‘Regular languages and products of regular languages
. as Kripke semantics

Victor Yodaiken

COINS Technical Report 89-58
15 June 1989

Computer and Information Science Department
University of Massachusetts
Ambherst, Massachusetts 01003

Abstract

We show how regular string languages can be treated as Kripke semantics for
a modal logic, and how feedback products of such languages can be used to model
concurrency and composition in computational systems.

1. Introduction

In this paper we describe a technique for mathematically modeling the behavior of digital
systems. The technique involves treating prefix closed regular string languages as Kripke
structures [Kripke] for a modal logic, and composing these structures using a relatively
sophisticated algebraic product of automata [Gecseg|. These techniques permit us to con-
cisely represent complex digital systems in terms of their behaviors and their construction
from (possibly concurrent) sub-systems.
The body of the paper is in three sections. The first section introduces a “local”
“assertion language consisting of propositions about strings. In the following two .sections
we extend the language: first to obtain a modal language of propositions about regular
string languages, and then to obtain a modal language of propositions about products of
regular languages. The formal logics presented here have been concocted for the express

purpose of illustrating the method: a far more expressive free-variable modal calculus is

described in [Yodaiken]|.

2. State and relative order of computations

In this section we describe a local assertion language containing propositions about finite
strings. We will define a satisfaction relation |= on strings and propositions so that w = p
when p is a true proposition about w. Each proposition p defines a congruence relation

~p on the set of all finite strings A*, where w ~, u is true if and only if:

(Vvy,v; € A7) (viwv; |= p) € (viuv; = p)

Let [w]p, = {u : u ~, w} and let States, = {[w], : w € A*}. The key property of our
language of propositions is that for each proposition p, States, is finite. In fact. any local
assertion language with this property could be used in the development of our modal logic.

Suppose we record the computations of a system in a string w = (a;...an). The
left to right ordering of w reflects the temporal ordering of events — the “most recent”
computation is named by a,, and the ** most recent computation is recorded by an_(;-1).

We describe state through assertions about this relative ordering. We write P(a,1,8,j)

to assert that “at least j B’s have occurred since the :** most recent a occurred.” For
example, the assertion P(tick, 10, request,1), is true iff “less than 10 ticks (of some clock)
have occurred since the most recent request.” The proposition P(set,1,clear,1) asserts
that a one bit memory cell is clear — the most recent clear came after the most recent

set.

Definition 1: If 4 is a finite alphabet, the assertion language P (A) is the propositional

closure of:

{P(aaiyﬂsj) :a’ﬂ € A,i,j > 0}

To interpret the propositions of P(A) we need to map pairs (a,%) to positions in a
string. Given a string w = (a,,...a,) let |w| = n denote the length of w, and |w|, denote
the number of a symbols in w. If |w|, > ¢ we let pos(a, ¢, w) be the unique k so that a; = «
and [{a...an)|a =t If jw|, < ¢ we let pos(a,i,w) = 0. Thus, pos(e,i,w) < pos(8,7,w) if
and only if the j** most recent § is more recent than the :*» most recent a.

We can now define |=.

Definition 2: For any w '€ A* and proposition p = precedes(a,t,b,j), say that w
* satisfies p if and only if (pos(a,?,w) < pos(8, 5, w)). '

We write w |= p whenever w satisfies p. The definition of |= is completed through the
usual extensions to p A ¢, and —p.

Take Depth(c, p) to be the maximum ¢ so that P(a,1,8,7) or P(f3,7,,1) is a subfor-
mula of p. It is easily seen that for any w, for which |w|, > Depth(p, @), there exists a u
such that |u|, < Depth(p,a) and w ~, u. Let Depth(p) be ¥,c4 Depth(a,p). Tt follows
that for any w with |w| > Depth(p) there must be a u such that |u] < Depth(p) and

w~pu.

Theorem 1: . For any p € P(A) the set States, is finite. In fact the cardinality of

States, is bounded by nP*P**(?) where n is the cardinality of A.

At this point it would be possible to speak of the regular languages definable in P(A)
in the standard manner, e.g., {w : w |= p} (cf. [Pin] (pp. 118-119) and [Ladner]). But, our
interest is in describing behaviors and algorithms. We find it natural to describe algorithms
by defining the state properties which enable or disable computations. Thus, in the next

section we develop a formal language in which the state propositions of P(A) are employed

as guards on computations.

3. Unitary systems

- We define a modal propositional logic £(A) as follows:

Definition 3: L(A) is the smallest set such that:

1) If p € P(A) then p belongs to L(A),

2) If a € A then E(a) belongs to L(A),

3) If p belongs to £(A) and u € A* then (after u)p belongs to L(A),
4) If p and q belong to L£(A) then p A Q belongs to L(A),

5) If p belongs to £(A) then —p belongs to L(A).

