NON-UNIFORM AUTOMATA
OVER GROUPS

David A. Mix Barrington,
Howard Straubing, Denis Therien

Computer and Information Science Department
University of Massachusetts

COINS Technical Report 89-56



Non-Uniform Automata Over Groups

David A. Mix Barrington!- 2

Dept. of Computer and Information Science
University of Massachusetts
Ambherst, MA 01003, U.S.A.

Howard Straubing®
Computer Science Department
Boston College
Chestnut Hill, MA 02167, U.S.A.

Denis Thérien*
School of Computer Science
McGill University
Montréal, P.Q. H3A 2K6, Canada

June 20, 1989

'Former name David A. Barrington.

2Supported by NSF grants CCR-8714714 and MCS-8304769 and by US Air Force grant AFOSR-
82-0326.

3Supported by NSF grant CCR-8700700. ,
*Supported by NSERC grant A4546 and FCAR grant 86-EQ-2933.



Abstract

A new model, non-uniform deterministic finite automata (NUDFA’s) over general
finite monoids, has recently been developed as a strong link between the theory of
finite automata and low-level parallel complexity. Achievements of this model in-
clude the proof that width 5 branching programs recognize exactly the languages in
non-uniform NC! (Barrington, 1989), NUDFA characterizations of several important
subclasses of NC* (Barrington and Thérien, 1988), and a new proof (Barrington and
Theérien, 1988) of the old result (Brzozowski and Knast, 1978) that the dot-depth
hierarchy is infinite, using Sipser’s work (1983) on constant depth circuits.

Here we extend this theory to NUDFA’s over solvable groups (NUDFA'’s over non-
solvable groups have the maximum possible computing power (Barrington, 1989)).
We characterize the power of NUDFA’s over nilpotent groups and prove some optimal
lower bounds for NUDFA's over certain groups which are solvable but not nilpotent.
Most of these results appeared in preliminary form in (Barrington and Thérien, 1987).



1. Introduction

A large body of recent work in combinatorial complexity has focused on classes of
languages recognizable by circuit families with tight restrictions on depth. For exam-
ple, the class (non-uniform) NC?, which consists of the languages where the inputs of
length n can be recognized by boolean circuits of fan-in two and depth O(log n), has
proved to be quite robust. It is equal to the class of languages definable by families
of boolean formulas of polynomial length (Spira, 1971) and to those recognizable by
branching program families of constant width and polynomial size (Barrington, 1989).

It is also important as the base class in the parallel complexity theory outlined by
Cook (1985). )

Still, we are unable to prove any natural problems to be outside of NC!. (For
example, the hypothesis NP = NC?, in either a uniform or non-uniform setting, is
perfectly consistent with known results.) This suggests that we consider even smaller
complexity classes, in which membership might be easier to determine. Furst, Saxe,
and Sipser (1984) showed that the parity language is not in the class AC® (circuits
of constant depth, polynomial size, and unbounded fan-in) and thus showed that this
natural subclass of NC! is in fact a proper subclass. Further work has shed more
light on the internal structure of NC! (Razborov, 1987; Smolensky, 1987; Barrington
and Thérien, 1988).

One of the most familiar complexity classes of all, the class of regular languages,
~ lies entirely within NC!. We will take the algebraic view of finite automata — an
automaton consists of a transformation of the state set for each letter, generating a.
homomorphism from the monoid of words under concatenation to the finite monoid
of transformations on the state set. The behavior of the automaton on an input of n
letters is given by an iterated multiplication of n elements of the monoid, which can
easily be performed by an NC! circuit.

The complexity theory for automata is comparatively well-developed. We can
prove languages not regular, and tell in some detail what kinds of automata can
recognize what kinds of languages. By identifying an automaton with an algebraic
object, its syntactic monoid, we can describe automata as combinations of various
primitive components (Krohn, Rhodes and Tilson, 1968). These components perform
the basic operations of AND, OR, modular counting, and multiplication in a simple
group, and are described in sections 3 and 4.

Schiitzenberger (1965) showed that automata built up in this way using only the
AND and OR operations can recognize only the star-free regular languages, i.e., those
languages which can be defined using only boolean operations and concatenation. In
particular these “aperiodic automata” cannot count modulo 2. This is quite remi-



niscent of the Furst-Saxe-Sipser result, suggesting a general analogy between circuit
classes and classes of automata. Barrington (1989) showed that the ability to perform
multiplication in a non-abelian simple group is surprisingly powerful in the circuit set-
ting (gates of this type, used along with AND and OR, can simulate all NC?! circuits
in constant depth and polynomial size). Finally Barrington and Thérien (1988) made
this analogy explicit in the work outlined in section 4, giving characterizations of
AC® and other classes in terms of a new model, non-uniform finite automata. The
gate types of unbounded fan-in circuits appear to correspond exactly to the basic
components of finite automata.

The main open question in (Barrington and Thérien, 1988) was to prove limits
on non-uniform automata made up only from AND, OR, and modular counting com-
ponents. This would separate NC? from its subclass ACC of languages recognized
by circuit families of constant depth and polynomial size made up of AND, OR, and
modular counting gates. Here we attack this question by considering the power of
modular counting components by themselves. This corresponds to considering au-
tomata whose syntactic monoids are solvable groups.

In effect we are looking for a dual result to the Furst-Saxe-Sipser theorem. We
know that AND and OR gates cannot be used in a polynomial-size constant-depth
circuit to simulate modular counting, but can gates for modular countingin such a cir-
cuit simulate AND or OR? We conjecture that they cannot and here offer some partial
tesults in this direction. With careful definitions (see, e.g. (Barrington, Straubing,
and Thérien, 1988)) circuits of modular counting gates correspond exactly to non-
uniform automata over solvable groups. While we cannot yet prove lower bounds for -
general solvable groups, we can do so for a large class of groups. o

Our main results are as follows (exact definitions will be given below). We prove
that no non-uniform finite automaton of any size over a nilpotent group can calculate
the AND of n variables, for sufficiently large n. We prove that if G is an extension
of a p-group by an abelian group, then no non-uniform automaton over G with size
subexponential in n can calculate the AND of n variables. This is an improvement
over a similar result in the preliminary version of this paper (Barrington and Thérien,
1987). Our principal conjecture is that this latter result extends to any solvable group

G.

2. The Model and Relat-ed Definitions

The non-uniform deterministic finite automaton (NUDFA) was developed origi-
nally as an equivalent form of the bounded width branching program (Barrington,



1985). An NUDFA over a monoid M on n inputs from an alphabet A is defined by
a program of length £. This is a sequence of ¢ instructions, each of which consist of a
variable number ¢ (from 1 to n) and a function from 4 to M. On a given input set-
ting a1,...,an the instruction yields the monoid element corresponding to the value
of the input a;, and the entire NUDFA yields the ordered product of the yields of its
instructions.

