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Abstract

This report presents a method for calculating bounds on a sensed object’s
uncertain position and orientation. Interpreted in the context of an object
model, each nominal sense datum acquired from a rigid object’s surface re-
stricts the pose of the object up to the symmetry of the sensed feature. When
sensor error is present, each sense datum restricts the pose to a volume in
6-dimension pose space. If enough distinct surface features are sensed, their
corresponding pose volumes intersect to form a finite uncertainty volume of
plausible object poses. We approximate this irregularly-shaped uncertainty
volume as a convex polyhedron by linearizing the relationship between sen-
sor error and pose error. A set of hyperplanar pose constraints is formed to
represent the polyhedron’s boundary, and the maximum plausible extent of
the pose along any axis in pose space may then be calculated through linear

programming.



1 Introduction

Pose calculations and estimations of pose uncertainty are frequently required
in robot applications. Calculation of an end-effector’s position and orien-
tation relative to task sites and obstacles is essential for the planning and
execution of robot trajectories and manipulation tasks. Since the calculated
locations of the manipulator and the objects in its environment typically
rely on error-prone sensory data, it is often useful to characterize the spatial
uncertainty associated with each pose calculation. By accommodating all
plausible or likely poses that may be inferred from the noisy sense data, a
robot motion or task can be planned in a more robust manner.

Pose uncertainty considerations have been incorporated into path plan-
ning among obstacles [9], robotic assembly planning [5][10], mobile robot
navigation [13], and object recognition through tactile probing [6]. The re-
lated issues of choosing sensor locations (2] and deciding when to allocate

additional sensors [1] have also been addressed.

One approach to representing pose uncertainty is to surround the nom-
inal, expected pose with uncertainty bounds that contain all poses consis-
tent with known sensory error bounds. A technique representative of this
approach is Brooks’ propagation of spatial errors through nonlinear con-
straint equations [1]. Another example of the pose-bounding approach is
Fleming’s propagation of dimension tolerances and pose uncertainties in a
structure of interrelated parts [4]. Other approaches to characterizing pose
uncertainty employ probability distributions [2][13] and possibility theory
[3]. The technique presented in this report adopts the constraint-bounding
approach, reformulated here as a linear programming problem.

In the paradigm of sparse sense data acquisition, surface data consisting
of isolated points, normals, and curvature axes are acquired from an object’s
surface through touch, range, or visual sensing. The data acquired from

sensed object features may be matched to their counterpart features in an



object model, in order to arrive at a semantic interpretation of the sense
data [7]. Since there may be more than one consistent interpretation of the
sensed features at any given time during the acquisition of the sense data,
several tentative object identities may be hypothesized, as well as several

discrete poses for a given identity.

The pose uncertainty algorithm described in this report operates on a
single semantic interpretation of the sense data. The problem of matching
features to their counterparts in the object model is not addressed here, and
it is assumed that each sensed feature has been matched, either tentatively
or definitively, to a counterpart in the object model. By considering only
one set of correspondences between scene and model features, we avoid the
complication of dealing with several disjoint uncertainty volumes in pose
space.

Interpreted in the context of an object model, each sense datum acquired
from a rigid object’s surface restricts the pose of the object up to the sym-
metry of the sensed feature. Thus, if we ignore sensor error, a point and
direction vector acquired from a linear edge restrict the sensed object’s ori-
gin to lie on a cylinder of radius equal to the origin’s known distance from
the edge. If enough distinct surface features are sampled, the object’s pose
will be restricted to a single location, which may be calculated from the
intersection of cosets of the sensed features’ symmetry groups [12]. If the
sense data are erroneous and redundant, no single pose is likely to be con-
sistent with the data, so a nominal, or expected pose must be obtained by

averaging, or by the method of least squares.

When sensor error is present, the set of plausible object poses to be
inferred from each sense datum must encompass the entire range of poses
propagating from the uncertain sense values. To quantify sensor error, un-
certainty bounds are associated with each datum’s variables, through em-
pirical testing of the sensor. For instance, a point vertex datum may be

surrounded by an uncertainty box, and a surface normal vector surrounded



by an uncertainty pyramid. Allowing for sensor error, each sense datum re-
stricts the pose of a 3-dimensional object to a volume in 6-dimensional pose
space. If the surface feature’s symmetry is assumed infinite, the correspond-
ing pose volume is infinite, as well. Provided that enough distinct surface
features are sensed, the pose volumes intersect to form a finite uncertainty

volume of plausible object poses.

