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Abstract

In this paper we study the extremal properties of the stationary customer lag times in
tandem G/GI/1 networks under different service disciplines in terms of convex and increas-
ing convex orderings. Each customer carries a reference time with it and the lag time is
defined to be the difference between the time that the customer departs from the system and
its reference time. We show that among the class of work conserving nonpreemptive service
disciplines that are service time indepedent, the service discipline that schedules customers
with the smallest reference times (SR) and the service discipline that schedules the customer
with the largest reference time (LR) provide the minima and maxima respectively. If we
restrict ourselves to the subset of these disciplines that do not use reference times but do use
arrival times in making scheduling decisions, then the FIFO and LIFO service disciplines
provide the minima and maxima respectively. We also present similar results for G/M/1
queue when preemptions are allowed and for the class of service disciplines that are not

work conserving.
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1 Introduction and Summary

Numerous authors have studied the convex ordering properties of the FIFO and LIFO service
disciplines in the context of the G/GI/1 queue [1,3,5] and the G/GI/c queue [1,6]. For the
G/GI/1 queue, the following inequalities have been established,

T(FIFO) <. T(6) <. T(LIFO)
and for the G/GI/c queue,
W(FIFO) <. W(8) <. W(LIFO)

where T'(8) and W (8) are the stationary sojourn time and wait time, respectively, under policy
6 taken from the class of nonpreemptive work conserving disciplines that do not use service time
information and where X <. Y means that the random variable X is smaller in the sense of
convex ordering than the random variable Y, i.e., E[f(X)] < E[f(Y)] for all convex functions f
such that the mathemetical expectation exists. The interest of this ordering stems in particular
from the fact that X <. Y implies E[X] = E[Y], E[XT] < E[Y"], r even (also odd values of »

when X and Y are non-negative), and ¢% < .

In this paper we generalize these results to tandem queueing networks. Furthermore, we focus
on a different random variable, the customer lag time. We assume that there is associated with
each customer a reference time and define the lag time to be the difference betwen it and the
customer departure time, i.e., a measure of how close the departure time is to the reference
time. In the literature of real-time computing systems, the reference time is often referred to

as a soft real-time deadline.

Specifically, we establish convex ordering results between the stationary lag times for service dis-
ciplines that are work conserving, nonpreemptive and that do not use service time information

but may use reference time information. In this case we show
L(SR) <. L(©) < L(LR)

where O is a collection of non preemptive, work conserving disciplines at the M queues, none
of which use service time information and SR and LR are such policies that schedule customers

with the smallest reference times and largest reference times respectively. In addition, we



establish the following result for a subset of the above policies which are not allowed to use

reference time information
L(FIFO) <. L(®) <. L(LIFO).

This generalizes results in [2] which showed that SR minimizes the variance of the lag time in

the case of a single G/D/1 queue.

The model and notation is presented in the next section. The proofs of the ordering properties
are found in Section 3. Some remarks describing the analogous results for the class of preemptive
policies and the class of non-work conserving policies are also found at the end of this section.
Last, these results are applied to a system where customers have soft real-time deadlines.
Under the assumption that customers must complete service, we show that out of the class
of non-preemptive, work conserving, service independent, reference independent policies, LIFO
maximizes the fraction of customers that complete by their deadlines provided that the deadlines

satisfy certain concavity properties.

2 Model and Notation

We consider a tandem network of M queues, each with a single server being fed by an exogenous
stream of arriving customers. This exogenous stream of customers has pattern a; = 0 < a3 <

- < @p < --- € IRY, where q; is the arrival time of the i-th customer. Associated with
customer ¢ is a reference time y;, 1 < 7 whose importance will be described later. We define
T; = ¥; — a; to be the relative reference time associated with customer i. In the sequel, these
relative reference times will be assumed to form a stationary and ergodic sequence of random
variables. We associate with queue j,1 < j < M, a sequence {77 }$°, where ¢ € IR" represents
the service time requirement of the n-th customer to receive service at the j-th queue. Let b;
denote the service discipline used at queue j. We consider several classes of disciplines from

which 8; can be chosen.

o Yo - class of work conserving non preemptive policies that do not use information regarding

either service time or reference times.

e X - superset of Xy that uses information regarding reference times.