Intuitively, E(c) asserts that o is enabled (can happen) and (after u)p asserts that
in the state reached by following u from the -current state p will hold. For example,
E(time_out) asserts that a time_out computation can happen. To assert that the com-
putation time out can only occur whenever at least 10 ticks have passed since the most

recent request we write:
P(request,1,tick,10) « E(time_out)

To assert that after a request and 2 ticks a time.out can happen we write
(after (request,tick,tick))E(time_out).

A prefix closed reéula,r language is a regular language L with the property that wa €
L — w € L. The semantic structures for £(A) are the prefix closed regular languages over

alphabet A. Prefix closure reflects our use of strings as computation histories — we cannot

permit discontinuous histories. We write (L, w =’ p) to denote the truth of proposition p

on string w in language L.

Definition 4: A pair (L,w) satisfies a £L(4) proposition p, ((L,w) ' p)) iff:
1) p€ P(A) and w [= p,

or

2) p= E(c) and w(a) € L,

or

3)p = (after u)q and (L, wu) satisfies g,

or

4) p is a conjunction or a negation, and the usual conditions apply.

Define a rule to be an assertion p «— E(a) where p € P(A). We write R, to denote
a rule p, — E(a). Define a unitary grammar to be a conjunction Aaes) Ra- Thus, a

unitary grammar is a set of rules governing every computation named by A.

Theorem 2: . For any unitary grammar §, there is exactly one regular language

L C A* so that (Vw € L)(L,w ' §).

Proof. We show that there is a language L satisfying § by constructing a state machine
M which accepts L. Let p be tlie conjunction of all the left hand sides of the rules of 9,
P = AacaPa- Let the state set S of M consist of the congruence classes of A* defined by
- p, i.e., let S = States,. By Theorem 1, S will be a finite set. Define a transition function
§:8x A — S so that §([w],, @) = [wa], if and only if w |= pa. Let 6([w],, @) be undefined
otherwise. The state machine with state set S, transition function 6, initial state [(}],, and
with every state an accepting state, will accept a prefix closed regular language satisfying
g.

We show that any such language is unique by contradiction. Assume that there are two
such languages L,L'. Since these languages are prefix closed théy must share at least one
string, e.g., () the empty string. Without loss of generality assume that there is a string w
belonging to both languages and an a so that wa € L and wa: € L' (if there is no such string
L = L'). Take the rule p, < E(c) from G and note that either ~(L,w ' p, « E(a)) or
~(I',w |=' p, & E(a)) thus contradicting the premise.

4. Composite systems

Unitary grammars cannot define all prefix closed regular languages. In fact, unitary gram-
mars can only define star-free prefix closed regular languages [Pin] (pp. 87-93). More to the
point, unitary grammars are not adequate for describing complex computational systems
because they are not compositional — they do not allow us to construct a complex spec-
ification from specifications of component parts. We wish to extend the model and logic
to provide compositionality, without making assumptions about how components may be
interconnected. In order to accomplish this we turn to the theory of algebraic products
of automata. The intuitive idea here is that computations in a composite system can be
mapped to concurrent computations occurring in the component systems. Thus, we con-
sider a composite system to be a tree, with the leaves representing “unitary” components
(components that do not themselves contain components). A computation of the top level
system is reflected by concurrent computations by some or all of the components below.
In this paper we assume that these trees are always finite.

Since the alphabets of components will not necessarily coincide, we need to be able to
identify each component with an appropriate language of propositions. We will also need

to be able to name all the components of each system in the tree.

Definition 5: A component list is either an empty list, (), or a list,
((A1,C1) ... (An,Cn)), where A; is the alphabet of the 1** component and C; is the

component list of the #** component.

We are now in a position to define a propositional language L£(A, C) for alphabet A and

component list C.

Definition 6: For a finite alphabet 4 and component list C = ((A:,Cy) ... (4..Cn)).
the language L£(4,C) is the smallest set such that:
1) If p belongs to L(A) then p belongs to £(4,(),
2) If p belongs to L(A.,C.), then (in ¢)p belongs to L(4,C),
3)If0<c<nandve€ A and a € A, then D(e,c,y) belongs to L(4,(),
)

4) The usual rules apply to conjunctions and negations.

A proposition D(e,¢c,y) is true in the current state iff the computation of a will
cause the the component ¢ to compute the sequence of computations y. An asser-
tion (in ¢)p is true iff p is true in the component system named c¢. For example,
D(Ttme_Out, Devl, (raise_wirel,drop_wire2)) asserts that when the composite system
times out, the component Devl will compute (raise_wirel,drop_wire2). The assertion
(in Devl)requesting « (in Dev2)-requesting is true iff the two components Devl and

Dev2 cannot both request at the same instant.