In order to meet real-time computational demands, we approximate each
sensed feature’s irregularly-shaped pose uncertainty volume as a convex
polyhedron. A nominal pose is first calculated from the combined features’
sense data, to serve as a point in pose space around which to linearize the
relationship between the uncertainty in a feature’s sense and symmetry vari-
ables, and object pose uncertainty. A pose Jacobian is thus constructed for
each sensed feature. The pose Jacobians are used to project the features’
linear sensor error bounds into pose space, forming a set of hyperplanar pose
constraints that bound a polyhedral pose uncertainty volume. The maxi-
mum possible extent of the pose along any desired axis in pose space is then

calculated through linear programming.

Since linearizing the relationship between sense and pose variables ap-
proximates the relationship with increasing inaccuracy as sense variables
deviate from their nominal values, the validity of this technique depends on

very small sensor error.

2 An illustrative example in 2-D

This section introduces the pose uncertainty algorithm from an intuitive
persepective, by way of a simple example involving a 2-dimensional object.
The pose of a 2-dimensional object has three degrees of freedom (dofs):
two for its position and one for its orientation. A 2-dimensional object’s
pose space is therefore 3-dimensional and easier to visualize than the 6-

dimensional pose space of a 3-dimensional object. The algorithm extends to



the 3-dimensional case, which is presented in later sections.

The objective of the uncertainty algorithm is to determine the region
in pose space in which a modelled object might reside, given sparse, erro-
neous sense data acquired from the surface of the object. The sparse sense
data consist of any combination of point vertices, edge points and direction
vectors, and surface points and normals. As mentioned earlier, we assume
that all of the sensed features have been matched to a single set of model
counterparts, so only one semantic interpretation of the sense data is con-
sidered at a time. From the relationship between the sensed points and
direction vectors to their model counterparts, we obtain the nominal object
pose. The uncertainty in the calculated pose arises from sensor error, which
is characterized by uncertainty bounds surrounding the nominal points and

direction vectors comprising the sense data.

From the perspective of a single sense datum, pose uncertainty arises
from (1) the inherent symmetry of each sensed surface feature and (2) sensor

error. Let us consider the first of these sources of uncertainty.

Figure 1 illustrates a polygonal object, modelled with an embedded coor-
dinate frame that represents the object’s location with respect to the global
coordinate frame. The object frame’s origin (z,y), together with the angle 4
between the object frame’s axis x; and the global frame’s axis xq, describe
the three dofs in the object’s pose. Boundary features, such as points and
edges, may be described in the object model at locations specified relative
to the object’s embedded frame. Suppose, for example, a point vertex is
sensed, returning sense datum p = (p;,p,). The vertex’s location in the
object model reveals its distance r from the object’s origin. The point da-
tum and its known distance to the origin may be used to constrain possible

locations of the object, relative to the global coordinate frame.

Ignoring sensor error, the sense datum p constrains the the object’s origin

(z,y) to lie somewhere on the circle of radius r centered at point p. The



object’s pose is confined to a circular symmetry group of locations, which
leaves one rotational dof unconstrained. The pose uncertainty arising from
a sensed feature’s inherent symmetry is referred to as symmetry uncertainty.
The symmetry uncertainty of a polyhedral vertex feature is illustrated more
explicitly in the polyhedron’s 3-dimensional pose space, shown in figure 2.
The object’s pose lies somewhere on the helix H described by the following

equations for the three dofs z, y, and 6:

f:(Pz,Py,g) = p; + rcosé

fy(Pz,py,8) = py + rsind
fﬁ(Px;Pu,g) =4

where pose dof 6 doubles as the dof of the point feature’s inherent symme-
try. Without sensor error, sense variables p; and p, are constants, while
symmetry variable 6 may take on any real value, modulus 27,