]



We use the notation © = (6y, - - -, 8ar) to denote the collection of scheduling policies at all nodes.
We define T'(Q) to be the stationary customer sojourn time under policy ® when it exists. We
are interested in the stationary lag time L(©) = T(0) - r.

Remark. When r; = 0 we get L(©) = T(©), and the lag times boil down to classical sojourn

times. In other contexts, y; may be interpreted as the time a customer turns bad, [3,4].
We define the following two scheduling policies:
e SR - this is the policy in (£;)M that schedules the customer in each queue with the
smallest reference time.
o LR - this is the policy in (X,)M that schedules the customer in each queue with the

largest reference time.

The discussion will be conducted under the following set of assumptions

H:
L. The service times, the interarrival times and the reference times are three mutually inde-
pendent sequences of random variables.
2. The service limes are i.1.d.

3. The interarrival times and the reference times sequences are stationary and ergodic.

With these notations, the main results of the paper read: Under assumption H,

L(FIFO)<. L(©) <.L(LIFO), © € (o)™, (1)
L(SR)<. L(®) <.L(LR), ©€ ()™, (2)

We intradnce some additional notations hefore stating and proving relations (1) and (2).

Let d;, denote the time of the n-th departure from queune i. Let I,(©) be the position in the
departure stream of the last queue of the n-th customer to arrive to the network when the

scheduling policy is ©. We have

Ln(©) - d';‘.f(e)((')) “Yn (3)



where

k an, k=0’
dn - { ma‘x(dk-l:dﬁ_l) + ”1’:) k= 17-B (4)

3 The Convex Ordering Result

We define the following two convex programming problems. Consider a tandem system in which

the n-th customer arrives at time a, with relative reference time ™, 1 £ n < N. The n-th

customer to receive service at queue ¢ is given service time ¢%,1 <i< M; 1< n < N. Let

N
Fn(©)=)_ f(L(0)) (5)

1=0
where f is a convex function on the real numbers, f : IR — IR. The problems are

(P1)  minimize E[Fn(0))
subject to @ € (£,)M.

(P2)  maximize E[Fn(0)]
subject to ©® € (3,)M.

We show that the policies that solve P1 and P2 are SR and LR respectively. In order to do so,

we make use of the following result.

Lemma 1 For all convez functions f : IRt — IR*, and all real valued vectors (z1,11) and

(z2,%2) with 21 < y; and z;, < y,, if (z1,31) < (z2,92) (componentwise) and x4 < y;, then

flyr — 1) + f(y2 = 22) < f(w1 — z2) + f(y2 — 21). (6)

Proof. Observe that
n-z2<yn-z1<yp-o

N-22<y-z225y; —2,.

Inequality (6) follows from the convexity of f. 0

Theorem 1 Under the assumptions H, the policy SR solves problem P1.



Proof. Assume that @ solves problem P1 and that it is not SR. If there is no unique optimum
policy, then we choose g so that it maximizes the index i corresponding to the first queue at
which @, differs from SR. If there is more than one such policy, then we choose @¢ so that it
differs from SR at queue 7 at the latest possible moment, say at the j-th customer scheduling.
Now there may be many different values of arrival times, service times, and reference times for
which ©9 exhibits this behavior. Choose one such sample path {a,}2,, {03 :j =1,.. M},
and {y,}32,;. Let si(®) denote the index of the customer (in the order of arrival) served in
the j-th position at the i-th queue, ¢ = 1,---,M, j = 1,---, N, for policy ©. Suppose that
SR schedules customer s%(SR) = | whereas O schedules customer s%(@o) = o at queue i. Let

sgo,(Oo) =l for some j < j' < N. We define a new policy ©, that behaves exactly like ©¢ at

the first 7 queues except that s%(©;) = [ and 5%(01) = lo. In addition, we consider the version
of this policy where the service times of these two customers are interchanged. This version of
the policy is equivalent in law to the version without interchange due to our assumption that
the service times are mutually independent i.i.d. sequences and are independent of the arrival
and the reference times sequences. Let m;41,---,mpy and n;11,---,npy be two sequences of
indices such that sf, (@) =1l and s} (0o) = lo, p=1i+1,---, M. We define @, to behave the
same as Qg at queues ¢ + 1,---, M with the exception that sfnp(el) = lp and sﬁp(@l) = | for
all i + 1 < p < M such that m, < n,. As for queue ¢, for each such permutation, we perform

an additional interchange of the service times of the concerned customers. These interchanges

do not change the law of F(0,) for the same reasons as above.