As an example, consider the case of an ordinary deterministic finite automaton
with input alphabet A, state set S, and transition function § : (Ax8)— S. The
transition function can just as easily be viewed as assigning a transformation of S
(a function from S to itself) to each element of 4. If we let M be the monoid of
transformations of S (under the operation of functional composition) then § induces
a function & from A to M. Now consider the following program over A:

((1,8),...,(n,6)).

The yield of this program on an input word a,...a, is the transformation on S
corresponding to the action of the original deterministic finite automaton on that
input word.

In this way the NUDFA is an extends the algebraic view of the theory of finite
automata (Eilenberg, 1976; Pin, 1986). In this setting the automaton is simply
viewed as a map from A to A as above, which induces a homomorphism from .4-
(the monoid of strings on A, under concatenation) into M. A language L C A~ is said
to be recognized by M if L is the inverse image, under this homomorphism, of some
subset of M. A variant of Kleene’s tlieorem asserts that a language is regular iff it is
recognized by some finite monoid. Furthermore, subclasses of the regular languages
can be put in correspondence with families of finite monoids in a systematic way,
using the theory of pseudo-varieties developed by Eilenberg ( 1976). One example of
such a correspondence is the result of Schiitzenberger (1965) that a regular language
is star-free iff it is recognizable by a finite aperiodic monoid.

Ou basic object of study will be a program family over a particular finite monoid.
Formally, a program family (P, P,,...) is an infinite sequence of programs P, =
{(Gng, far) : 1 < k < £(n)}, with each ink € {1,...,n} and each f, a function
from A to M. P, defines a mapping ¢, from 4" to Af, given by ¢,(a;...a,) =
M ..M yn), Where muy = foi(ai,,). A program family (P;,...) thus defines a
mapping ¢ from A4~ to M, given by ¢(w) = ¢,(w). Just as with the homomorphic
mapping for an ordinary DFA, we say that a language L is recognized by a program
family if it is the inverse image, under this map ¢, of a subset of M.

Non-uniform models of computation have a long history (see, for example, Savage
(1976) for earlier work on circuits and formulas). Many discrete models of computa-
tion, such as boolean circuits, boolean formulas, or branching programs, take a fixed



number of bits as input rather than a string of unknown length. To compare these
models to models which recognize languages, we must speak of a family of computing
elements, one for each input length. It is often mathematically convenient to put
no constraint on the manner in which the individual elements depend on the input
length, but only look at the resources needed for each element as a function of the
length.

For example, the class of languages recognizable by boolean circuit families where
the size of the circuits grows as a polynomial in the input size forms a non-uniform
analogue of P, the class of languages recognizable by Turing machines in polynomial
time. The analogy can be made exact by speaking of circuits with a uniformity con-
dition (e.g., each circuit must be constructible by a polynomial time Turing machine
which is given the input size in unary). Alternatively, we can speak of non-uniform
Turing machines, which are given an advice string along with their input, of length
polynomial in the input size.

If we restrict the depth of polynomial size boolean circuit families, we can produce
the NC hierarchy of parallel complexity classes, originally developed by Pippenger
(1979) and extensively described in the survey article of Cook (1985). These classes,
in their uniform versions, are important because they correspond to the problems
which can be solved quickly in various models of parallel computation. In their
non-uniform versions they are still of considerable theoretical importance. In this
.paper we will work with two of these classes. Non-uniform NC! is the class of
languages recognizable by circuit families of fan-in two and depth O(log n) (and hence
polynomial size). This is equal to the class of languages recognizable by boolean .
formulas of polynomial length (or circuits of polynomial size which are trees) (Spira,
1971) and to the class recognizable by branching programs of constant width and
polynomial size (Barrington, 1989). Non-uniform AC® is the class recognizable by
circuit families of constant depth, polynomial size, and unbounded fan-in. Furst,
Saxe, and Sipser (1984) and Ajtai (1983) showed that the parity language is not in
AC°, and thus that AC® is a proper subset of NC1. Recently the internal structure
of NC' and AC® has been the subject of extensive research (Sipser, 1983; Chandra,
Fortune, and Lipton, 1983; Chandra, Stockmeyer, and Vishkin, 1984; Fagin, Klawe,
Pippenger, and Stockmeyer, 1985; Barrington, 1989; Barrington and Thérien, 1988;
Razborov, 1987; Smolensky, 1987), which will be described below. -

A branching program (see Barrington (1989) for background) is a directed acyclic
graph of bounded out-degree, where nodes are labelled by input variables and edges
by the possible values of the variable corresponding to the node they leave. A setting
of the input variables defines a path from a special start node to one of the sinks of the
graph, and the sinks are labelled as accepting or rejecting the input. The width of a
branching program has various definitions, but as defined by Barrington (1985, 1989)



a branching program of width w is equivalent to an NUDFA over the transformation
monoid T, of all transformations on a base set of size w.

We will use the following standard terminology from algebraic automata theory
and group theory throughout. The reader is referred to standard texts such as those
of Eilenberg (1976) and Zassenhaus (1958) respectively for more background.

A group is a monoid which contains an inverse for every element. (All groups
in this paper will be finite.) A permutation group is a group whose elements are
bijections of some finite set and whose operation is functional composition (i.e., a
group G together with a one-to-one homomorphism from G into the group Sy of
permutations of a finite set .X'). If f € Sy and z € X, we will write zf for the image
of z under f. If the underlying set of a permutation group is not given, it is to be
assumed that the group is acting on itself by right multiplication.

A subgroup is a subset of a group which is closed under the group multiplication.
A subgroup H of G is normalif for any g € G and h € H we have g 'hg € H. In this
case we define the factor group G/H in the usual way and say that G is an eztension

of H by G/H.

The commutator of two group elements g and h is ghg='h~!. If H, and H, are
each subgroups of a group G, their commutator [H,, H,| is the subgroup generated
by all elements hihzh7'h;? for hy € H; and h, € H,. The derived series of a
group G is defined by G° = G, G™*! = |G, G7]. A group is solvable if its derived series
terminates with G™ the trivial group. The lower central series of a group G is defined
by Go = G,Giy1 = [G;,G). A group'is nilpotent of class m if its lower central series
terminates with G™ the trivial group. An important special case of nilpotent groups
are the p-groups, those groups whose order is a power of some prime p. In fact any
nilpotent group is a direct product of p-groups. -The ezponent of a group is the least
common multiple of the orders of its elements, i.e., the least ¢ > 1 such that a? = e
foralla € G.

One group G divides another group H if there is a homomorphism from a subgroup
of H onto G. The relation “G divides H” is a partial order on the set of finite groups
— it is the transitive closure of the union of the relations “G is a subgroup of H” and
“G is a homomorphic image of H”. A wvariety of groups is a class of groups closed
under division and under direct product. (This definition is at variance with standard
usage in universal algebra (where our “varieties” are often called “pseudo-varieties”),
but is appropriate because we are dealing only with finite groups.) The p-groups for
a given p, the nilpotent groups, and the solvable groups each form a variety. These
notions can be extended to permutation groups (see, e.g., Eilenberg (1976)).