With the acquisition of additional sense data (say, another point vertex),
the pose of the object in figure 1 is constrained to lie at a single point
(Z,9,9) in pose space. For example, a point datum sampled from a different
vertex constrains the pose to a second helix, which intersects the original
helix H at a single pose (Z,%,0). As shown in figure 2, we can linearize
helix H about (%,9,8) to form a line L that approximates H well in the
vicinity immediately surrounding (Z,7,6). The slope of L is obtained by

differentiating f,, fy, and f with respect to symmetry variable 4.

g—j:: = —rsinf

% = rcosf
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The line approximation L of H is very close to the helix in the vicinity
immediately surrounding (%, §, ). We will exploit this linear approximation
of H later on, in order to build linear pose constraints surrounding (Z, ¥, ).

With sensor error present, the sense variables p, and py in the above
pose functions f;, f,, and fs are no longer constant, but vary within an
uncertainty range bounded by sensor-dependent error limits. For example,

pz and p, might be confined to a rectangle:

Pz — €, < pr <Pz +ép,
Py— €, < py SPytep,

where ¢, and ¢, denote the maximum absolute deviations of p’s compo-
nents p; and p, from their nominal values 5, and p,, respectively. These
sensory constraints, when propagated to pose space via pose functions f;,
fy, and fj, effectively constrain the pose of the sensed object to a bounded
volume in pose space, with a nonlinear surface. In order to form linear con-
straints on the pose from the nonlinear pose functions, the pose is linearized
about the nominal pose (Z, §,8). This is accomplished with the aid of the

pose Jacobian J:
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The columns of J, denoted hereafter as as J, Jp,, and Jp, describe

2
linearized deviations from the nominal pose (Z, §,8) that correspond to unit
deviations of the sense and symmetry varables p,, Py, and @ from their
respective nominal values p;, py, and §. Thus, after linearization about the
nominal pose, the vectors +¢p, J,, and +¢,, Jp, give the maximum deviations
of the pose from (Z, §,0) resulting from the individual uncertainties in Pz
and py, respectively. Recall that Jy, the third column of J, was employed

earlier to describe the instantaneous slope of the helix H in figure 2.

As shown in figure 3, the pose uncertainty volume arising from the sense

and symmetry uncertainty of point datum p can be approximated by four
constraint planes I'}, rs., I‘;'y, and I‘;y, which bound a parallelopiped-
shaped, prismatic volume around line L. The linearized pose deviations

+ep, Jp, corresponding to the maximum absolute error ¢,, in p, generate
the pose constraint plane I’} and its negative counterpart 7, Similarly,
pose deviations *ep, Jp, attributable to maximum error in Py generate P;,*y
and I‘;y.

These pose constraint planes can be represented by normal-scalar pairs
(1, d) which are calculable from the components of J and the sensory error
bounds. Plane [}, for example, has normal np,, which is perpendicular

to J, and J; (since both J, and J; must lie in I} ). Hence, A, can be

calculated as the cross product

n, = JyX Jg



The scalar component d,_ of plane T’} ’s description is obtained by taking

the dot product of any point on I‘;,*‘z with Ai,,. Such a point is

z
q + EP: JP:
(]
Hence,
z
dpz = :lz + €ps JP: ' ﬁpz
(]

The normal-scalar descriptors for the other three constraint planes may

be derived similarly. Once derived, the constraint plane descriptors f; =

[niz, niy, n;g]T and d; will serve as linear constraints of the form
nizZT + nyy + npb < d;

to be passed as arguments to a linear programming algorithm. When con-
straint planes generated from enough sensed features are combined (eg, two
point vertices yielding eight constraint planes), the constraints will bound
a finite volume in 3-dimensional pose space. The linear programming algo-
rithm can then be invoked to determine the maximum extent of the pose

along any axis in pose space.

3 Object localization in 3-D

The pose of a 3-dimensional object can be represented by six variables
(z,9,2,9,0,¢), where z,y, and z describe the origin, and ¢, 8, and ¥ param-

eterize a composition of rotations that describes the object’s orientation. In



the Euler representation, for example, the three Euler angles ¢, 8, and ¢

parameterize the composition of rotations

rot(k, @) rot(j,0) rot(k, )

In the remainder of this report, we will assume that the Euler representation
is employed, although other schemes for representing orientation (such as

roll-pitch-yaw) could be readily substituted.