Let us consider the effects of these scheduling and service changes on F(0,). If we consider the
departure times of all customers under ©¢ and ©; we observe that they are unchanged, with
the possible exception of customers ! and lo. If these are unchanged, then F(Qq) = F(©,). If
the departure times of / and [y are changed, then it follows from Lemma 1 that F(©,) < F(®y).
This construction can be applied to all sample paths such that ®¢ deviates from SR for the
first time at position j at queue i to yield a policy ©, for which either E[F(Qo)] > E[F(©,)]
or E[F(0¢)] = E[F(O;)] but where O, differs from SR for the first time either at some queue

i > ¢ or at position j' > j at queue 7. both of these contradict our initial hypothesis and we
conclude that SR solves P1. m]

Theorem 2 Under the assumplions I, the policy LR solves the problem P2.



Proof. The proof is similar to that of theorem 1. (i

Theorem 3 Under the assumptions H, for every @ € (£,)M such that the sequences L;i(S R),
Li(LR), and Ly(©) converge weakly towards finite random variables that will be denoted by
L(SR), L(LR), and L(®) respectively, we have

L(SR) <. L(®) <. L(LR)

Proof. As a consequence of the previous theorems,

No E[f(Li(SR))] Mo E[£(L(9))) Mo E[f(Li(LR))]
1\[ri1 = N+(1 = N-(&-l , VO e ().

the assumption that both L;(SR), L;(®) and L;(LR) converge weakly allows one to conclude
that

o EIf(L(SR)))

Nim =S = E[f(L(SR))),
,J:';Zi—lg[,if;“—m—” = E|f(L(LR))),
Jim. .’-‘LOE][\{(JrLiV,-(@))] R —

Hence E[f(L(SR))] <. E[f(L(9))] <c E[f(L(LR))] and the theorem holds. o

The following result is a direct application of the theorem by setting y; = a;,71=10,1,2,---.
Corollary 1 Under the assumptions H, we have

T(FIFO) <. T(©) <. T(LIFO), VY0 € (£,)M
The following result can be proven in a manner similar to that of theorem 3.

Theorem 4 Under the assumptions H, we have

L(FIFO) <. L(©®) <. L(LIFO), YO € (o)



Define the following new classes of policies,
e Y3 - class of non preemptive policies that do not use information regarding either service
time or reference times, Xy C Z3.

o ¥4 - superset of X3 that use information regarding reference times, £; C Iy. .

then we can show the following

L(FIFO) <q L(®), © € (Ty)M,
~L(LIFO) <g -L(®), O € (T3)M,
L(SR) <q L(©), ©¢ (Zy)M,

"'L(LR) gcT _L(O)’ 06(24)M'

Remarks.

1. We have similar results for both preemptive work conserving and preemptive non-work

conserving policies provided that the service times are exponential random variables.

2. We have the following interesting application to systems in which customers have soft real-
time deadlines. Consider as a metric, the probability that a customer completes service by its
reference time (deadline), Pr{L > 0] = Pr[r > T]. If the relative reference time, r, has a concave

distribution function, then the following relations hold between FIFQ, LIFQ, and any policy
Oc (EO)M,

Pr|L(FIFQ) > 0] < Pr[L(©) > 0) < Pr[L(LIFO) > 0}, O € (Zo)™.

‘This inequality was first derived in the context of a single server queue in [3]. In addition, we

have the following relation between LIFO and © € (£3)™,

Pr[L(®) > 0] < Pr[L(LIFO) > 0], © € (£3)M.
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