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Abstract

Phoenix is a real-time, adaptive planner that manages forest fires in a simulated
environment. Alternatively, Phoenix is a search for functional relationships
between the designs of agents, their behaviors, and the environments in which
they work. In fact, both characterizations are appropriate, and together exemplify
a research methodology that emphasizes complex, dynamic environments and
complete, autonomous agents. Within the Phoenix system we empirically explore
the constraints the environment places on the design of intelligent agents. This
paper describes the underlying methodology and illustrates the architecture and
behavior of Phoenix agents.

1. The Phoenix Research Agenda

The Phoenix project is directed by three complementary goals. First, there are immediate
technical aims: a real-time, adaptive planner for controlling simulated forest fires,
approximate scheduling algorithms for coordinating multiple planning activities,
knowledge representations for plans and for measuring progress toward goals, and
distributed planning algorithms. Secondly, there are motivating issues, of which the
foremost is to understand how complex environments constrain the design of intelligent
agents. We seek general rules that justify and explain why an agent should be designed
one way rather than another. The terms in these rules describe characteristics of
environments, tasks and behaviors, and the architectures of agents. Lastly, because Al is
still inventing itself, Phoenix is a commentary on the aims and methods of the field. Our
position is that most Al systems have been built for trivial environments that offer no
constraints on their design, and thus no opportunities to learn how environments
constrain and inform system design [4] . To afford ourselves this opportunity, we began
the Phoenix project by designing a real-time, spatially-distributed, multi-agent, dynamic,
ongoing, unpredictable environment.

In the following pages we will describe Phoenix from the perspective of our technical
aims and our motives. Section 2 describes the Phoenix task---controlling simulated forest
fires---and explains why we use a simulated environment instead of a real, physical one.
Section 3 discusses the characteristics of the forest fire environment and the constraints
they place on the design of agents. The two lowest layers of Phoenix, described in Section
4, implement the simulated environment and maintain the illusion that the forest fire
and agents are acting simultaneously. Above these are two other layers: a specific agent
design (Sec. 5), and our organization of multiple fire-fighting agents (Sec. 6). These
sections describe how Phoenix agents plan in real time, but do not provide the minute
detail that is offered elsewhere [3]. Section 7 is an example of Phoenix agents controlling
a forest fire. Section 8 describes the current status of the project and our immediate goals.
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2. The Problem

The Phoenix task is to control simulated forest fires by deploying simulated bulldozers,
crews, airplanes, and other objects. We will discuss how the simulation works in Section
4. concentrating here on how it appears to the viewer and the problems it poses planners.

The Phoenix environment simulates fires in Yellowstone National Park, for which we
have constructed a representation from Defense Mapping Agency data. Figure 1 shows a
view of an area of the park; the grey region at the bottom of the screen is the northern tip
of Yellowstone Lake. The thick grey line that ends in the lake is the Yellowstone River.
The Grand Loop Road follows the river to the lake, where it splits. The large "B" in the
bottom left corner marks the location of the fireboss, the agent that directs all others. Two
bulldozers are shown building fireline around a fire in this figure.!

Fires spread in irregular shapes, at variable rates, determined by ground cover,
elevation, moisture content, wind speed and direction, and natural boundaries. For
example, fires spread more quickly in brush than in mature forest, are pushed in the
direction of the wind and uphill, burn dry fuel more readily, and so on. These conditions
also determine the probability that the fire will jump fireline and natural boundaries. But
for two exceptional conditions (convective and crown fires), Phoenix is an accurate
simulator of forest fires. Fire-fighting objects are also simulated accurately; for example,
bulldozers move at a maximum speed of 40 kph in transit, 5 kph travelling cross-country,
and 0.5 kph when cutting fireline. To give a sense of scale, the fire in Figure 1 is about 1.5
kilometers in diameter and has burned for about eight simulated hours. The fire's
history, which can be read in Figures 2, 3, and 4 is as follows: At noon in simulation time
(Fig. 2) a fire was ignited, and later detected by a watchtower (not visible in the figures). A
little later, two bulldozers started a journey from the firestation, marked by a "B" in the
southwest corner, to the rear of the fire. Because the wind was from the southeast, the
rear was southeast of the fire. At 3 p.m. (Fig. 3) the bulldozers arrived at the rear and
started cutting fireline. Figure 4 was generated at 8 p.m., simulation time. The fire was
contained a little later. This entire simulation took about 1 minute on a TI Explorer.

Fires are fought by removing one or more of the things that keep them burning: fuel,
heat, and air. Cutting fireline removes fuel. Dropping water and flame retardant
removes heat and air, respectively. In major forest fires, controlled backfires are set to
burn areas in the path of wildfires and thus deny them fuel. Huge "project” fires, like
those in Yellowstone last summer, are managed by many geographically dispersed
firebosses and hundreds of firefighters.

The current Phoenix planner is a bit more modest. One fireboss directs a few bulldozers to
cut line near the fire boundary. We currently lack but are implementing "indirect”
attacks, which exploit natural boundaries as firebreaks (such as the river in Fig. 1) and
"parallel" attacks, which involve backfires. The Phoenix planner does use common fire-
fighting plans, such as the two bulldozer surround illustrated in Figures 2, 3, and 4. In

1Much available information is not displayed in the monochrome interface to Phoenix. The color interface
displays ground cover and elevation contours, giving the user a better picture of the terrain over which the fire is
spreading.
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Figure 1: A portion of Yellowstone National Park as viewed in the Phoenix simulator

This is a small fraction (about 7 km. by 8 km.) of the entire 75 km. square map. The northern tip of
Yellowstone Lake appears at the bottom (gray shading represents water). The Yellowstone River emplies
into the lake here, as does a smaller stream called Pelican Creek (meandering line in lower right). Grand
Loop Road runs along the lake and river from south to north. East Enirance Road cuts across above the
lake from west to east. The large B marks the fireboss and bulldozer base. In this frame two bulldozers
have almost surrounded a fire with firelne. The fire is burning at different intensities; the inner part
has been burning longer and is hotter (note the darker icon). The kilometer markings in the margins
show distances east and south from the northwest corner of the park.
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Figure 2: Fire at 12:15 pm

The left pane displays the real world; the right pane displays the current state of the world as the fireboss
“sees” it. A fire has started and is displayed in the upper right of the real world pane. The fireboss, who
finds out about fires from watchtower reports, doesn’t know about this fire yet (see right pane).