Let G and H be permutation groups with underlying sets X and ¥ respectively.
The wreath product G o H is a group of permutations of X x Y, given (as a set) by

10



{(f,h) : f € G¥,h € H}. The permutation (f, h) acts on an element (z,y) of X x ¥
to give (zf(y), yh). The wreath product is associative on permutation groups, i.e., if
I'is also a permutation group with underlying set Z, then (Go H)o I and Go(H o I)
consist of exactly the same permutations of X x ¥ x Z. We will use the following
facts about the wreath product (see, e.g., Eilenberg (1976)):

o If G divides H and I divides J, then G o I divides H o J.
¢ Any extension of G by H (including G x H) divides G o H.

o If V and W are varieties of groups, then a group divides the wreath product of
a group in V" and a group in W iff it is an extension of a group in V by a group
in W. The set of all such groups form a variety, which we will denote V o IV,

e A permutation group is a p-group iff it divides a wreath product Zpo...0Z, of
permutation groups Z, (the group of integers mod p acting on itself by addition).

* A permutation group is solvable iff it divides a wreath product Z, o...0 Zq, of
cyclic permutation groups.

A monoid is aperiodic if all of its subsets which form groups under the monoid
operation are trivial groups. A monoid is solvable if all such groups are solvable
‘groups. A language is recognizable by an aperiodic monoid iff it is star-free, i.e., can
be defined from the one-letter languages using concatenation and boolean operations
but not the Kleene star operation (Schiitzenberger, 1965). Aperiodic monoids are |
parametrized by their dot-depth, which is the minimum number of times concatenation
must be used to define all the languages they can recognize (see Straubing (1986) for
background on dot-depth). '

3. Previous Work

The NUDFA model grew out of the study of bounded width branching programs
initiated by Borodin, Dolev, Fich, and Paul (1983) and by Chandra, Furst, and
Lipton (1983). The former group conjectured that no program of constant width
and polynomial size (in our language, no program family of polynomial size over any
finite monoid) could calculate the majority function. Barrington (1985) found that
constant width branching programs could be forced into a normal form equivalent to
the NUDFA'’s defined here, and worked with NUDFA’s over the permutation group
J3 in an attempt to learn more about branching programs of width 3. He proved that

11



there exist NUDFA’s of exponential length over S; computing any boolean function,
and that computing the AND function (f(z1,...,2,) = 1 iff for all i, z; = l)in a
restricted form requires exponential length.

Barrington (1989) then refuted the conjecture of Borodin et al. (1983) about the
majority function by proving the following theorem, which we restate in terms of

NUDFA's.

Theorem 1: If G is a nonsolvable group, the class of languages recognized by
NUDFA’s over G of polynomial length is exactly (non-uniform) NC?.

Proof: (outline) Determining the output of an NUDFA over G requires an iterated
multiplication of elements in G. If the length of this multiplication is polynomial,’it
can be performed by a binary tree of binary multiplications of height O(logn) and
thus by an NC? circuit.

For the converse, let H # 1 be a subgroup of G which is its own commutator
subgroup, i.e., [H, H] = H (such an H exists iff G is not solvable). For every element
h of H other than the identity and every circuit C of depth d, we construct an NUDFA
of length 2°(9) which yields & on input settings accepted by C and the identity on
other settings. The key step in this construction occurs when C is the AND of two
circuits C; and C,. By induction NUDFA’s B, and B, exist for any A yielding
h or the identity depending on C; and C, respectively. The NUDFA obtained by
concatenating By g,B3h,B1 4-1, and By ;-1 yields ghg='h~! if both C; and C, accept
and the identity otherwise. As H is generated by commutators from H, the desired
- NUDFA'’s for C may all be constructed from such concatenations.O

The power of polynomial length NUDFA's over a solvable group appears to be
more limited. They may be simulated by circuit families of constant depth, polyno-
mial size, and unbounded fan-in where the individual gates compute AND, OR, or
MOD g for some integer g fixed for the circuit family (Barrington, 1989). This will
follow from the results we outline below. :

We define ACC to be the class of languages recognizable by such circuit families
(the AC? closure of counters) — it is conjectured (Barrington, 1989) that majority is
not in ACC and thus that ACC # NC*. Recently Razborov (1987) has proved that
such circuits with AND, OR, and MOD 2 gates cannot do majority (confirming an
earlier conjecture of Furst et al. (1984)), and Smolensky (1987) has extended this to
MOD p gates (for p a single prime fixed for the family) by showing that circuits of
AND, OR, and MOD p gates cannot compute the MOD ¢ function if q is prime to p.

Barrington and Thérien (1988) showed that various subclasses of NC? are exactly
the classes of languages recognizable by polynomial length NUDFA’s over various
classes of monoids. We summarize these results in three theorems, which are proved

12



using the classification by Thérien (1981) of solvable finite monoids.

Theorem 2: A language is recognizable by polynomial length NUDFA’s over a
solvable monoid iff it is in ACC.O

Theorem 3: A language is recognizable by polynomial length NUDFA’s over an
aperiodic monoid iff it is in AC°.0

Theorem 4: A language is recognizable by polynomial length NUDFA'’s over a
monoid of dot-depth & iff it is in depth & AC°.0

Theorem 4 allows Sipser’s proof (1983) that the depth k circuit hierarchy is strict
to be converted into a new proof that the dot-depth hierarchy is infinite (Brzozowski
and Knast, 1978). In particular, the circuit and input language constructed for depth
k circuits has dot-depth exactly k. If it had dot-depth k& — 1, any depth k circuit
family could be converted (via NUDFA'’s over this language) to an equivalent depth
k — 1 family of only polynomially greater size. Repeated application of this process
could reduce any AC? circuit family to an equivalent depth k family, contradicting
Sipser’s theorem. The conversion does not work in the other direction to provide a
new proof of Sipser’s theorem, because the dot-depth result a prior: does not rule out
the possibility that a dot-depth k regular language has circuits of depth k — 1.

4. NUDFA’s over Solvable Groups

The above results show that allowing NUDFA’s to operate over more complicated -
monoids increases their power. But at the highest level, that of non-solvable monoids,
- the power comes entirely from the embedded groups, i.e., non-solvable groups have as
much power as non-solvable monoids. It is natural, then, to examine this relationship
between greater complication and greater power in the group setting. What is the
power of NUDFA'’s operating over solvable groups of various less complicated forms?
We present some results to this end, which we believe form the beginnings of a
program which could add significantly to our knowledge of the fine structure of NC!.

We focus upon the power of an NUDFA over a group to simulate an unbounded
fan-in threshold counter, as, for example, by computing the AND of the input vari-
ables. This is possible over non-solvable groups in polynomial length (Theorem 1)
but as solvable groups are built up purely from modular counters, one might think
that NUDFA’s over them could not simulate the AND function at all. The actual
situation is more complicated. We will see in the next section that NUDFA’s over
nilpotent groups cannot do AND at all. But over groups which are solvable but not
nilpotent, we can carry out an analogue of the construction of Theorem 1.

