica-
tion, and we briefly describe the structure of each.

A hypothesis on the D-BB, C-BB, or GH-BB has the following major attributes: one
or more time-locations (the vehicle’s sensed location at successive points in time), an
event-class (the frequency classification or vehicle identity information), and a belief (the
confidence in the accuracy of the hypothesis). The time-location structure of a hypothesis
is represented in GBB as a composite unit® containing series of connected (z,y) points
along the time dimension:

y i tl t3

tz t4 t5

X

A goal has the following major attributes: one or more time-regions (areas of desired
problem solving activity), a set of event-classes, and a rating (an estimate of the im-
portance of achieving this goal). The time-region structure of a goal is represented as a
composite unit containing series of connected (z,y) regions along the time dimension:

8GBB’s l)laCkbo;;(i. ol)Je;ts »

11



t

X

All DVMT levels are implemented as GBB spaces with dimensions time, z, ¥, and
event-class. (Belief and rating would also be useful dimensions but these attributes were
not represented as dimensions in the current implementation of the DVMT.) Space dimen-
sionality is central to GBB. It provides a metric for positioning units on the blackboard
in terms that are natural to the application domain. Units are viewed as occupying some
n-dimensional extent within the space’s dimensionality. Application code can create and
retrieve units according to the dimensions of spaces, without regard to the underlying im-
plementation of the blackboard structure [13]. Dimensional references, however, contain
enough information when combined with information about the structure of the black-
board to allow efficient retrieval code to be generated.

4.2 Experimental Background

Access to the DVMT provided the opportunity to empirically evaluate the performance
of the DVMT simulator, given differing specifications for the blackboard database im-
plementation. We selected a “typical” single problem-solving node scenario and created
three configurations (each one increasingly complex) for experimentation. The first con-
figuration (which will be labeled C1) had a reduced amount of sensory noise and a reduced
grammar. The second configuration (C2) had a reduced amount of sensory noise and a full
grammar. The third configuration (C3) had all the sensory noise and reduced grammar.
The less complicated versions (C1 and C2) required significantly less processor time, and
allowed us to run more tuning experiments.

The domain of these experiments was limited to the blackboard implementation strate-
gies provided by GBB, and the performance comparisons are between GBB’s various
strategies., Considerable effort has been spent optimizing GBB’s database machinery, and
even GBB’s default blackboard implementation strategy results in “reasonable” perfor-
mance when fewer than 15-20 units reside on a blackboard level.®

We emphasize that identical processing occurs in all the experimental tests within
an experiment suite. The input data is identical, KSs run in the same sequence, locate
the same hypotheses, produce the same output, the control components make the same
decisions, and so on. Furthermore, the abstract representation of the blackboard (its
decomposition into spaces), the dimensionality of each space, and the unit retrieval pattern
specifications remained constant. The only variable is the blackboard database machinery
used by GBB to store and retrieve blackboard units.

°Due to its size, it is impractical to recode the DVMT to obtain performance measurements for a
non-GBB-based implementation.
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Our experiments concentrated on how hypotheses are stored on the D-BB, C-BB, and
GH-BB and how goals are stored on the G-BB. Intuition led us to expect that when a
small number of units were to be created on a blackboard level, a simple “push them on a
list” implementation would be best due to its low overhead. When a large number of units
were created on a space and numerous retrievals were performed on them, a more complex
“dimensional-metric-based” implementation was appropriate. Finally, we expected that
hypotheses and goals would have different balances in their storage strategies because
hypotheses are composites of points while goals tended to be overlapping composites of
(z,y) regions. (This expectation proved false.) '

We began by analyzing each configuration’s blackboard interaction statistics. GBB
can provide the number and types of units created on each space, the number of insertion
and retrieval operations performed on each space, and the time spent on these operations.
The numbers of hypetheses and goals created on each blackboard space are as follows:

C1: Number of Blackboard Objects

Level C-BB D-BB G-BB GH-BB
SL 64 192 0 192
ST 4 0 0
GL 32 264 96
GT 2 0 0
VL 16 44 44
vT 1 164 362 Total
PL 16 0 0 2132
PT 1 188 450

C2: Number of Blackboard Objects

Level C-BB D-BB G-BB GH-BB
SL 64 192 0 192
ST 4 0 0
GL 32 264 96
GT 2 0 0
VL 16 44 44
VT 1 164 362 Total
PL 16 0 0 2738
PT 1 3562 892

C3: Number of Blackboard Ob jects

Level C-BB D-BB G-BB GH-BB
SL 64 2176 0 2176
ST 4 0 0
GL 32 342 1088
GT 2 0 0
VL 16 57 57
VT 1 234 455 Total
PL 16 0 0 7628
PT 1 207 610

The number of KS executions required to find the solution in each configuration is:

13



Configuration KSIs
c1 743
c2 906
c3 1672

In all configurations, few units are created on the ST, GT, and PL levels. This is because
the control components were instructed to restrict the synthesis path to the SL, GL, VL,
VT, PT levels.