The status bar below the two panes shows information about the running simulation. The date and time
are in the left boz (partly obscured). All simulations start at 12:00 noon on August 1. The right boz

displays timestamped information messages from various tasks.
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Figure 3: Fire at 4:05 pm

After four hours, two bulldozers have reached the fire and are beginning to build fireline around it. The
two bulldozer plan was chosen by the fireboss based on environmental factors such as the size of the fire
and the wind characteristics. Note that the fireboss’s view of the situation is still slightly outdated. It
sees fewer of the burning cells and isn’t aware of all fireline that has been dug. It learns about these
events from status reports sent by agents.
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Figure 4: Fire at 8:20 pm

After 8 hours the fire is nearly encircled. The bulldozers are close to meeting at the fire front. The left
pane again displays the real world; the right pane displays Bulldozer-1’s view. It knows about the part
of the fire it passed while digging line, as well as the fireline dug within its field of view (some of which
was dug by the other bulldozer).
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this plan, two bulldozers begin at the rear of the fire and work their way around to the
front, pinching it off. =

The Phoenix fireboss directs bulldozers but does not control them completely. In fact, the
fireboss gives fairly crude directions, such as "go to location x,y," and individual agents
decide how to interpret and implement them. Thus, bulldozers and other agents are
semi-autonomous. Other organizational structures are enabled by increasing or
decreasing the degree of autonomy; for example, an earlier fire planner, designed by
David Day, had a single fireboss that controlled every action of all its agents. At the other
extreme, we are working with Victor Lesser on a completely distributed version of
Phoenix, in which agents negotiate plans in the absence of a single fireboss. We can
experiment with different organizational structures because all agents have exactly the
same architecture, and so each can assume an autonomous, semi-autonomous, or
completely subservient role.

Although Phoenix agents and their environment are all parts of a large software system,
we have designed them to give the impression of independent agents "playing against"
simulated forest fires, much as we would play a video game. In fact, early in the project,
we built an interface to allow us, instead of an automated planner, to direct fire fighting
agents. It required us to control several agents simultaneously, and demanded
considerable foresight and planning. We found it impossible to control more than a couple
of bulldozers in real time in the vicinity of the fire, so we gave bulldozers simple reflexes,
enabling them to scurry away from encroaching fire. Since then, the basic style of
interaction between the Phoenix environment and the Phoenix planners has not changed:
One or more planners, Al or human, direct semi-autonomous agents to move around a
map, building line around continuously burning fires.

The decision to develop and test Phoenix agents in a simulated environment is, to some,
profoundly wrong. One argument is that by building the environment and the interface to
agents, we risk deferring or ignoring difficult problems. For example, if we build a
simulated agent that has a completely accurate internal map of its simulated
environment and, when it moves, its "wheels" don't slip, then all its planning and acting
can be dead-reckoning. Of course we can create trivial environments and develop
techniques that won't work in real environments, but why would we? The point of using
simulators is to create more realistic and challenging worlds, not to avoid these
challenges. In response to the criticism that simulators can never provide faithful
models of the real, physical world, we argue that the fire environment is a real-time,
spatially-distributed, ongoing, multi-actor, dynamic unpredictable world - irrespective of
whether it is an accurate model of how forest fires spread. As it happens, the fire
environment is an accurate model of forest fires, but this isn't necessary for the
environment to challenge our current planning technology. Moreover, we want to leave
open the possibility of working in simulated worlds that are unlike any physical world
that we have encountered.

The advantages of simulated environments are that they can be instrumented and
controlled, and provide variety; all essential characteristics for experimental research.
Specifically, simulators offer these advantages:
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Control. Simulators are highly parameterized, so we can experiment with many
environments. For example, we can change the rate at which wind direction
shifts, or speed up the rate at which fire burns, to test the robustness of real-time
planning mechanisms. Most important, from the standpoint of our work on real-
time planning, is the fact that we can manipulate the amount of time an agent is
allowed to think, relative to the rate at which the environment changes, thus
exerting (or decreasing) the time pressure on the agent (Sec. 4).

Repeatability. We can guarantee identical initial conditions from one "run” to the
next; we can "play back” some histories of environmental conditions exactly, while
selectively changing others.

Replication. Simulators are portable, and so enable replications and extensions of
experiments at different laboratories. They enable direct comparisons of results,
which would otherwise depend on uncertain parallels between the environments
in which the results were collected.

Variety. Simulators allow us to create environments that don't occur naturally, or
that aren't accessible or observable. -

Interfaces. We can construct interfaces to the simulator that allow us to defer
questions we'd have to address if our agents interacted with the physical world.,
such as the vision problem. We can also construct interfaces to show things that
aren't easily observed in the physical world; for example, we can show the
different views that agents have of the fire, their radius of view, their destinations,
the paths they are trying to follow, and so on. The Phoenix environment graphics
make it easy to see what agents are doing and why.

3. Environmental Constraints on Agent Design

From the preceding descriptions of the Phoenix environment and tasks, one can begin to
gee the challenges they present to Phoenix agents. Our challenge, as researchers, is to
design these agents for the Phoenix environment. The relationships between agent
design, desired agent behaviors, and environment characteristics are clarified by what
we call the behavioral ecology triangle, shown in Figure 5.

environmental behaviors
characteristics resource management
dynamic, ongoing uncertainty management
real ime cooperation
unpredictable planning

varied

mulitiple scales

spatial distribution

agent design
(see Sec. 5)

Figure 5: The behavioral ecology triangle.
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The vertices of the triangle are the agent's design (i.e., internal structures and
processes), its environment, and its behavior (i.e., the problems it solves and the ways it
solves them). In this context, our tasks (and, indeed, the tasks of all Al research on
intelligent agents) are:

Environment Analysis: What characteristics of an environment most
significantly constrain agent design?

Design: What architecture will produce the aesired behaviors under the
expected range of environmental conditions?

Prediction: How will a particular agent behave in particular environmental
conditions?

Explanation: Why does an agent behave as it does in partlcular environmental
conditions?

Generalization: Over what range of environmental conditions can we expect

particular behaviors from the agent? Over what range of problems? Over what
range of designs?

To date, the Phoenix project has concentrated on environment analysis (see below), the
design task (Secs. 5§ and 6) and on building an environment in which the other tasks can
be empirically pursued. Figure 5 implicitly captures many hypotheses and explanatory
tasks. We can think of "anchoring” two corners and "solving for" a third; for example, we
can anchor an environment and a set of behaviors and solve for an agent design. Or we
can anchor a design and an environment and test predictions about behavior. Another
more exploratory research strategy is to anchor just one corner, such as the

environment, and look for tradeoffs in the other corners. For example, given the Phoenix
environment, how is adaptability to changing time pressures affected by the design
decision to search for plans in memory, rather than generate them from scratch?