13



Theorem 5: If G is a group which is not nilpotent, there is a family of exponential-
size NUDFA programs over G that calculates the AND function.

Proof: Let H be a normal subgroup of G with (G,H] = H — such a subgroup
must exist in any non-nilpotent group G. By induction we construct NUDFA pro-
grams B(h,1) for all h € H and i < n, where the value of B(h, 1) on an input setting
is h if z; through z; are all on and e otherwise. Each B(h,1) is a single instruction.
Each h € H is a product of commutators grhrgy  hi ! with gp € G, by € H. We define
B(h,1+41) to be the concatenation for all k of B(h,1)C(gk,i+1)B(h;",1)C (g5 ", i+1),
where C(g,7) is the single instruction whose value is g if z; is on and e otherwise.
B(h,n) calculates the AND of all n variables and has size at most (4|H|)", where |H|
is the order of H.O )

Conjecture: If G is solvable, any family of NUDFA programs over G calculating
the AND function has exponential size. Thus if G is solvable but not nilpotent,
Theorem 5 is optimal. .

In Section 8 we will prove this conjecture in the special case of some relatively
uncomplicated groups, but it remains unknown in general. Proving it might allow
us to separate out the group and aperiodic behavior of an NUDFA over an arbitrary
solvable monoid, which might give a better characterization of the languages within

ACC and help to prove ACC # NC!.

5. NUDFA’s over Nilpotent Groups

In this section we will characterize the power of all NUDFA'’s over nilpotent groups,
and thus show that they cannot calculate threshold furictions. One might begin by
considering the easier case of abelian groups. There the behavior of N UDFA’s is the
sum (in the group) of the behaviors with respect to each input variable, as the order
of the instructions does not matter. In fact the NUDFA calculates a linear function
from the variables to the group. If the input size n is sufficiently large with respect
to the group, some large number of variables must have the same coefficient in this
linear map. Flipping a number of these variables equal to the exponent of the group
from all zeroes to all ones or vice versa will not affect the output, so the NUDFA
cannot, for example, calculate the AND function. Note also that any such NUDFA
may be simulated by an NUDFA with only n instructions, one per variable. We will
now see that all of these properties of NUDFA’s over abelian groups are special cases
of similar properties for nilpotent groups.

To establish this generalization, we will need to develop the notion of representing
functions from {0,1}" to a ring by polynomials, used in the recent work of Razborov

14



(1987) and Smolensky (1987). If R is a commutative ring with identities 1p and
Or, any function from {0,1}" to R is uniquely represented by a polynomial over R
in the n boolean variables z,,...,z,. Formally, this is the ring R[z,,.. .y Tn) with
the identity z? = =z; for each i. Given a setting of the n variables, a polynomial is
evaluated by plugging in 15 for 1 and 0g for 0.

We will say that a language is strongly represented by a family of polynomials
P1,P2,--. if each p, represents the characteristic function of L N {0,1}. We will
say that it is weakly represented if there are subsets B, of R for each n such that
Pa(x) € B, iff x € LN {0,1}"*. We get non-uniform complexity classes by bounding
the size (number of monomials with nonzero coefficient) and the degree (maximum
number of variables in a monomial) of the polynomials in the family by functions of
n.

If Ris a field, strong and weak representation are closely related. If the polynomial
family (pn) weakly represents a language L (so that for each n Pn(x) € B, iff x€ L)
then L is strongly represented by

> L= (p, —i)RI-1

i€B,

b}

. This polynomial has only polynomially greater size and degree greater only by a
constant factor. However, with other rings the two concepts can differ remarkably.
- For example, over Zg the set {x : |x| = 1 mod 2} is weakly represented by the
polynomial }° 3z; but strongly represented only by a polynomial whose coefficient on
a term [[ics @i is 2!51-'mod 6 (or 0 if § = 0). This polynomial has exponentially -
greater size. ' -

Theorem 6: A language is recognized by a family of NUDFA’s over a nilpotent
group iff it is weakly represented by a family of polynomials of constant degree over
a direct product of cyclic rings. More precisely, it is so recognized by a family of
programs over a nilpotent group of class m and exponent g iff it can be weakly
represented by polynomial of degree m over Zg for some k. (ZF is the k-fold direct
product of the ring of integers mod g.)

Proof: We use the results of Thérien (1983) on nilpotent groups and subword
counting. Let A be any finite alphabet. For words z — Zy...epn € 4" and u =
U ...ux, define (:) to be the number of occurrences of u as a subword of z, ie.
the number of sequences 1 < 4; < ... < it < n such that uv = z; ...z Itis
proved in (Thérien, 1983) that if N is a nilpotent group of class m and exponent
¢, and z and y satisfy (:) = (ﬁ) mod g for all u of length < m, then any monoid
homomorphism from A* into the group N maps z and y to the same value (in other
words, no automaton whose syntactic monoid divides N can distinguish = and y).

15



Furthermore, there is a homomorphism ¢ from A~ into a particular nilpotent group
N of class m and exponent g which simultaneously counts occurrences of all subwords
u of length at most m. That is, it maps each z to a value #(z) € N such that for
each u, the value (z) mod g can be determined from ¢(z). Thus we have an exact
combinatorial characterization of the languages recognized (in the finite automata
sense) by such groups.

Let N be a nilpotent group of class m and let P be an NUDFA program over N
which converts an input string z € {0,1}" into a string P(z) in N*(), For each word
u € N* of length < m, the number mod g of occurrences of u as a subword of P(z)
is given by a polynomial over Z, in the boolean input variables, of degree m. This
is because each possible set of positions in P(z) where v might occur gives rise to
a term of degree < m (the product of the boolean variables corresponding to these
positions). This implies the first half of the theorem, with & being the total number
of subwords counted.

For the second half, for any given ¢ and k, we must show how to use an N UDFA
program to compute the value of any polynomial f(z) of degree at most m. The main
idea is to have the program yield a word over some alphabet 4, which will encode the
value of f(z) in the number mod ¢ of its occurrences of various subwords of length
at most m. We know (Thérien, 1983) that for the appropriate nilpotent group N of
class m and exponent g, there is a homomorphism ¢ from A" into N such that the
value of ¢(z) determines all the subword counts for a word z.

We will define an NUDFA program a}f- (“3k] over this group N, where f(z) is any
polynomial of degree at most m over Z, and the a; are distinct letters in 4. Each
instruction of this program will yield either the identity or an element ¢(a) of N,
so that we can think of the yield on input = as a word w(z) in A* which will be
mapped by ¢ into N. The number mod g of occurrences of a; .. .a; as a subword of
w(z) will be exactly f(z). Thus the yield of the program will determine the value of
f(z). By using an independent set of letters for each of k copies of Z,, we can extend
this construction to give an NUDFA program, over a nilpotent group of class m and
exponent g, calculating any polynomial of degree at most m over Zk.