3.1 Pose functions

Sensory information describing the local geometries of a modelled object’s
surfaces constrains the object’s location up to the accuracy of the sense data
and the symmetries of the sensed features. In section 2, for example, it was
shown that sensing a vertex on a 2-dimensional object serves to constrain
the object’s pose in 3-dimensional pose space to a helicoid volume. The
helical relationship between plausible origin positions and object orientations
arises from the circular symmetry inherent in the vertex’s geometry. The
symmetry uncertainty combines with the uncertainty in the sensed point to

form a volume in pose space.

As with the development of pose constraints for 2-dimensional objects,
we begin our derivation of pose constraints for 3-dimensional objects by
constructing pose functions over the sense and symmetry variables of surface

features. We focus first on the translational symmetry variables.

A surface point and normal acquired from an identified face on a mod-
elled polyhedral object constrain the object’s pose up to the planar symme-
_ try’s three dofs, and up to the uncertainty in the point and normal values.
A sensed planar surface point p may be expressed in local face coordinates.
When the object coordinate frame coincides with the global frame, as illus-
trated in figure 4, p’s global position may be described as the vector sum

of u, d;m;, and dym,, where u is the origin of the face frame, m,, and m,

10



are surface tangential face frame axes, and d; and d, are coordinates along
those axes.
Conversely, the object’s origin (in this case the global origin) may be

expressed in terms of the sensed point and the point’s surface coordinates:
0=p-dm; -dm, —u

When the object frame and global frame do not coincide, as illustrated

in figure 5, the above equation for the object’s origin generalizes to

z
y | = P -d:Rm; - dyRm, — Ru (1)
z

where R is a rotation matrix describing the orientation of the object. In
figure 5, the rotated versions of face frame axes m,, and m, are denoted
more concisely as nz, and n,, and the rotated version of u is denoted as
v. Since d; and dy, are unknowns when the surface point is sensed, we may
regard them as symmetry variables, representing the two translational dofs
allowed by the planar surface’s symmetry.

'We now consider the rotational symmetry variable 6, of the planar fea-
ture. In order to express the object’s orientation as a function of the sensed
normal n,, rotation matrix R can be written as the following composition,

involving a rotation by unknown angle §, about the sensed surface normal.

R = rot(m, X n,,cos”!(m, - n,)) rot(m,, §;) (2)

The first rotation aligns the sensed normal with the model normal by rotat-
ing about their mutual perpendicular, and the second rotation comprises the
third dof in the planar face’s symmetry. The three orientation components

of the pose are given by

11



¢
8 | = Euler”'(R) (3)

¥

which together with equation (2) describes the three angular components of

the pose in terms of sense datum n, and symmetry varable d..

Implicit in the vector equations (1) and (3) are six position functions fz,
fys fz> f4» fo, and fy over the sense data p and n. and symmetry variables

dz, dy, and 6.

We may similarly derive object pose equations for linear edge features.
Shown in figure 6, a surface point sampled from a linear edge of an object
located at the global frame may be expressed as the vector sum of local edge
frame origin u, and d.m,, where d, is the point’s ordinate along edge frame

m,. Conversely, the object’s origin is located at
0=p-dm, -u

when the object and global frames coincide, and in general at

x
vy | = p-d,Rm; — Ru (4)
V4

where rotation matrix R is again comprised of a composition, involving a

rotation by an unknown angle 6, about the sensed edge vector:
R = rot(m, x n;,cos }(m, - n,)) rot(m,, ;)

As in the case of the planar feature,

8 | = Euler”'(R) (5)

12



The vector equations (4) and (5) together describe six object pose functions
fzy fys [z, fé, f5, and fy over the sense data p and n, and two symmetry

variables d,, and 6,.

Finally, a point vertex sense datum p locates the origin of the object at
0O=p-nu

when the object is located at the global frame, or in general at

z
y | =p- Ru (6)
F4

for an object at an arbitrary location (see figure 7). In the case of vertex fea-
tures, rotation matrix R is entirely unconstrained, expressed in the vertex’s

three symmetry variables ¢, 8, and 1:

R = Euler({¢,0,¢))

¢
§ | = Euler”(R) . (7
¥

Again, vector equations (6) and (7) supply six pose functions fz, f,, fz,
f¢» fo, and fy over the sense data p and n and symmetry variables d, d,
and 6,.