Let us survey the characteristics of the Phoenix environment that constrain the design of
Phoenix agents, and the behaviors the agents must display to succeed at their tasks. The
fire environment is dynamic because everything changes: wind speed and direction,
humidity, fuel type, the size and intensity of the fire, the availability and position of fire-
fighting objects, the quantlty and quality of information about the fire, and so on. The
environment is ongoing in the sense that there isn't a single, well-defined problem to be
solved, after which the system quits, but rather, there is a continuous flow of problems,
most of which were unanticipated. The environment is real-time in the sense that the fire
"sets the pace” to which the agent must adapt. The agent's actions, including thinking,
take time, and during that time, the environment is changing. These characteristics
require an agent to have some concept of relative or passing time. The agent must reason
about the potentlal effects of its actions, and particularly about how much time those
actions may require. Additionally, it must be able to perceive changes in its environment,
either directly through its own senses or indirectly through communication with other
agents.

The environment is unpredictable because fires may erupt at any time and any place,
because weather conditions can change abruptly, and because agents may encounter
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unexpected terrain, or fire, or other agents as they carry out plans. An agent must
respond to unexpected outcomes of its own actions (including the actions taking more or
less time than expected) and to changes in the state of the world. This requires
interleaving planning, execution and meonitoring and suggests that detailed plans of long
duration will be likely to fail before successful completion. The unpredictability of the
environment requires agents to be flexible, particularly in the way they handle temporal
resources. In fact, all resources, including time, fire fighting agents, money, fuel, and
equipment, are limited and non-renewable. Because the environment is ongoing,
decisions about resources have long-term effects that constrain later actions, and require
agents to manage their resources intelligently, with a global perspective. For this reason,
among others, Phoenix agents cannot be exclusively "reactive."

Whereas unpredictability is a characteristic of the Phoenix environment, uncertainty
arises in agents. Uncertainty is partly due to the fire continuously moving, partly because
changes in wind speed and direction are unpredictable, partly due to communication
delays between agents, and partly because individual agents have very limited views of the
world. For example, to the northeast of Bulldozer 1, in the right-hand pane of Figure 4,
there is a small black patch of fireline. This is all Bulldozer 1 knows about the location
and progress of the other bulldozer (whose actual location is shown in the left-hand pane
of Fig. 4), and illustrates how far Bulldozer 1 can see. It follows that Bulldozer 1's
firemap, as shown in the right-hand pane, must merge what it currently sees with what
it recalls. As one would expect, the recollection is inaccurate; Bulldozer 1 thinks the fire
at its southern point is a few hundred meters from the fireline, because that's where it
was when Bulldozer 1 cut the fireline. In fact, the fire has spread all the way to the
fireline, as shown in the left-hand pane. As a consequence of these types of uncertainty,
agents must allot resources for information gathering. Agents must be able to integrate
and disseminate local information, and, because of their own localized views, they must
be able to communicate and coordinate with each other.

The fact that events happen at different scales in the Phoenix environment has profound
consequences for agent design. Temporal scales range from seconds to days, spatial
scales from meters to kilometers. Agents' planning activities also take place at disparate
scales; for example, a bulldozer agent must react quickly enough to follow a road without
straying due to momentary inattention, and must also plan several hours of fire-fighting
activity, and must do both within the time constraints imposed by the environment.

Given the size and variation in the world map, the degree to which the environment can
change, and the possible actions of agents, the environment can produce a large variety
of states. Consequently, an agent must know how to act in many different situations. The
ramifications for agent design depend on whether small differences in environmental
conditions can produce large differences in the utilities of plans. For example, if every fire
scenario is truly different in the sense that each requires a unique, scenario-specific plan,
then it may be pointless to provide agents with memories of previous plans. In fact, we
believe that although the fire environment presents a wide variety of states, these
differences do not require radically different plans.

The Phoenix environment is spatially distributed, and individual agents have only
limited, local knowledge of the environment. Moreover, most fires are too big for a single
agent to control; their perimeters grow much faster than a single agent can cut fireline.
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These constraints dictate multi-agent, distributed solutions to planning problems. They
also expand the scope of our research from a study of agent design to a study of
organizational design. We have drawn a line, temporarily, and excluded the latter.

In sum, to perform their designated tasks, under the constraints of the Phoenix
environment, Phoenix agents must engage in particular behaviors. In gross terms, these
are resource management, uncertainty management, planning, and cooperative
problem-solving; more specific behaviors have just been discussed. The question we
address in Sections 5 and 6 is how do the characteristics of the Phoenix environment, in
concert with the desired behaviors of Phoenix agents, constrain the design of the agents?
Specifically, what architecture is capable of planning in real time, responding to events at
different time scales, coordinating the efforts of several agents, collecting and integrating
data about a changing environment, and so on.

4. The Phoenix Environment, Layers 1 and 2.

To facilitate experiments, Phoenix is built in four layers. The lowest is a task coordinator
that maintains the illusion of simultaneity among many cognitive, perceptual, reflexive
and environmental processes, on a serial machine. The next layer implements the
Phoenix environment itself---the maps of Yellowstone National Park, and the simulations
of fires. The third layer contains the definitions of the components of agents---our specific
agent design. The fourth layer describes the organization of agents, their communication
and authority relationships. Layers 3 and 4 are described in later sections.

The two lowest layers in Phoenix, called the task coordinator layer and map layer
respectively, comprise the Phoenix discrete event simulator. We discuss the task
coordinator first. It is responsible for the illusion of simultaneity among the following
events and actions:

Fires: Multiple fires can burn simultaneously in Phoenix. Fires are essentially
cellular automata that spread according to local environmental conditions,
including wind speed and direction, fuel type, humidity, and terrain gradient.

Agents' physical actions: Agents move from one place to another, report what they
perceive, and cut fireline.

Agents' "internal" actions: Internal actions include sensing, planning, and reﬂemve
reactions to immediate environmental conditions.

These tasks are not generated at the task coordinator level of Phoenix, just scheduled on
the cpu there. Fire tasks are generated at the map layer, and agent tasks are generated at
the levels described in Sections 5 and 6.