We begin by defining [’Z‘], for a single input z; and single letter a, as the appro-
priate single instruction. That is, the program [“;] yields ¢(a) if z; is on and the
identity of NV if z; is off. Next, [‘:‘] is ¢ — 1 copies of [‘1] In general, [f(”):'-"('"”)] is
the concatenation of [fff)] and [9(:)]. For strings u and v of input letters, where no

letter occurs more than once, [f(";zg("’)] can be defined as ["Ef)] [g(f)] [‘fu(”)] [_glf“’)].
This program produces zero subwords mod g in combination with anything before
or after it, but does produce subwords uv if f(z)g(z) has a nonzero value. In this

16



way programs for arbitrary polynomials and subwords can be built up, as long as the
degree of the polynomial is at most the length of the subword and the subword has
no repeated letters.O

Corollary: No NUDFA of any size over a nilpotent group can calculate the AND
function (i.e., weakly recognize the language 1~ C {0,1}").

Proof: The polynomial for the AND function is easily seen to have degree n over
any ring. However, we must show that no constant-degree polynomial can weakly
recognize the AND language by having a value on input 1" which differs from the
value in any other setting. To do this we will use Ramsey’s Theorem to establish the
following periodicity property of the functions calculated by constant degree polyno-
mials. The AND function clearly does not have this periodicity, and so the Corollary
is immediately implied by the following:

Lemma: For n sufficiently large, any polynomial of degree t in n variables over
Z: has the following property: In any setting there exist q - (t!) variables set alike
(all zeroes or all ones) which can all be flipped without changing the value of the
polynomial.

Proof: Assume without loss of generality that the setting contains a ma jority of
zeroes — otherwise work with ones and dualize the following (note that the dualization
preserves the degree of polynomials). Simplify the polynomial by plugging in ones
for the variables set to one, getting a polynomial of degree at most ¢ in the variables

~originally set to zero. By Ramsey’s Theorem, for sufficiently large n, there must be a
set A of g-(t!) variables satisfying the following conditions: Let T}, 1 <3 < t, be the
set of all monomials of length ¢ in the variables of 4. Note that the cardinality of T;
is (I’:I). Then every monomial in T} has a coefficient in the new polynomial that only
depends on i. That is, all linear terms from 4 have some coefficient c1, all quadratics
have the same coefficient ¢;, and so on up to ¢;. Of course, the number of variables
we have available must be very large compared to ¢, g, and k.

Now consider the new setting obtained by flipping all the variables in 4. The
value of the polynomial changes by

_thc.- (q'gt!)) =0

because g divides each of these binomial coefficients.O

This periodicity property might seem to be a logical consequence of working only
with modular counters of constant modulus. However, we have seen that NUDFA’s
over solvable groups can compute functions which are not at all periodic, such as

AND. Does such a periodicity property hold for N UDFA’s of polynomial length over
solvable groups? :

17



Corollary: Any NUDFA over a nilpotent group of class m has an equivalent
NUDFA of length O(n™) over the same group.

Proof: Simply keep track of the length in the construction of Theorem 6. One
can also prove this directly by converting any program into an equivalent one of poly-
nomial length, using a variant of the “formal commutator” construction of (Thérien,
1983) to rearrange the instructions until similar instructions can be collapsed.O

This work has recently been extended by Péladeau and Thérien (1988), who in-
vestigate the subsets of {0,1}" which can be recognized by a given nilpotent group.
We have just shown that such a subset cannot be a singleton, but they prove that any
such subset has exponential cardinality (at least 2™ /c elements, where c is a constant
depending on the group).

6. Representing Languages by Linear Forms

We are left with the case of groups which are solvable but not nilpotent. NUDFA’s
over one such group, S3, have been studied by Barrington (1985). He showed, in effect,
that exponential program size is required for these NUDFA’s to compute the AND
function. The general method was to show that calculating a function with an S,
program corresponds to expressing it as a linear combination of certain basis functions
over a finite field, and then showing that all such linear combinations for the AND
function contain exponentially many elements.

- Here we extend the ideas there to show a similar bound in the case of certain other
groups which are solvable but not nilpotent. In order to do this, we must develop some
machinery for the representation of functions by linear forms over a finite field, In
particular, we will define a multidimensional version of the discrete Fourier transform,
and derive certain properties which will prove'to have computational significance.

Let F be a finite field of order at least 3, and let F'~ be the set of nonzero elements
of F. As is well known, F~ is a cyclic group under the field multiplication. Let k
denote the order of F~, so that k > 2. Let us fix a generator g of this group. Now
if h € F~, there is a unique m such that 0 < m < k and g™ = h. We thus define
logh = m, with the understanding that the definition of the logarithm depends on
the choice of the generator g.

Let n > 0. We will be concerned with the F-vector space A" of functions from
(F~)* to F. Our first task will be to define a particular basis for this vector space.
For each w = (wy, ..., w,) € (F*)* we define a function Py : (F~)* — F by

Po(x) = Pu(z1,...,2,) = wi®™ .. w8,

18



Observe that Py (x) = Px(w).

Now let v,w € (F*)". We denote (wi',...,w;!) by w=!. If v = w~! then

Y. Pu(x)Py(x) = k" = (-1)~.
XE(F*)n

If v.# w~! then for some i € {1,...,n},u = w;v; # 1. Then for some ¢ € F,

> Pu(x)Py(x)=c- Do uEt = (uk - 1)/(u - 1)=0.

XE(F*)m XeF*
So {Pw|w € (F~)"} is a basis for A", and this basis is orthogonal with respect to

the inner product
(fufa = 3 fulx)- fa(x7Y).

XE(F‘)"‘

Given f € A", we denote by supp(f) the cardinality of the set {w e (F)"|f(w) #
0)} and by weight(f) the number of nonzero coefficients that occur when [ is written
as an F-linear combination of the P,,. The Fourier transform of f is the function

Tf € A" defined by
THw)= 5 f(x)- Puns(x).

xE(Fo )n.

If supp(f) = 1, with f taking its only nonzero value at Xo, then Tf = f(x,)- Py-r,
which has weight 1. Since T is linear, it follows that for any f € A", supp(f) =
weight(T f). Moreover, the orthogonality relations imply that TP, is nonzero only
at w1, Thus, by linearity, for any f, weight(f) = supp(Tf).

Given fy, f» € A", we define the convolution f; fa € A® by
(Axf)x)= DY f(w): fi(wix).

WG(F‘)"’

It is then easy to show that T(f; - f,) = Tf, « Tf, and that T(f, * fo) = Tf, - Tf,,

where the dot denotes pointwise multiplication.
For each w = (wy,...,w,) € (F*)", we define a function Q@w from {0,1}" to F by

Qw(u, ..., u,) = wi N T e

Observe that Qy - Qw = Qyw, where vw denotes the componentwise product of
v and w. Note also that Py(zy,...,z,) = Qw(logz,,...,logz,), provided that
(%1,...,2,) € {1,g}". In particular, the functions Q. span the vector space of

19



functions from {0,1}" to F, but are not linearly independent. Nonetheless we are
able to prove some lower bounds on the number of Qw required to express certain
boolean functions. We will be able to translate these bounds into lower bounds on
program length for programs over certain solvable groups.