4 The pose Jacobian

The pose functions derived above vary over error-bounded sense variables
and unbounded symmetry variables. We may propagate the linearized ef-

fects of sense and symmetry uncertainty on the object’s pose with the aid of

13



a pose Jacobian. If enough sense data are acquired to calculate an expected,
or nominal, pose, the Jacobian will enable us to approximate bounds on the
actual pose’s deviation from the nominal pose, through the propagation of
sense variable bounds.

The six dofs of an object’s pose may be represented by six symmetry and
sensory dofs in any sensed feature. For example, a sensed planar face’s three
symmetry dofs dz, dy, and §, combine with three additional dofs embodied
in the uncertainty of the sensed point p and surface normal n; to form a
6-dimensional uncertainty volume in pose space. In order to represent the
sense data more concisely in terms of dofs which are independent of the
complementary symmetry dofs, we will adopt the following conventions. A

sensed planar face point p is denoted by its ordinate pn along the normal
n;

Pn =P 0,

Since p’s components along the surface tangent axes are redundant with
respect to the unknown translational symmetry variables d; and dy, the
only truly relevant information contained in the sense datum p 1S Pn.

In a similar vein, polar coordinates provide a more concise representation
of a sensed normal or edge vector n, than its three components n;,,n;,, and

n,, (see figure 8):

Ng = cos~! ny,

1 2y
n,,

ng = sgn(nz,n;,) * tan”

The new sense variables n, and ng correspond to the two pose dofs

attributable to the uncertainty in the sense datum n,.

Now that the sense variables are nonredundant with respect to each other

and the symmetry variables, we may form a square, 6 x 6 pose Jacobian:

14
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Conceptually, the elements of J may be thought of as object frame ve-
locities resulting from unit velocities of the sensed surface features along
the sense and symmetry variables’ dofs. The derivation of J’s elements is
therefore based on standard velocity propagation principles. We first derive

Jacobian elements corresponding to derivatives of f,, fy, and f,, the pose
functions for the object’s origin (z,y, 2)7.

A derivation of derivatives in the pose Jacobian for a sensed planar face
follows. Derivatives for pose Jacobians pertaining to sensed linear edges and
point vertices are found in Appendix I.

Figure 5 shows a surface point p and surface normal n,, sensed on a

modelled object’s surface. The origin’s rate of change with respect to surface

point variable p,, is just the sensed normal along which p,, is defined:

8 fur fys )T _

n
dpn i

Similarly, the origin’s rates of change with respect to symmetry variables

d; and d, are the transformed face frame axes along which they are defined

(negated as in equation (1)):

3o fun ST _ _
ad,

n;
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O {fa, fys f)T

ad,

As may be apparent from figure 8, a perturbation in the surface normal’s
polar coordinate ng causes a rotation about the global z-axis. Since the
center of rotation occurs at surface point p, the origin’s rate of change with
respect to ng is given by the cross product of the axis of rotation and the

lever arm from p to the origin:

0 {fu fyr f2)T

— T—
Bng =2zZX ((x)y: Z) P)

Somewhat less apparent from figure 8 is that a perturbation in n, causes a

rotation about the axis
T
<cos(na + %),sin(na + %), 0>

The origin’s rate of change with respect to n, is therefore given by the cross

product

0 (fay fys f2)T

—<cos( + ), sin(na+ %) 0>Tx(f— )
ana - na 2 ’szn (+ 2 E] p

We now turn to the derivation of Jacobian elements corresponding to
derivatives of angular pose functions f,, f, and fy. Because sense variable
pn and symmetry variables d, and d, provide only translational pose in-

formation and do not influence the calculated orientation of the object, the

corresponding entries in J are zero:

S{s: for f)T) _ 0ife Jon fT) _ 8(lfufou f)T) _
Opn dd, ad,

16



Finally, let vector function

dé
§(r) = | df
dy

denote the differential changes in the Euler angles resulting from a differen-
tial rotation about axis r. Then the derivatives of pose orientation functions

fe, fo, and fy with respect to the angular sense and symmetry variables are

a(qua, 7{1’ fo) _ ¢ ((ws(na+g),sin(na+§),o>r)

a(f¢’ fﬁ’ f!ﬁ)