Typically, the task coordinator manages the physical and internal actions of several
agents (e.g., one fireboss, four bulldozers, and a couple of watchtowers), and one or more
fires. The illusion of continuous, parallel activity on a serial machine is maintained by
segregating each process and agent activity into a separate task and executing them in
small, discrete time quanta, ensuring that no task ever gets too far ahead or behind the
others. The default setting of the synchronization quantum is five minutes, so all tasks
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are kept synchronized to within five minutes of each other. The quantum can be
increased, which improves the cpu utilization of tasks and makes the testbed run faster,
but this increases the simulation-time disparity between tasks, magnifying coordination
problems such as communication and knowing the exact state of the world at a
particular time. Conversely, decreasing the quantum reduces how "out of synch"
processes can be, but increases the running time of the simulation.

The task coordinator manages two types of time: cpu time and simulation time. CPU time
refers to the length of time that processes run on a processor. Simulation time refers to
the "time of day" in the simulated environment. Within the predefined time quantum, all
simulated parallel processes begin or end at roughly the same simulation time. To exert
real-time pressure on the Phoenix planner, every cpu second of "thinking" is followed by
K simulation-time minutes of activity in the Phoenix environment. Currently K =5, but
this parameter can be modified to experiment with how the Phoenix planner copes with
different degrees of time pressure.

The fire simulator resides at Phoenix's map layer; that is, the map layer generates tasks
that, when executed by the task coordinator, produce dynamic forest fires. Phoenix's
map, which represents Yellowstone National Park, is a composite of several two
dimensional structures, and stores information for each coordinate about ground-cover,
elevation, features (roads, rivers, houses, etc.), and fire-state. The fire itself is
implemented as a cellular automaton in which each cell at the boundary decides whether
to spread to its neighbors, depending on the local conditions just mentioned and global

_conditions such as wind speed and direction (currently, we do not model local variations
in weather conditions). These conditions also determine the probability that the fire will
jump fireline and natural boundaries.

The Phoenix discrete event simulation is generic. It can manage any simulations that
involve maps and processes. For example, we could replace the forest fire environment
with an oil-spill environment. We could replace our map of Yellowstone with
oceanographic maps of, say, Prince William Sound. Fire processes have spatial extent,
and spread according to wind speed, direction, fuel type, terrain, and so.on. They could
easily be replaced with oil-slick processes, which also have spatial extent, and spread
according to other rules. Similarly, we could replace the definitions of bulldozers and
airplanes with definitions of boats and booms.

5. Agent Design, Layer 3.

The third layer of Phoenix is our specific agent design, which is constrained by forest fire
environment as described in Section 3. For example, because events happen at two
dramatically different time scales, we designed an agent with two parallel and nearly-
independent mechanisms for generating actions (Figure 6). One generates reflexive
actions very quickly---on the order of a few seconds of simulated time---and the other
generates plans that may take hours of simulated time to execute. This longer-term
planning can be computationally intensive, because it incurs a heavy time penalty for
switching contexts when interrupted. For this reason, the cognitive component is
designed to do only one thing at a time (unlike sensors, effectors, or reflexes, where
multiple activities execute in parallel). Both the cognitive and reflexive component have
access to sensors, and both control effectors, as shown in Figure 6.



Page 10 Trial by Fire

trigger sensors dataflow ‘
. tate
program program s plan library

memory
reflexive cognitive
component timeline
p dataflow scheduler
program communication
program effectors
other agents

Figure 6: Phoenix agent design.

The agent interacts with its environment through its sensors and effectors, and action is
mediated by both the reflexive and the cognitive components. Sensory information may be
provided autonomously or may be requested, and sensors' sensitivity may be adjusted by
the cognitive component. Effectors produce actions in the world such as information
gathering, building fireline, and moving.

Reflexes are triggered by output of sensors. They change the programming of effectors to
prevent catastrophes, or they fine tune the operation of effectors. For example, a bulldozer
is stopped by a reflex if it is about to move into the fire, and reflexes handle the fine tuning
necessary for the bulldozer to follow a road. Reflexes are allotted almost no cpu time, and
have no memory of events, so they cannot produce coordinated sequences of actions. They
are designed for rapid, unthinking action. Although some researchers have suggested

that longer-term plans can emerge from compositions of reflexes [1][2], we do not believe
that compositions of reflexes can handle temporally-extensive planning tasks such as
resource management, or spatially-extensive tasks such as path planning with
rendezvous points for several agents. Thus, we have adopted a design in which reflexes
handle immediate tasks and a cognitive component handles everything else.

The cognitive component of an agent is responsible for generating and executing plans.
Instead of generating plans de novo, as classical hierarchical planners did, the Phoenix
cognitive component instantiates and executes stored skeletal plans. We believe thisis a
good design for the forest fire environment because, first, a relatively small number of
gkeletal plans is probably sufficient to cope with a wide range of fires; and, second, the
store/recompute tradeoff suggests relying on stored plans, rather than computing them,
in real-time situations. In addition to controlling sensors and effectors, the cognitive
component handles communications with other agents (including integrating sensor
reports), and it responds to flags set when reflexes execute. It also engages in a wide
range of "internal" actions, including projection (e.g., where will the fire be in 20
minutes?), plan selection and scheduling, plan monitoring, error recovery, and
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replanning. Our implementations of some of these capabilities are quite rudimentary,
and leave much room for improvement, as we discuss in Section 8.

In overview, this is how the cognitive component works: in response to a situation such as
a new fire, an appropriate plan is retrieved from the plan library and placed on the
timeline (Fig. 6). State memory stores information, such as weather, resource conditions,
and sensory input, that helps the cognitive agent select appropriate plans and instantiate
the variables of the chosen plan for the current situation. For example, if the fire is small
and nearby, and the weather is calm, then a one-bulldozer plan will be retrieved and
instantiated with situation-specific information such as the wind speed and the current
location of the fire. The actions in a plan are eventually selected for execution by the
cognitive scheduler, described shortly. At any time during this process, sensory data
may trigger reflexive actions; for example, if the cognitive component is executing a
command to move to a destination, and a sensor reports fire ahead, then the reflexive
component will send a command to reverse direction. This happens very fast relative to
the cycle time of the cognitive component, so the reflexive component sets a flag to tell the
cognitive component what it did. When the cognitive component notices the flag, it might
modify its plan. The analogy here is to our own reflexes, which yank us away from hot
surfaces long before our cognitive apparatus becomes aware of the problem.