The number of blackboard unit retrieval operations is also important for tuning. For
the each configuration, GBB reports the following operation counts. The tables show
the number of retrieval operations for each space followed by the percentage of the total
number of retrievals, enclosed in parentheses.

C1: Number of Blackboard Retrievals
Level C-BB  D-BB G-BB GH-BB |
SL 680 ( 3) 1344 ( 6) 192 ( 1) 556 ( 3)

ST 4 (0) 0 (0) 368 (2)
GL 1184 ( 6) 800 ( 4) 466 ( 2)
GT 2(0) 0 (0) 504 (2)

VL 1204°( 6) 338 (2) 348 ( 2)
vT 872 ( 4) 1439 (7) 712 ( 3) Total
PL 16 ( 0) 0o (0) 44 ( 0) 21,228
PT 5343 (25) 2620 (12) 2202 (10)

CZ:_Number of Blackboard Retrievals
Level C-BB D-BB G-BB GH-BB
SL 680 ( 2) 1324 ( 3) 192 ( 0) 556 ( 1)

ST 4 (0) 0 (o0) 368 (1)
GL 1184 ( 3) 800 ( 2) 456 ( 1)
GT 2 (0) 0 (0) 504 (1)

VL 1204 ( 3) 338 (1) 348 (1)
VT 872 (2) 2604 (7) 712 ( 2) ‘Total
PL 16 ( 0) 0 (0) 88 ( 0) 38,551
PT 16839 (44) 5134 (13) 4306 (11)

C3: Number of Blackboard Retrievals
Level C-BB D-BB G-BB GH-BB
SL 6624 ( 5) 16552 (13) 2176 ( 2) 5512 ( 4)
ST 4 (0) 0 ( 0) 4132 ( 3)
GL 18536 (15) 2162 ( 2) 2530 ( 2)
GT 2 (0) 0 (0) 672 (1)
VL 3310 ( 3) 484 ( 0) 430 ( 0)
(
(

VT 2912 ( 2) 2392 ( 2) 994 ( 1) Total
PL 16 ( 0) 0 (o) 57 (0) 126,873
PT 45983 (36) 6058 ( 5) 5335 ( 4)

Each retrieval operation involves a composite four-dimensional pattern in time, z, y,
and event-class. In addition, the DVMT provides additional procedural filtering code to
GBB’s retrieval process. In our experiments, the time required by these filters is considered
part of the retrieval time.
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There are two things to note about these numbers. First, almost half the retrieval
operations are from the C-BB (used in performance monitoring) but there are relatively
few units stored on the C-BB. Therefore, a simple, “low-overhead” strategy is appropriate
for representing the C-BB. Second, the distribution of retrieval operations on the D-BB
and G-BB shifts dramatically from the filtered case to the complete case. (Surprisingly,
we found the retrieval characteristics of hypothesis and goals to be very similar, and the
representation strategy that worked well for one also worked well for the other.)

4.3 The Expériments

We began our tuning experiments by running the DVMT on configuration C1 (the simplest
scenario) using its “designed” blackboard database implementation: a single vector for
the time dimension. This storage strategy had been intuitively selected (by the second
author, based on a pre-GBB implementation of the DVMT) as providing a reasonable
balance between retrieval time versus insertion time and storage space. As the experiments
demonstrated, this intuition resulted in only mediocre performance—an indication of the
importance of database flexibility and performance monitoring tools!

The second experiment ran C1 with the simplest storage strategy, storing all units on
a space in a list. As expected, this resulted in even poorer performance. We then tried
two vectors, ¢ and y. This gave a dramatic performance improvement, reducing the total
execution time by more almost half compared to the baseline “list” strategy. Using three
vectors time, z, and y resulted in a further 5% reduction in execution time.

We ran many additional experiments (approximately 90) using diffefent strategies
for each space and each type of unit. The best strategy was time, z, and y as a three
dimensional array. The total execution time in the best case was one half that of the worst
case (the simple “list” strategy). Even more dramatic is the decrease in the execution time
due to blackboard operations. In the best case blackboard operations took only 10:23,
whereas in the worst case blackboard operations took 30:01.