) — gy
a ;
(f¢é£: f¢) = E(nz)

5 Constructing the linear pose constraints

In section 2, constraint planes in 3-dimensional pose space were derived to
bound the set of plausible poses of a 2-dimensional object (see figure 3).
The constraint planes are the boundaries of a parallelopided-shaped prism,
whose axes are the columns of the pose Jacobian formed by differentiating
the nominal pose with respect to uncertain sense and symmetry variables. In
this section, we derive constraint hyperplanes to bound the plausible poses

of a sensed object in n-dimensional pose space.

The pose of a sensed object in n-dimensional pose space may be expressed

as n functions over m sense variables and n — m symmetry variables. As

17



shown in section 3, for instance, the sense data sampled from a planar
surface of a 3-dimensional object give rise to six pose equations over three
sense variables and three symmetry variables. Differentiating the n pose
functions with respect to the n sense and symmetry variables yields an
n X n pose Jacobian J. The evaluation of J at the nominal pose Z enables
us to propagate sense variable bounds to pose space, yielding hyperplanar
pose constraint planes. We evaluate J at Z by plugging into J the sense
data acquired from the surface feature in question, and symmetry values

that are the most consistent with the nominal pose and the sense data 2.
The technique for constructing two pose constraint hyperplanes It and

I';for each sense variable follows. Let us denote the columns of J by

J1,J2,. . ,Jn. Column vector J; contains the derivatives of the n pose func-
tions with respect to the sense or symmetry variable s;. Sense variable s;’s
maximal deviation from its nominal value is denoted by the absolute er-
ror bound ¢,;. The propagation of sense variable bounds to pose space is
achieved by scaling each sense variable’s Jacobian column J; by e, yield-
ing linearized perturbations of the pose from its nominal, Z. Thus, z = €s;

provide points on the respective constraint planes I‘;*:, and I';.

The normals +7; of I‘;‘:. and I';; are derived by noting that every column
of J (i.e., every parallelopiped axis) ezcept J; lies parallel to the hyperplanes
Pj", and Ty in pose space. Hyperplane normals +#; are therefore easily
calculated by employing the Gram-Schmidt technique (see [8]) to produce
an a vector (fi; or —;) that is orthogonal to the n — 1-dimensional subspace
spanned by the Jacobian columns J,. . .,J;—1,Jit1,. . .,Jn.

Finally, each pair of pose constraints I'f and I';; giverise to two inequal-

ities in a system of 2m linear pose constraints Ax < b. The hyperplanar

2The derivation of these symmetry values is performed by iterative projection, as de-

scribed in Appendix IV.
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constraint '} is represented by the inequality

i X < (Z + €,J5) - s

which asserts that the ordinate #;-x of a plausible pose x along I'}’s normal
f; 1s no greater than the ordinate of 1‘;}:. ’s point Z + €,.J;. This inequality is
entered into the system Ax < b of linear constraints by placing #; in a row
of A and placing (Z + €,,J;) - #; in the corresponding row of b. The pose

constraint for I';, is similarly derived as
—n;-x < (:T: - e,'.J,-) . =i

which is also entered into the constraint system Ax < b.

6 The pose uncertainty algorithm

Here we present a concise description of our technique for constructing linear
pose constraints Ax < b for the pose of a sensed object in n-dimensional
pose space. The sense data from ! sensed surface features are first combined
in the manner described in Appendix III to arrive at a nominal object pose %.
Every ith surface feature’s pose function f(d7;, J,) over its m; sense variables
oij and n — m symmetry variables ; is linearized about values for o;; and
1i; corresponding to X. Linearization of f(}, ¥;) is accomplished by forming
a pose Jacobian J (see section 4), whose columns serve to define the axes of
a parallelopiped-shaped constraint prism in pose space.