With this overview in mind, let us consider the operation of the cognitive component in
detail. We will focus on the operation of the fireboss agent, which plans the activities of
other agents such as bulldozers and crews. Each of these, in turn, plans how to carry out
the directives of the fireboss. Because bulldozers and crews have the same architecture as
the fireboss (Fig. 6), they can reason in exactly the same way. In the following
discussion, we first describe planning when things go according to plan, and then
describe error handling, interruptions, and other unexpected events.

When a fire is reported, an action called "deal with fire" is retrieved from the plan library
and used to create a timeline entry, in this case called "deal with fire 27", which is added
to the timeline (see Figure 7). Actions are general representations of the cognitive
activities the agent can perform, such as path planning or communication, and describe
applicability conditions, resource-constraints and uninstantiated variables. Creating a
timeline entry instantiates an action: binding its variables and adding the temporal
constraints that relate it to other actions the agent has chosen to.execute. Although
timeline entries represent actions, it is not quite accurate to say they are executed
(although we will use this terminology where the accurate description is too awkward).
In fact, when a timeline entry is created, it inherits a set of execution methods from the
action it instantiates. Each of these methods will execute the desired action; they differ
along dimensions such as the time they require and the quality of their outputs. For
example, a single action "plan a path" points to several path-planning algorithms, some
which run quickly and return adequate paths, and some that run longer but produce
shorter paths. When a timeline entry is selected for execution, the execution method
most appropriate to the current circumstances is chosen. By delaying the choice of
methods, the cognitive scheduler can reason about its own use of time, and select
execution methods that are suited to emerging time constraints.
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step 1:

selection actlon:
deal with fire 27

TIMELINE

Figure 7: Contents of fireboss's timeline after being notified of a new fire:
action to search for a plan to deal with the fire.

If there are entries on the timeline (e.g., "deal with fire 27") then the cognitive scheduler
of the Phoenix cognitive component makes three decisions:

Which action to execute next
How much time is available for its execution

What execution method should implement the action

The cognitive scheduler always selects the "next" action on the timeline to execute, but
often, several actions have this distinction and a choice must be made. Actions on the
timeline may be unordered (and thus equally entitled to "go first") for several reasons:
skeletal plans often leave actions unordered so that the cognitive scheduler has flexibility
at execution time to select the best order. Or, frequently, the agent is executing several
plans simultaneously. This happens, for example, when several fires are reported. The
planner formulates plans for each, but doesn't specify temporal constraints among
actions from different plans. In the current example, however, the only action on the
timeline is "deal with fire 27," so the cognitive scheduler determines how much time is
available to execute it and selects an execution method. In this case, it selects a method
called find and filter plan (step 2, Fig. 8). Its effect, when executed, is to search the plan
library for a plan to "deal with fire 27." First it finds all plans for dealing with fires of this
type, then it filters the infeasible ones, then selects from the candidates to find the most
appropriate one, and lastly, it adds a new action to the timeline called "2 BD surround.”
(This plan, illustrated in Figs. 2-4, involves sending two bulldozers to a rendezvous point,
then to the fire, after which they cut fireline in opposite directions around the fire.)
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selection action:

_— deal with fire 27
< step 2: execution method: find and filter plan

| plan action:

2 BD surround

plan
library

TIMELINE

Figure 8: The fireboss executes timeline action, deal with fire 27, which
searches the plan library, selects the 2 BD surround plan as appropriate for
dealing with new fire, and places the new plan on the timeline.

Once again, the cognitive scheduler selects an action (the only one is "2 BD surround")
assesses how much time is available, and selects an execution method. In this case, the
method is expand plan. The result is to add a network of actions, partially ordered over
time, to the timeline (step 3, Fig. 9). The network starts with a placeholder action, 8,
followed by two unordered actions that allocate bulldozers 1 and 2, respectively. The next
action determines the rendezvous point for the bulldozers. Then two unordered actions
bind the variables in the plan with the current wind direction and the previously-
determined rendezvous point. Space precludes showing the rest of the plan in Figure 9.

plan action:
2 BD surround
- |
step3:  execution method: expand plan
primitive action: primitive action:
- allocate BD1 [Ny sel:ctlon action:| #7| get wind direction
plan S rendezvous PP
lib primitive action: / BD1 and BD2 \ ptimitive action: /
rary allocate BD 2 find rendezvous

point.

TIMELINE

Figure 9: The fireboss executes timeline action, 2 BD surround, which
expands into a network of plan steps.

The cognitive scheduler again looks at the timeline, and now must make a decision about
which action to select. The "allocate bulldozer" actions are unordered, so one must be
selected to go first. Then, as before, the cognitive scheduler assesses the available time
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and selects an execution method. We will leave this example here, and discuss it further
in Section 7.

Three kinds of actions can be differentiated by their effects on the timeline when they are
executed: selection actions, like "deal with fire 27" result in a search of the plan library,
after which a plan action such as "2 BD surround” is posted on the timeline. Plan actions
are placeholders for plans; executing them results in plan expansions being posted on the
timeline. Many of the actions in a plan are of the third type: primitive actions that result
in a computation (e.g., calculating a route), or a command to a sensor or effector. But a
plan can contain any of the three types of actions; for example, the expansion of "2 BD
surround” contains a selection action. When executed, it will result in a gearch of the
plan library for a plan to rendezvous the two bulldozers. Plans can also contain plan
actions, which, when executed, add subplans to the network. This is our mechanism for
representing hierarchical plans. Lastly, plans may contain just a single, primitive
action, such as finding the rendezvous point for two bulldozers.

We have discussed how actions are scheduled and executed when everything goes
according to plan, but in the Phoenix environment it rarely does. Phoenix agents have
three abilities, all rudimentary, to handle unexpected events. Reflexes, operating on a
very short time scale, can halt or modify potentially injurious actions, such as straying
into the fire. By design, reflexes do very little processing, and return very little
information. When a reflex halts a bulldozer, it simply posts a flag for the cognitive
component; it does not interrupt the cognitive component to explain what it did. The
cognitive component doesn't become aware of the change until it executes a regularly-
scheduled status-checking action. In fact, by design, nothing ever interrupts a cognitive
action. This is because the cost of saving state and switching context is prohibitive.
Instead, the reflexive component of a Phoenix agent is expected to deal with situations as
they arise. Most, like staying parallel to a moving fire, will never require the attention of
the cognitive component anyway; but even when a serious problem comes up, the
reflexive component is designed to keep the agent functioning until the cognitive
component finishes its current task.