Table 1 summarizes the most interesting C1 experiments. Each experiment is identified
by the storage strategy used. A list of letters indicates that each dimension is stored in
a vector of buckets. An additional level of parentheses indicates that those dimensions
are grouped together into a multi-dimensional array of buckets. For example, (t x y ¢)
indicates four vectors (one each for time, z, y, and event-class) while (t (x y)) indicates
one vector for time, and one 2-dimensional array for z, and y. In the table, all buckets for
the time and event-class dimensions were unit width; buckets for z and y were of width
5.19 Furthermore, each space in the C-BB was represented as a simple list (), which was
the most effective strategy given its limited number of units.

The processing times are in minutes and seconds from a single run on an 8 MByte
Texas Instruinents Explorer II. Differences of 10-20 seconds are insignificant due to timer
resolution. The processing time for performing non-blackboard activities in each experi-
ment was approximately 6:40 (ranging from 6:20-6:58). Mean paging time was 9 seconds
(8-12 seconds). The last column (in parenthesis) gives the percentage of time spent doing
blackboard opcrations.

19We experimented with varying bucket sizes, but in these scenarios “rcasonable” changes in bucket
width had little effect on performance.
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Experiment Total Time BB Time
((txy)) 17:21 10:23 (60)
(t (xy) 17:44 10:48 (61)
(c(txy)) 17:45 10:59 (62)
(te(xy)) 18:00 11:20 (63)
((xy) 18:33 11:43 (63)
(c(xy) 18:48 12:03 (64)
(txy) 18:56 12:14 (65)
(txyc) 19:13 12:19 (64)
(xy) 19:52 13:03 (66)
(xyc) 20:06 13:19 (66)
(t) 20:47 14:26 (69)
(te) 21:28 14:40 (68)
(v) 23:37 17:07 (72)
(x) 23:42 17:08 (72)
(¢) 36:19 29:51 (82)
() 36:20 30:01 (83)

Table 1: C1 Configuration Experiments.

Table 2 contains the results with the C2 configuration. Again 10-20 second differences
are insignificant. In this set, the processing time for performing non-blackboard activities
in each experiment was approximately 18:00 (17:07-18:54). Mean paging time was 36
seconds (34-42 seconds).

The results from C3, the most complex configuration are in Table 3. In this set, the
processing time for non-blackboard operations was approximately 135:00 (ranging from
130:33-137:45). Mean paging time was 5:30 (4:50-7:08).

As the three sets of results show, tuning the blackboard representation results in
even more dramatic performance improvements as the complexity of the configuration is
increased. In C1 and C3 there are only a small number of event classes. In C1 the single
vector event-class unit mapping is no faster then the simple “list” unit mapping. But, in
C3, because of the increased amount of sensory noise the (event-class) mapping is 40%
faster than the () mapping.

In some cases the overhead of using an additional dimension in the unit mapping is not
worth it. For example, in C1 and C3, using event-class doesn’t improve performance at
all. Except for the single vector (event-class) mapping, any mapping that uses event-
class does worse than the same mapping without event-class. This is because, in C1 and
C3, there are very few event-classes so it doesn’t provide any discriminatory power. In
C2 adding event-class does improve performance noticeably.

Regardless of the mapping used, the time required to insert units on the blackboard
was less then 1% of the total runtime. (The range was ~0.1% for C3 up to ~0.9% for
C1.) The relatively small insertion cost was surprising, even to the implementers of GBB.
Virtually all the blackboard time was spent in retrieval. In fact, 80-90% of the retrieval
time was spent in the pattern based filtering step.

The reduced execution time is the direct result of greatly reducing the number of units
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Experiment Total Time BB Time
(c(txy)) 37:08 18:15 (49)
(tec(xy)) 37:56 19:15 (51)
(c (xy)) 38:51 20:26 (53)
((txy)) 39:22 20:43 (53)
(t (xy) 40:09 21:56 (55)
(txyec) 40:11 21:40 (54)
(xye) 41:14 22:58 (56)
((x)) 41:51 23:27 (56)
(txy) 43:06 24:55 (58)
(te) 43:51 25:29 (58)
(xy) 45:11 26:58 (60)
t) 49:22 31:04 (63)
(y) 54:59 37:05 (67)
(x) 55:11 37:28 (68)
(¢) 68:43 51:37 (75)
() 84:40 67:21 (80)

Table 2: C2 Configuration Experiments.