Definition 7: The semantic structures for propositions of L(A,C), where C =

((A41,C1) ... (An,Cpn)), are all 2n + 1 tuples
M= (L, M, ®,,... My, ®,)

where:

1) L is a prefix closed regular language over A called the language of M,
2) Each M. is a semantic structure for £(A4.,C.),

3) Each &, is a function: @, : A* x 4 — A

The functions ®. synchronize the activities of the components. In the state reached by
following w from the initial sta'te, ®.(w,) is the sequence of computations that will be
foilowed by component ¢ when the composite system computes ae. We say M is well defined
fwel — #:i({),w) € L;, where L; is the language of M;. In other words, the traces of
the language of a well defined structure correspond to traces of the component structures.
The structure we have just defined is derived from the general automaton product that is
described in [Gecseg| (pp. 14-15).

We can now define a final satisfaction relation =" on a £(A4,C) propositions and se-

mantic structures.

Definition 8: We say a pair (M,w) where M is £(4,C) semantic structure M =
(L,M,,,®.,,... M, ,®,), and w is a string over A, satisfies a L(A,C) proposition p,
(written (M, w) " p), iff:

1) pisin L(A) and (L,w) ' p,

2) p = D(a,c¢,y) and &.(w,a) =y,
3) p = (in ¢)g and (M, 2.((),w)) " 4,

4) p is a a conjunction or negation and the usual conditions apply.

Note that =" is defined so that given ¢ — p and (in c)g we can conclude (in ¢)p.

We have composite grammars in £(A,C) that are analogous to the unitary grammars
of L(A). Composite grammars can be considered to be finite trees, with the leaves being
unitary grammars. Composite grammars are conjuncts of FE rules, D rules and type
definitions. E rules are similar to the rules of unitary grammars. D rules axiomatize the

® functions and type definitions associate grammars with the components.

Definition 9: . A D rule is an assertion p «~ D(a,c,y) where p is a proposition with

no subformulae E(8) or (after z)p.
Definition 10: . A type definition an assertion (in c)p.

Definition 11: . An FE rule is a proposition of the form (Guard(a)Ap) < E(c)
where p is a proposition with no subformulae E(() or (after z)p and Guard(a) =

(Ve € C)D(a,c,y) — (in ¢)E(y). The guard makes sure that structures satisfying

grammars will be well defined.

Definition 12: . A composite grammar is a conjunction

AcEC (Tc) AaGA(Rﬁ) AcGC.aG.ﬂ (Rc.a)

where: Each T, is a type definition, each R, is a FE rule, and each R, is a D rule.

Theorem 3: . If every type definition of grammar G uniquely defines a component
semantic structure, then § uniquely defines a composite semantic structure. Tn partic-
ular, if each type definition is of the form (in ¢)X where ¥ is a unitary grammar, then

G defines a unique composite semantic structure.

Theorem 4: . For every prefix closed regular language L over A, there is a composite

grammar § so that L is the language of the semantic structure defined by §.

Proof. Let M be a state machine that accepts L, and let 5,4 and é be, respectively,
the set of states, the alphabet and the transition function of M. Define a unitary grammar

G, with alphabet S. We can define a function:
State() = s & (Vs' # s)P(s',1,s,1) \/{s = initial \(Vs')~P(initial,1,5',1)}

which returns either the most recent computation s or the initial state of M if no compu-
tation has yet taken place. The rules of §; are then constructed so that E(s) « V(Ha €
A)6(State(), @) = s — if and only if state s is reachable from the current state in one tran-
sition. Define a composite grammar with alphabet A and a single type definition (in ¢)g;.
Define a function Cstate() = s © (in ¢)State() = s. The D rules are constructed so
that D(e,c,(s)) ¢ 6(Cstate(),a) = s. The E rules are constructed so that.E(a) iff
6(Cstate(), a) is defined. Since all the functions we employ in this construction are finite,

they can be defined in the propositional logic.

Refer_ences

[Gecseg]| Gecseg, Ferenc. Products of Automata. Monographs in Theoretical Computer

Science, Springer Verlag, 1986.

[Kripke| Kripke, S. Semantical Considerations on Modal Logic. Acta Philosophica Fen-
nica, 16, pp. 83-94, 1963. '

[Ladner] Ladner, R. E. Application of model theoretic games to discrete linear orders

and finite automata. Information and Control, Vol. 33,pp. 281-303, 1977.
[Pin] Pin, J.E. Varieties of Formal Languages Plenum Press, New York, 1986.

[Yodaiken] A modal recursive arithmetic of digital systems. Technical Report, Depart-

ment of Computer Science, University of Massachussets (Ambherst), (forth-

coming).