Recall that the AND function from {0, 1}" into {0, 1} is that function taking the
value 1 if all components are 1 and taking the value 0 otherwise. Since {0,1} C F,
we can view AND as taking its values in F.

Theorem 7: The AND function cannot be written as an F-linear combination
of fewer than (£-)" of the functions Q..

Proof: Let h; € A™ be the characteristic function of the n-tuple (g,...,g), and
let h; € A" be the characteristic function of the set {1,9}". Since weight(Th,) =
supp(h1) = 1, Th, is equal to P, for some w and is nowhere zero, so that weight(h,) =
supp(Th,) = k™.

A simple calculation shows that

Tha(wr,...,wa) = Y. J[w; = II (w: +1).

§C{o1}n jes 1<i<n

Thus weight(hs) = supp(Th,) = (k — 1)~

Now suppose AND = ¥ cyQw and let f = ¥ cwPy. Then f-hs = hy. Since
weight(hs - f) < weight(h,) - weight(f) we obtain weight(f) > (£;)", and thus that
at least the required number of ¢y, are nonzero.O

The preceding argument suggests that, in general, functions with small weights
have large supports, and vice versa. This is made precise in the following proposition.

Proposition: For any nonzero f € A", supp(f) - weight(f) > k".

Proof: Consider the square matrix, with rows and columns indexed by (F-),
whose (w,x) entry is Py(x). Since the P, are linearly independent, this matrix is
nonsingular and hence its columns are linearly independent. Now consider the matrix
M whose (w,x) entry is f(x) - Pw(x). All but supp(f) columns of M are zero, and
the remaining columns are each obtained by multiplying the corresponding column of
the original matrix by a nonzero constant. Thus M has exactly supp(f) linearly inde-
pendent columns, and its rank is supp(f). We can therefore extract supp( f) linearly
independent rows, which span the subspace of A" consisting of functions which are
zero on the zero-set of f. This subspace has dimension supp(f). In particular, there
is some linear combination at most supp(f) of the functions f+ Pyw that has support 1.

Taking transforms, we obtain a linear combination of at most supp(f) of the functions
T(f - Pw) that has support £*. Now supp(T(f-Pw)) = supp(T f x T Py) = supp(Tf),

20



by the definition of the convolution and the fact that TP, has support 1. Since the
support function is subadditive, we obtain k™ < supp(f) - supp(Tf), as claimed.D

7. Lower Bounds for Certain Solvable Groups

We are now ready to apply the results of the preceding section to put lower bounds
on the program length needed for NUDFA’s over certain solvable groups to calculate
the AND function. We conjecture, of course, that a similar bound holds for any
solvable group. In the section following this one we will indicate how our methods
might be extended in this direction. The treatment in this section is an extension
beyond that in the preliminary version of this paper (Barrington and Thérien, 1987),
and the results obtained are somewhat stronger.

We begin by considering an interesting special case of groups which are closely
related to particular finite fields. For a field F as above, we define the group Gp to
be a semidirect product of F' and F~ as follows. Elements of G are pairs (2,7) with
1€ Fand j € F, and the product is given by (i,5)(k,£) = (i + 7k, 30).

Proposition: Any NUDFA over G calculating the AND function has length
20(n),

Proof: An instruction of an NUDFA over Gr has value (ro + riz;, 80877) for
~ constants o, 71, So, and s; and some input variable z;. By induction, it is easy to see
that the yield of a sequence of £ instructions is given by (f(x),9(x)), where f € A"
has weight at most 2¢ and g € A" has weight 1. This is because the functions. sps7
have weight 1 and weight is submultiplicative. '

Suppose that some NUDFA of length £ calculates the AND function. That i5, the
yield N(x) = (f(x),g(x)) is in some set § C G if x = 1" and is not in S otherwise.
Define f; for i € F to be the product for ' # i of f—3i'. Note that fi has nonzero value
when f(z) = ¢ and is zero otherwise. Define g; similarly. Now let k be the sum, for
all (i,7) in S, of fig;. So h(x) # 0 exactly when N(x) € 5. Now consider h* (under
pointwise multiplication of functions in A"). This function has weight polynomial in
€ and value h*¥(x) = 1 iff N(x) € S, and h*(x) = 0 otherwise. By hypothesis tLhis is
exactly the AND function shown to require weight (k/(k —1))* in Theorem 7. Since
this weight is polynomial in ¢, ¢ = 20(") O

Examples of groups Gr include S3 (for the three-element field) and A4 (for the
four-element field). Thus the above Proposition implies that width 3 permutation
branching programs and width 4 even permutation branching programs (as defined
by Barrington (1989)) require exponential length to compute the AND of their inputs.

21



In the width 3 case this improves the result of Barrington (1985) by extending the
lower bound from strong recognition to weak recognition, as defined above. The
techniques here can easily show a lower bound of Q(2™/?) for the length of width
3 permutation branching programs which weakly recognize the AND function, as
conjectured by Barrington (1985).

In the preliminary version of this paper (Barrington and Thérien, 1987) it was
shown that this lower bound result could be extended to the variety of groups gener-
ated by Gr for each particular field F. Here we are able to improve this somewhat.
For each prime p, let 1}, be the variety of groups which divide the wreath product of
a p-group and an abelian group. (V, can also be defined as the set of all extensions
of p-groups by abelian groups.) We extend the lower bound to the union of the 15
(which is not itself a variety). In fact every group from (Barrington and Thérien,
1987) is contained in some V},.

To prove our most general result we will need a theorem about the languages
recognized by wreath products of cyclic groups, due to Straubing (1979). Let A be a
finite alphabet and L C 4~ alanguage, a € 4, and » € Z,,,. The language (La,r,m) is
defined as those w € A~ such that the number of initial segments of w in the language
Lc is congruent to r mod m.

Theorem 8:(Straubing, 1979) Any language in A" recognized by a wreath product
Zm o X, where X is any monoid, is a boolean combination of languages of the form
L, and of the form (Lja,r,m), where L; and L, are languages recognized (in the

original finite-automaton sense) by X. O

Theorem 9: Let G, be a p-group and B an abelian group, and let L € {0,1}»
be recognized by a program of length £ > n over G, o B. Then there is a finite field
F such that the characteristic function of L has weight at most X, where K is a
constant depending only on G, and B.

Corollary: Any NUDFA program family over G,0B computing the AND function
has length 2%~ O

Proof of Theorem 9: Without loss of generality, we will take G, to be an r-fold
wreath product of groups Z, (which we will denote ZI[,'] ), and take B to be Z* for
some m prime to p. This is because the original G, o B divides some Z,[,’] 0 Zk as we
will now show. First, we may assume that p does not divide the order of B. This is
because as an abelian group, B may be written as a direct product P, x B’, where P,
1s a p-group and p does not divide the order of B’. Then B divides P, o B', and we
may replace G, o B by (G, o P;) o B’, using the associativity of the wreath product.
Gp o Py is a p-group and divides some Z;{,r] by one of our basic facts (see Eilenberg
(1976)). Finally, B’ is abelian and must divide a direct product Zk , where m is its
exponent.