The second mechanism for handling unexpected situations is error recovery and
replanning. Errors are unexpected events that preclude completion of an action or a plan.
For example, bulldozers will travel to their designated destinations but fail to find a fire,
path planning will sometimes fail to generate a path, selection actions will search the
plan library but fail to find a plan that satisfies all constraints, and so on. Currently, over
a dozen types of error can arise in Phoenix, although we don't have plans to deal with
them all yet. The error handling mechanism is to post on the timeline a "deal with error”
selection action, which, when executed, generates a plan for dealing with the error.
Currently, error recovery involves very little tinkering with the actions that are currently
on the timeline, that is, no serious replanning.

Lastly, Phoenix agents have limited abilities to monitor their own progress. This is
accomplished by generating expectations of progress, and matching to them actual
progress. In the near future, this mechanism (called envelopes, Sec. 8) will enable

Phoenix cognitive components to predict failures before they occur.



... Page 16 Trial by Fire

In sum, planning is accomplished by adding a selection action to the timeline to search
for a plan to address some conditions. Executing the selection action places an
appropriate plan action or primitive action on the timeline. If this new entry is a plan
action, then when it is executed, it expands into a plan by putting its sub-actions onto the
timeline with their temporal inter-relationships. If it is a primitive action, execution
instantiates the requisite variables, selects an execution method, and executes it. In
general, a cognitive agent will interleave actions from the several plans it is working on.

This style of planning is "lazy skeletal refinement”---lazy because some decisions are
deferred until execution time. Specifically, plans are not selected until selection actions
are executed, and execution methods are selected only when an action is about to execute.
This style of planning and acting is designed to be responsive to a complex dynamic world
by postponing decisions, while also grounding potential actions in a framework (a
skeletal plan) that accounts for data, temporal and resource interactions. The
combination of a reflexive and cognitive component is designed to handle time scale
mismatches inherent in an environment that requires micro actions (e.g., following a
road) and contemplative processing such as route planning, which involves long search
times and integration of disparate data. We must stress, however, that Phoenix is too
early in its development to claim that our agent design is necessarily the best one for the
Phoenix environment (see Sec. 8).

6. The Organization of Fire-Fighting Agents in Phoenix

The fourth layer of the Phoenix system is the centralized, hierarchical organization of fire
fighting agents. Because all agents have the same architecture, many other
organizations of agents are possible. Our centralized model .is neither robust (e.g., what
happens if the fireboss is disabled?) nor particularly sophisticated. But it is simple, a great
advantage in these initial phases of the project. One fireboss coordinates all fire fighting
agents' activities, sending action directives and receiving status reports, including fire
sightings, position updates, and actions completed. The fireboss maintains a global view
of the fire situation based on these reports, using it to choose global plans from its plan
library. It communicates the actions in these plans to its agents, which then select plans
from their own plan libraries to effect the specified actions. Once their plans are set in
motion, agents report progress to the fireboss, from which the execution of global plans is
monitored. All communication in this centralized implementation is between the fireboss
and individual agents - there is no cross-talk among the agents.

The fireboss maintains global coherence, coordinating the available fire fighting
resources to effectively control the fire. It is responsible for all the work required to
coordinate agents, such as calculating rendezvous points, deciding how to deploy
available resources, and noticing when the fire is completely encircled with fireline. The
plans in its plan library are indexed by global factors, such as the size of the fire and the
weather conditions. The actions in its plans are mostly concerned with coordinating and
directing other agents. The fireboss' state memory records the current environmental
conditions, where agents have seen fire, what actions have been taken, what agents are
available, and how well global plans are progressing. The fireboss is currently
implemented without any sensors, effectors, or reflexes. It is a cognitive agent that relies
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solely on communication for its knowledge of what develops in the outside world,
although it does have a map of the static features of Yellowstone.

Each of the other fire fighting agents has a local view of the environment based on its own
sensory input. They have access to maps of the static features in Yellowstone such as
ground cover, roads, and rivers, but only know about dynamic processes such as the fire
from what they see or are told by the fireboss. Sensors have a limited radius of view,
though agents are able to remember what has been perceived but is no longer in view.
The fireboss's global view is available to an agent only through communication. A
bulldozer is an example of an agent type. It has a movement effector that can follow roads
or travel éross-country. When it lowers its blade while moving, it digs fireline and moves
more slowly. It has a sensor that sees fire within a radius of 512 meters. Another sensor
picks up the contour of a fire (within its radius of view). When a bulldozer is building
fireline at the contour, it uses the follow-fire sensor in combination with the movement
effector (with lowered blade) and a reflexive action that helps maintain a course parallel
to the contour. As the contour changes, the contour sensor registers the change, which
triggers a reflex to adjust the movement effector's course. The bulldozer's plan library
has plans for simple bulldozer tasks such as following a given path or encircling a fire
with fireline.

Although all agents have the same architecture (i.e., timeline, cognitive scheduler, plan
library, state memory, sensors, effectors, and reflexes) they do not have the same plans,
reflexes, sensors or effectors. The difference between the fireboss and other agents lies in
their views of the world and the types of plans each knows. The lines of authority and
division of responsibilities are clear; the fireboss maintains the global picture, based on
the local views of its agents, and it executes plans whose effects are to gather information,
send directives to agents, and coordinate their activity via communications. In contrast,
the agents execute plans whose actions program sensors and effectors, which in turn
effect physical actions in the world. In some sense the fireboss is a "meta-agent" whose
sensors and effectors are other agents.

7. An Example

We now return to the example that we introduced in Section 2 and used in Section b to
illustrate cognitive scheduling. In this two bulldozer surround plan, the fireboss instructs
two bulldozers to rendezvous, then go to the fire and build fireline around it in opposite
directions. Figures 2, 3, and 4 show the progress of this plan. Each offers two views of the
gituation. Figure 2 shows the real world in the left pane, and the fireboss's view in the
right pane. Note that the fireboss is not yet aware of the fire. What it knows about new
fires is based on status reports from a watchtower agent (not shown). Each watchtower
has a sensor programmed to look for new fires at regular time intervals. When the
watchtower spots this fire, it reports the location and size to the fireboss. Based on this
report and the resources available, the fireboss selects the two bulldozer surround plan.
The first plan steps allocate the bulldozers, which ensures they are not busy with other
tasks and assigns them to this plan. The next step instructs them to rendezvous so they
can follow the same route to the fire. While they rendezvous, the fireboss locates the rear
of the fire (the upwind side), and calculates a route to the fire that approaches it from that
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direction. The next two steps communicate to each bulldozer instructions to fqllow the
given path and encircle the fire. They are given clockwise and counterclockwise
encircling directions, respectively.