Experiment Total Time BB Time

((txy)) 203:18 65:34 (32)
(t (xy) 205:09 68:09 (33)
(e (txy) 205:42 68:07 (33)
(tc(xy)) 207:00 70:35 (34)
(txy) 207:22 70:43 (34)
(txyc) 208:52 72:15 (35)
(t) 210:06 89:57 (43)
((x y) 212:46 76:53 (36)
(xyc) 213:38 77:43 (36)
(c(xy)) 214:25 78:46 (37)
(x ¥) 216:11 79:59 (37)
(t <) 218:15 82:37 (38)
(x) 246:54 111:04 (45)
() 248:19  112:06 (45)
(¢) 353:15 222:41 (63)
§) 594:55 493:12 (83)

Table 3: C3 Configuration Experiments.
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that must be considered by the three filtering steps. The following table illustrates the
effect of different mappings on the number of units retrieved by the primary retrieval step.
The first column shows the average number of units returned by the primary retrieval
for the entire run. The second column shows the total time spent in the pattern based
filtering step. These numbers are for the PT level of the G-BB for configuration C1. At
the end of the run there were 892 units on this space. On average 26.25 units passed the
pattern based filtering step.

Primary Retrieval Pattern Filtering
Experiment Count Time
(c(txy)) 43.81 T:16
(c(xy)) 62.15 8:48
(t) 150.65 14:59
(x) 228.93 19:42
() 261.89 26:34

Using the best mapping, (¢ (t x y)), more than 50% of the units in the candidate set
were in the final set of retrieved units. While the worst mapping, (c), produced candidate
sets in which only 10% of the units survived the filtering steps. Note that the time spent
in the pattern based filtering step is proportional to the number of units in the candidate
set. The best mapping spent 70% less time in the pattern based filtering step compared
to the worst mapping.

5 Guidelines for Blackboard Representation

As our performance tuning experiments indicate, selecting an appropriate blackboard
representation (the unit mapping) can have a significant effect on application performance.
Here are some general guidlines or hints on acheiving the best performance in GBB by
tuning the blackboard representation.! Many of them are simple common sense. As with
most efficiency techniques, the law of diminshing returns applies. For example, changing
from a simple list implementation to a single vector implementation will improve search
speeds by 50% to 90%.

e When a small number of units will be created on a space the simple “list” imple-
mentation is best because of its low overhead. The threshold is somewhere between
5-8 units with complicated indexes (i.e., composite indexes with several elements)
and 20-25 units with simple scalar indexes.

¢ When all units tend to span the entire range of a space dimension that dimension
should be left out of the unit mapping.

o If one dimension evenly divides the units on a space it should be included in the
unit mapping even if it only has a few distinct values.

* If the units have complicated indexes then the increased selectivity of the grid (n-
dimensional array) is well worth the additional space required. Searches on a 3-
dimensional grid have run up to 40% faster than equivalent searches on three vectors.

"These are based on experiments run on a Texas Instruments Explorer II workstation. Additional
experiments are required to see if our findings extend to other lisp imlementations.
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o Conversely, if the units have scalar indexes then the partition strategy (n vectors)
tends to be almost as good as the grid strategy.

o If the units are distributed on a diagonal with respect to the space dimensions,
consider using indexes that are a transformation (e.g., rotation) of the “actual”
values. This can be done efficiently using the index structure mechanism in GBB.
We are considering adding such transformations as a built-in feature of GBB.

6 Summary

Reducing the cost of blackboard retrieval can significantly increase the performance of
blackboard-based applications. In the Generic Blackboard Developmént System (GBB)
we have provided application developers the mechanisms for high-performance retrieval
operations. The blackboard representation techniques used in GBB were selected to pro-
vide the best performance over a wide range of situations.

GBB also provides the tools to analyze the performance of blackboard operations in
a particular application. We have demonstrated the effectiveness of adjusting the black-
board representation (the unit mappings) in improving blackboard performance. Tuning
the DVMT by matching its blackboard database structure to its blackboard interaction
characteristics resulted in significant performance improvements.

These results do not suggest that blackboard database optimization should replace the
use of superior problem-solving knowledge or control capabilities as a means of enhanc-
ing performance. They do demonstrate, however, that improving blackboard interaction
efficiency should not be neglected. The potential performance improvements due to the
blackboard implementation are proportional to the ratio of blackboard interaction to KS
(and control) processing.

Our experiences with the DVMT tuning process demonstrates the importance of ob-
taining detailed measurements of the insertion/retrieval characteristics of each space (and
even within a space). These measurements can significantly augment “intuitive” deci-
sions for blackboard implementation strategies and form an important component of a
blackboard development environment.
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