22



Since m divides p’ —1 for some 7, we can find a field F of characteristic p containing
an element g of order m. We will prove the theorem by induction on .

Lemma: Let L,,...,L; be any family of languages whose characteristic func-
tions each have weight at most f. Then the characteristic function of any boolean
combination of the L; has weight fO(!) (with & considered as a constant).

Proof of Lemma: The boolean combination, expressed in conjunctive normal
form, is an AND of at most 2* terms, each an OR of at most k of the L;. The
characteristic functions of the ORs have weight at most f*, and thus the characteristic
function of the AND has weight at most f*2* = f0(1) g

Proof of Theorem 9: (continued) In the case r = 0 we have a program over ZX
which can be thought of as k independent programs over Zn,,. A language recognized
by such a program is thus a constant-sized boolean combination of languages recog-
nized by programs over Z,,. But any program over Z,, computes a linear map, which
is a function of weight O(n) = O(£). Applying the Lemma, the language recognized
by programs over Z* has a characteristic function of weight £90(1),

Now, for the inductive step, let L be recognized by programs of length ¢ over the
group ZlI'*Wo Z%  which is Z, 0 X, where X = zlNo ZE. xisin L iff the yield N(x)
is in some regular language T' recognized by Zyo X. By Theorem 8 T is a boolean
combination of languages of the form 7T} and (Tea, q, p) for various languages T; and
T; recognized by X. Hence L is a boolean combination of languages {x : N(x) € T}

‘and {x: N(x) € (Tza,q,p)}. By.the Lemma, it suffices to show that languages of this
kind have characteristic functions of weight £°(Y). This is immediate by the inductive .
hypothesis in the first case, as such languages are themselves recognized by programs
of length £ over X. '

Let H be the characteristic function of {x : N(x) € (Tza,q,p)}. To compute H,
we need to know, for each i with 1 < i < £, whether the yield of the first i instructions
of the program is a word in Tha. Let P; be the function which is 1 if this is the case
and zero otherwise. Then H =1 — ((Zf1 P:) — q)F°l and H has weight polynomial
in that of the P;. But P, is the characteristic function of the AND of two languages:
{x : the ’th character of N(x) is an a}, and {x : the first s — 1 characters of N(x)
are in T}. The characteristic function of the first of these languages is z;,1 — z;, 0,
or | for some j, and the second language is clearly recognized by programs of length
< Lover X. So the weight of P; is polynomial in £ by the inductive hypothesis.O

23



8. The Constant-Degree Hypothesis

In this section we consider a generalization of the weight of a function, and for-
mulate a conjecture which would extend our lower bounds to some additional groups
— those which divide wreath products of a p-group and a nilpotent group. For a
positive integer r, let u,,...,uy be all monomials of degree at most 7 in the variables
Z1,---,%n. For each vector y = (y;,...,yn) € (F-)N, let the function P}') from
{0,1}" to F be defined by Pa(,r)(:cl,. y&n) = y' ... yn"¥. The basis functions Py,
used in our definition of weight above, are exactly the functions PY. In a similar
way, we define the (r)-weight of a function f from {0,1}" to F to be the minimal
number of P,(,') functions in a linear combination summing to f.

Conjecture: (The “constant-degree hypothesis”) For fixed r > 0, the AND
function has (r)-weight 2°(n),

Note first that this hypothesis does not follow directly from the r = 1 version
proved above, as some functions P§2) have exponential (1)-weight. However, we do
not believe that these new basis functions bring one substantially closer to the AND
function. We have shown some evidence of a duality between the functions of (1)-
weight 1 and the functions of support 1 (such as AND), and the functions of low
(r)-weight appear to be far more similar to the former.

One consequence of the constant-degree hypothesis would be a new and simpler
proof of our Corollary to Theorem 6, that no program family of any size over a
nilpotent group can calculate the AND function. We will show this in the course of
proving the following, the main result of this section.

Theorem 10: (Assuming the constant-degree hypothesis.) Any program family
computing the AND function over G, o0 N, where Gy is a p-group and N is a nilpotent
group, has length 2",

Proof: N is a direct product of pi-groups for distinct primes p;,...,p,. We may
assume that no p; is equal to p, as any p-groups in H may be merged into G, (if N,
is a p-group, with N = N; x N', then G, o (N, x N') divides (G, o Ny) o N’, and
Gpo N, is a p-group). As in the proof of Theorem 9, we will induct on the number of
groups Z, wreathed together to form G,. We will work over a field F which contains
elements gy,...,g; of order py,...,p, respectively.

Consider first the case where G, is trivial (the special case mentioned above).
From Theorem 6, it is easy to see that the language is recognized by a t-tuple of
polynomials of some constant degree r, where the 7’th polynomial f; is over Zyp;.

Over F, then, the characteristic function of {x: fi(x) =b}is 1 - (g;’(x) — gh)Fl.

24



Since g7’ (x)

;77 is just a single P}(.r) term, it has (r)-weight 1. The characteristic function
of our language then has constant (r)-weight, independent of both n and the program
length. With the constant-degree hypothesis, this immediately implies that the AND

function cannot be computed at all over a nilpotent group.

The inductive step proceeds exactly as in the proof of Theorem 9, except that
now it is the (r)-weight rather than the (1)-weight which is proved to be polynomial
in £ at each step. O

9. Open Problems

The connection between automata theory and the internal structure of NC! offers
a great opportunity for progress in both, either by new results or new proofs of
and insights about known results. Proving lower bounds in the NUDFA setting, for
example, could give new proofs of many structure results, but so far we can only
obtain such bounds for very uncomplicated monoids (except by using the existing
structure results, as in the case of dot-depth). The next goal with respect to groups
would be.to prove our conjecture for groups which are solvable but not nilpotent.
At the same time, we must look for analogous results among aperiodic monoids and
eventually general solvable monoids. A full understanding of the latter should provide
~a proof that ACC is strictly contained in NC', a result which has so far evaded the
methods of Razborov and Smolensky. Even proofs of known structure results without
the use of the random restriction technology (Furst, Saxe, and Sipser, 1984) would -
be of considerable interest. : '

As a more immediate goal, one could look at the simplest solvable groups for
which our conjecture is not yet proven. One avenue toward this would be to prove
the constant-depth hypothesis of section 9. As far as specific groups rather than
varieties, the next target for analysis would appear to be S, (showing width 5 to
be necessary for polynomial size permutation branching programs to recognize all
languages in NC?). However, as this group has three steps in its upper central series,
it appears that new techniques will be needed. Eventually we hope to generalize these
methods to arbitrary wreath products and /or semidirect products of cyclic groups (as
any solvable group divides a wreath product of cyclic groups).