After receiving its instructions, each bulldozer searches its plan library to find a plan for
following the path and encircling the fire in the given direction until it closes the fireline.
Neither bulldozer knows about the other, nor does either know the full extent or precise
location of the fire. Recall that the fireboss doesn't know exactly where the fire is, either,
so the path it supplied to the bulldozers may direct them wide of the fire, or, more often, to
a location that is burning. In this example, the path given by the fireboss ends in the fire,
g0 the bulldozers will follow the path until they detect it. In Figure 3 we see the bulldozers
starting to build line. In the fireboss view (right pane) each one appears at the position it
had reached when it made its last status report. Thus they are at slightly different
positions that are out of date with respect to their real positions in the left hand pane.

When fire is seen, a bulldozer reflex is triggered to stop its movement effector. A cognitive
action also notes that the sensor has seen fire and reprograms the sensors and effectors
with the right combination of instructions to follow the fire in the direction specified by the
fireboss, building fireline as it goes. A message is sent to the fireboss to signal the start of
line-building. The bulldozer will continue to build line until instructed to stop by the
fireboss. In Figure 4 we see in the left pane that the bulldozers have almost encircled the
fire. In the right pane is the view of the bulldozer encircling in the clockwise direction.
Note that it only knows about the fire it has seen as it was building line. It is just coming
within range of the other bulldozer (see the spot of fireline to its northeast).

This simple bulldozer plan, to follow a path and encircle a fire without reference to other
bulldozers, can be used by one, two, or many bulldozers. The fireboss, with its global
view, picks points around the fire, selects any number of bulldozers, and directs each to
go to one of the points and build fireline in a specified direction. The bulldozers act only
with regard to their instructions and the local information in their field-of-view. If the
bulldozers fail to fully encircle the fire (for whatever reason), the fireboss is responsible
for noticing the failure, based on what is reported to it from watchtowers and. bulldozers.

Figure 10 shows the state of the fireboss's timeline as the bulldozers are closing off the
fireline (see Figure 4). The network in the top left box is the top level of the timeline,
which contains four entries and reads from left to right. There is a startup-action and an
end-action (place-holders), and two entries with no temporal constraint between them.
The top entry is an action that executes periodically and updates state memory with new
information about the environment. The bottom entry is an action that is placed on the
fireboss's timeline automatically by the report of a new fire. It causes a plan to be selected
from the fireboss's plan library, based on the characteristics of the reported fire, and then
expanded on the timeline, as illustrated in Section 5. The selected plan is shown in the
top right box, and its expansion is shown in the two lower boxes (the plan unfolds left-to-
right, and is continued in the lowest box). Entries preceding the shaded one have already
been executed. These include allocating each bulldozer, instructing them to rendezvous,
calculating a route for them to take to the fire, and (in undetermined order) instructing
them to follow that route and encircle the fire. '
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Figure 10: The fireboss’s timeline

This figure shows the fireboss’s timeline, including plan ezpansions, as viewed from the Phoeniz desktop
(headers for bozes name parent nodes). The boz at the top left is the top level of the fireboss’s timeline.
The darkly shaded entry here is the action to deal with a newly sighted fire. Dark shading means an entry
is executing or has a child node that is ezecuting. The fireboss selected the two-bulldozer-rendezvous-
and-surround-fire plan, which is shown in the top right boz. The ezpansion of this plan is shown in
the lower bozes. It starts with the timeline entry tl-start-plan-10.10, reads from left to right and wraps
around into the lower box. Entries are ordered in temporal sequence; a split after an entry represents
subsequent entries with no temporal constraints belween them. The current eniry (shaded) is ezecuted
by periodically checking to see whether the fire is completely encircled.
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The fireboss is currently waiting for the bulldozers to finish encircling the fire (see
shaded entry in lowest box). The execution method for this entry runs periodically,
checking to see if there is continuous fireline surrounding the fire. Once this is true, the
bulldozers will be instructed to stop building fireline. This is necessary because the
fireboss maintains the global view of the fire, and must tell the bulldozers when the fire is
surrounded. (The bulldozers' timelines are not shown.) Once each bulldozer has been
instructed to stop building line, a plan will be selected for returning it to the bulldozer
base.

8. Current Status and Future Work

The Phoenix system is very much a work in progress. As is clear from the preceding
sections, several important aspects are handled in a rudimentary or preliminary way.
Currently five people are pursuing research and enhancing the system in the areas
described below:

More sophisticated plans: We have about a dozen plans that attack fires directly,
with up to four bulldozers, building line at the fire front until the fire is encircled.
We are starting to develop indirect attack plans that incorporate natural barriers.
This requires more knowledge and coordination on the part of the fireboss; since
other agents can't see the fire unless they are close to it, the fireboss must guide
their activities when they are working at a distance. The fireboss must take
advantage of natural barriers when deciding where to build fireline, which
requires the ability to project the spread of the fire and the progress of fire fighting
agents. As we develop new and more sophisticated plans, we must also enhance
the mechanisms by which agents select plans. Currently, the keys for selecting
plans are just wind speed and the availability of fire-fighting agents; as well as
some plan-specific criteria such as whether bulldozers are nearby or distant when
the plan is selected. The keys will have to become more discriminating, and we
will probably have to develop more sophisticated plan-selection mechanisms.

Monitoring: We have designed a general monitoring mechanism called envelopes
that minimizes the cognitive resources devoted to monitoring while providing early
warning of plan failure. Envelopes incorporate expectations of how plans are to
proceed; they represent these expectations functionally. As actual progress is
reported, it is compared with these expectations, and deviations outside certain
parameterized thresholds are flagged for cognitive attention. For example, if an
agent must be at a certain place at a certain time, we can tell by projection whether
the deadline is feasible - can the agent travel the distance in the given time? By
projecting the expected time of travel (based on a parameter such as average speed
for the agent on the given terrain), we can create an envelope for the travel time,
and uge it to monitor the agent's progress. The envelope also predicts the expected
arrival time, based on the recent progress of the agent. Furthermore, it predicts
the minimum speed at which the agent must travel over the remaining distance to
arrive before the deadline. If this speed is at or approaching the top speed of the
agent, then the envelop signals the planner that the deadline is in jeopardy,
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providing an early warning of failure. Currently, we have hooks for envelopes in
plans, but we do not have the mechanisms to replan when envelopes are violated.