One could examine other models similar to NUDFAs, for example, non-uniform
stack machines. This might extend these techniques to complexity classes larger than
NC!. Straubing (1986a) has developed a framework generalizing both circuits and

branching programs, which provides new proofs of some of the results of Barrington
and Thérien (1988).



Finally, we would like to develop an algebraic theory to explain all this, analogous
to Eilenberg’s treatment of finite automata (1976). In particular, we suggest an ana-
logue of the Krohn-Rhodes theorem which would imply many of the known structure
results and ACC # NC! — that if the word problem for a simple group G can be
solved (or perhaps “approximately solved”, as in (Razborov, 1987)) by polynomial
length NUDFA’s over the wreath product of two monoids, it can be so solved by such
NUDFA'’s over one monoid or the other.

10. Acknowledgements

We would like to thank Pierre McKenzie, who first noticed the connections be-
tween our efforts and organized the meeting in Montréal where we obtained the first
of these results. We would also like to thank Martin Cohn, Mike Sipser, and Ro-
man Smolensky for helpful discussions, and to thank the referees for several helpful
comments.

11. References

Ajtai, M. (1983), T} formulae on finite structures. Annals of Pure and Applied
Logic 24, 1-48. }

Barrington, D. A. (1985), “Width 3 Permutation Branching Programs”, Technical
Memorandum TM-291, M.I.T. Laboratory for Computer Science.

Barrington, D. A. (1989), Bounded-width polynomial-size branching programs
recognize exactly those languages in NC!, J. Comp. Syst. Sci. 38:1, 150-164.

Barrington, D. A. (1986) “Bounded-width branching programs,” Ph.D. thesis,
Dept. of Mathematics, M.I.T., also Technical Report TR-361, M.I.T. Laboratory for
Computer Science.

Barrington, D. A. M., Straubing, H., and Thérien, D. (1988), “Finite monoids
and circuit complexity”, in preparation.

Barrington, D. A., and Thérien, D. (1987), Non-uniform automata over groups, in

“Automata, Languages, and Programming: 14th International Colloquium?”, Springer-
Verlag, Berlin, 163-173.

Barrington, D. A. M., and Thérien, D. (1988), Finite monoids and the fine struc-
ture of NC', J. ACM 35:4, 941-952.

26



Borodin, A., Dolev, D., Fich, F. E., and Paul, W. (1983), Bounds for width
two branching programs, in “Proc. 15th Ann. ACM Symposium on the Theory of
Computing”, Association for Computing Machinery, New York, 87-93.

Brzozowski, J. A., and Knast, R. (1978), The dot-depth hierarchy of star-free
languages is infinite, J. Comp. Sys. Sci. 16, 37-55.

Chandra, A. K., Fortune, S. and Lipton, R. (1983), Unbounded fan-in circuits
and associative functions, in “Proc. 15th Ann. ACM Symposium on the Theory of
Computing”, Association for Computing Machinery, New York, 52-60.

Chandra, A. K., Furst, M. L., and Lipton, R. J. (1983), Multi-party Protocols, in
“Proc. 15th Ann. ACM Symposium on the Theory of Computing”, Association for
Computing Machinery, New York, 94-99.

Chandra, A. K., Stockmeyer, L. and Vishkin, U. (1984), Constant-depth reducibil-
ity, SIAM J. Computing 13, 423-439.

Cohen, R. S., and Brzozowski, J. A. (1971), Dot-depth of star-free events, J.
Comp. Sys. Sci. 5, 1-16.

Cook, S. A. (1985), The taxonomy of problems with fast parallel algorithms,
Information and Control 64, 2-22.

Eilenberg, S. (1976), “Automata, Languages, and Machines, Vol. B,” Academic
Press, New York.

Fagin, R., Klawe, M. M., Pif)penger, N. J., and Stockmeyer, L. (1985), Bounded
depth, polynomial-size circuits for symmetric functions, Theoretical Compuier Science
36, 239-250. ' :

Furst, M, Saxe, J. B., and Sipser, M. (1984), Parity, circuits, and the polynomial-
time hierarchy. Math. Systems Theory 18, 13-27.

Johnson, D. S. (1986), The N P-completeness column: An ongoing guide, Journal
of Algorithms T:2, 289-305.

Lallement, G. (1979) “Semigroups and Combinatorial Applications”, John Wiley
& Sons, New York.

Péladeau, P., and Thérien, D. (1988), Sur les langages reconnus par des groupes

nilpotents, Comptes Rendus de L’Academie des Sciences (Serie I — Mathématique)
306:2, 93-95.

Pippenger, N. (1979), On simultaneous resource bounds (preliminary version), in
“Proc. 20th Ann. IEEE Symposium on Foundations of Computer Science,” IEEE
Computer Society, Los Angeles, 307-311.

27



Pin, J. E., 1986, “Varieties of Formal Languages,” Plenum Press, New York.

Razborov, A. A. (1987), Lower bounds for the size of circuits of bounded depth
with basis {&,®}, Mathematicheskie Zametki 41:4, 598-607 (in Russian). English
translation Mathematical Notes of the Academy of Sciences of the USSR 41:4, 333-
338.

Savage, J. E. (1976), “The Complexity of Computing,” J. Wiley & Sons, New

‘ork.

Schutzenberger, M. P. (1965), On finite monoids having only trivial subgroups.
Information and Control 8, 190-194.

Sipser, M. (1983), Borel sets and circuit complexity, in “Proc. 15th ACM S)f}n-

posium on the Theory of Computing,” Association for Computing Machinery, New
York, 61-69.

Smolensky, R. (1987), Algebraic methods in the theory of lower bounds for boolean
circuit complexity, in “Proc. 19th ACM Symposium on the Theory of Computing,”
Association for Computing Machinery, New York, 77-82.

Spira, P. M. (1971), On time-hardware complexity tradeoffs for boolean functions,

in “Proc. 4th Hawaii Symposium on System Sciences,” Western Periodicals Co.,
North Hollywood, Calif., 525-527.

Straubing, H. (1979), Families of recognizable sets corresponding to certain vari-
eties of finite products, J. Pure and Applied Algebra 15, 305-318.

Straubing, H (1985), Finite semigroup varieties of the form V" x D, J. of Pure and
Applied Algebra 36, 53-94. '

Straubing, H. (1986), Semigroups and langiages of dot-depth 2, in “Automata,
Languages, and Programming: 13th International Colloquium,” Lecture Notes in
Computer Science 226, Springer Verlag, Berlin, 416-423.

Straubing, H. (1986a), “Finite monoids and boolean circuit complexity”, manuscript.

Thérien, D. (1981), Classification of finite monoids: the language approach, The-
oretical Computer Science 14, 195-208.

Thérien, D. (1983), Subword counting and nilpotent groups, in “Combinatorics
on Words: Progress and Perspectives” (L. J. Cummings, Ed.), Academic Press, New
York, 297-305.

Zassenhaus, H. J. (1958) “The Theory of Groups”, 2nd ed., Chelsea Publ. Co.,
New York.

28