Error recovery and replanning: These activities are implemented as cognitive
actions, just like plan selection and plan expansion. When an error is detected in a
plan, an action is posted to the timeline that ingpects the error and attempts to fix
the existing plan. Consider, for example, a failure on the part of a bulldozer to find
fire at the location to which it was sent. A plan we currently have to fix the error is
to travel a little further in a specified direction, looking for the fire. A really
intelligent error recovery will know when to try cheap fixes, such as modifying a
destination; and when to begin a search for a way to significantly modify a plan
(e.g., by dispatching another bulldozer); and when, as a last resort, to abandon the
current plan and begin from scratch. Error recovery and replanning will depend
significantly on intelligent monitoring; in fact, envelopes are designed to predict
errors before they happen, minimizing "downtime."

Cognitive scheduling: We need to enhance the scheduling abilities of the cognitive
component to make agents responsive to real-time demands in fire fighting. This
is particularly true for the fireboss in our implementation, since it is essentially a
cognitive agent. Currently, scheduling involves three actions: selecting an action
to execute, deciding how much time is available, and selecting an execution
method. But although these actions are "charged” for the time they use, they are
not themselves scheduled, nor are there multiple execution methods to implement
them. In short, the cognitive scheduler is a separate "interpreter” of the timeline.
To make the scheduling of actions completely uniform, scheduling actions must
themselves be scheduled. In addition, we must develop scheduling strategies,
along the lines suggested in Lesser, Durfee, and Pavlin's approximate processing
proposal [8]. '

Agent Architecture. To facilitate experiments with different agent designs in
different environments, we have started to build a generic agent
architecture. It is a collection of parameterizable structures that represent
the design of parts of an agent. For example, our generic action structure
includes pointers to execution methods, to envelopes, and to predicates that
are tested before the action is selected. Generic execution methods, in turn,
contain estimates of their time requirements, their prerequisites, and on.
We also have generic structures for sensors and effectors. In the near
future, we will implement generic structures for strategies, including
memory access strategies and cognitive scheduling strategies. The eventual
goal is a full generic agent architecture that makes it easy to implement
different agent designs by specifying how the agent manages its sensors
and effectors, how it manages its memory, and how it decides what to do
next.

Organization and communication: We have demonstrated one way to organize a
multi-agent planner in the Phoenix testbed, but the agent architecture certainly
supports others. Work is underway in Victor Lesser's lab to build a cooperating,
distributed planner for the Phoenix testbed. Although preliminary, this model
assumes multiple firebosses, each with spheres of influence (geographic areas
and agents) under its control, who cooperatively fight fires at their borders, loaning
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resources to neighbors, or redrawing their boundaries to shift the w.ork load in
times of stress. While this model is similar to the Phoenix planner in fche ‘
relationship between firebosses and agents, it adds a cooperative relationship
between firebosses.

Learning: Phoenix agents should learn to improve their performance. The
opportunities for learning are myriad: we can learn new reflexes, and
chain reflexes together to learn short plan fragments. We can learn new
plans from patches to failed ones. We can learn correlations between
environmental conditions, such as changes in wind direction, and failures,
such as bulldozers becoming trapped in the fire. Currently, we are
extending the error recovery mechanisms to learn patches to failed plans.
This is one aspect of Adele Howe's dissertation work [7]. Allen Newell
recently pointed out that "you can't program SOAR" because much of its
behavior emerges from sequences of locally-selected chunks, and there is
really no way to predict how a chunk, added by hand, will make the system
behave. We have found the same to be true of actions and reflexes in
Phoenix, and concurr with Newell that once a system attains a degree of
complexity, it must learn to improve its performance itself.

9. Conclusion.

The development of Phoenix has been intimately tied to our evolving ideas about Al
research methodology, and specifically to our understanding of the role of evaluation in
Al research [5][6] . Clearly, the evaluation of Phoenix must be with respect to the goals of
the project. Moreover, it must tell us not only whether we have succeeded, but whether we
are succeeding; and why, or why not. The goals of Phoenix are, as noted in Section 1, of
three kinds. Our technical goals are to build a real-time planner with learning,
approximate scheduling, envelopes, and the other features noted abave. Our scientific
goal is to understand how environmental characteristics influence agent design---the
relationships discussed in the context of the behavioral ecology triangle (Fig. 5). Lastly, we
are using Phoenix as a framework in which to develop Al methodolgy.

Progress toward each of these goals is evaluated differently. Phoenix is parameterized
and instrumented at all its layers to facilitate evaluations of specific technical
developments; for example, we can assess whether an approximate scheduling algorithm
is robust against varying time pressure because we can vary time pressure while holding
other factors constant. We can run fire scenarios in dozens of conditions, with dozens of
variations in the algorithms used by the Phoenix planner. These experiments are
scheduled to begin in the Fall of 1989. They will enable us to demonstrate the utility of our
technical solutions, explain why they are solutions, and discover the limits on their scope

(5.

But clearly, these cannot be the only aims of the experiments. While it is valuable to probe
the scope and efficacy of specific techniques, such experiments will not necessarily
address our scientific goals. We might show that a Phoenix planner works well in the
Phoenix environment, but not how the environment constrains the design of planners.
Furthermore, unless we are trying to answer specific questions of this sort, experiments
with techniques will be unguided. There are dozens of variations on the Phoenix planner,
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and hundreds of environmental conditions in which they might be tested. To guide the
search of this space, we will generate and test general rules that justify and explain the
design of agents. These rules will call upon functional relationships that capture
tradeoffs. For example, the well known store-recompute tradeoff lurks in the design of the
Phoenix planner: we use it to justify the decision to rely on stored plans in an
environment that exerts time pressure, favoring storage over computation. Perhaps there
is a general rule here (e.g., under time pressure, rely on storage over computation), or
perhaps there are many specific variants of this rule, for environments with different
kinds of time pressures and agents with different kinds of store-recompute tradeoffs. In
any case, our scientific goal is to discover functional relationships (and to exploit those we
already know, like the store-recompute tradeoff), and to embed them in rules for
designing intelligent agents. To evaluate progress, we need to measure not the
performance of the agents, but the extent to which that performance can be predicted. If
we really understand the relationships between environment characteristics, agents'
behaviors, and agents' designs, then we should be able to predict that agents with
particular designs will behave in particular ways under particular environmental
conditions.

Although we are far from this goal, it is paradigmatic of the style of Al research we
advocate. To evaluate the success of this methodological stance will take a long time, but if
it is possible, there is surely no better aim for Al than to understand---to the point of being
able to predict behavior---how to design intelligent agents in complex environments.
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