The 2m; hyperplanar walls of the 1th feature’s pose constraint prism rep-
resent the error bounds, propogated to pose space, on the feature’s m; sense
variables. The Gram-Schmidt technique is employed to obtain the normals
*+f;; for each opposing pair of hyperplanar prism walls. All hyperplanar

constraints are finally expressed as inequalities and entered as coefficients

19



into the appropriate rows of a linear constraint system Ax < b. The result-
ing pose constraints may be used as input to a linear programming package
to determine the maximum possible extent of the pose along any objective

function axis ¢ in pose space.

As mentioned above, the m; features’ pose functions f(d;, J,) are lin-
earized about values for o;; and ;; corresponding to %X. A complication
arises from the fact that the nominal pose of the sensed object is generally in-
consistent with any given feature’s sense data. This is due to the averaging of
pose calculations performed on redundant and erroneous sense data. Strictly
speaking, there is no well-defined value for ); corresponding to %, since there
is no 4; for which £(5;,¥;) = X. Moreover, the object pose § = f(&;, ¥;)
corresponding to the inverse pose function result ; = £=1(5;, %) is not nec-
essarily the closest pose to % which is consistent with the 1th feature’s sense
data. We therefore employ a numerical technique, described in Appendix

IV, to arrive at a value for ); for which ¥ = 1(5;, J)‘,) is as near as possible

to the nominal pose x.

NOMENCLATURE
l Number of sensed object features.
m; Number of sense variables in the ith feature.
m=Yt_ m Total number of sense variables
n Number of pose space dimensions.
I Vector of m; sense variables in the ith feature.
e Vector of n — m; symmetry variables in the ith feature.
€o;; Absolute error bound on the jth sense variable of the ith
feature.
X Pose vector of length n.
p'e Nominal pose vector of length n.
¥y Projection of nominal pose vector % onto the hypersurface

of poses which are consistent with a feature’s sense data.
£(6%, ¥:) Pose function over the ith feature’s sense and symmetry

20



variables, returning pose vector x.

f-1(5;, x) Inverse pose function which returns symmetry variables y;
such that (&, %) = x.
(6%, %) Function which returns symmetry variable vector 1; such

that £(&;, ;) is the closest possible approximation to %
when there is no ¢; for which f (6, 95)-

NOM(oy,...,07) Nominal pose function returning the pose Z most consistent
with the [ features’ sense data.

J n X n Jacobian obtained by differentiating a feature’s pose
functions with respect to its sense and symmetry variables.

Ji The ¢th column vector of pose Jacobian J.

GS(v1,...,Vp-1) Modified Gram-Schmidt procedure which returns vectors
+vy, orthogonal to the subspace spanned by vi,...,v,_;.

A 2m X n matrix in the linear constraint system Ax < b.

A; The 7th row of matrix A.

b 2m-length vector in the linear constraint system Ax < b.

b; The 1th element of vector b.

Begin /* Construct pose constraints Ax <b */

NOM(Gy,...,d) — %
0— ROW
Foriel...l

f*(c?,',x) — d:,
f(é:!':tlbi) - }_,

[afﬂﬁ'.',tz.') ] =7
a(5:,%:)

Forjel...m;

GS(Jl, . -,Jj-lij-i-l’ .. .,Jn) g fl,’j, —ﬁ.,‘j
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ROW + 1 — ROW
fiij — Arow
(¥ + ¢€o,; i) - fij — brow

ROW + 1 — ROW
—fi; — Arow
(¥ — €o,;J5) - —fij — brow

Endfor
Endfor
Return A, b

End

7 Discussion

The pose constraint construction procedure described in section 5 returns
matrix A and vector b of the linear constraint system Ax < b. These
coefficent structures may in turn be submitted to a linear programming
procedure, along with any desired pose space axis ¢, to determine the great-
est possible extent of the pose along axis ¢. Such calculations can be useful
during the real-time execution of free or manipulator motions in which a
tool or assembly part is grasped by a touch-sensitive end-effector. By cal-
culating the greatest possible extent of the object’s pose in the direction of
an obstacle’s surface, collisions may be avoided. Compliance strategies that
relate object-centered forces to object displacements should also take into
account the affect of object pose uncertainty on the resulting forces applied
to the object.

In the interest of achieving real-time computability, some properties of
the linear constraint system Ax < b output by our algorithm should be

observed. First, note that the 2m x n matrix of coeffients A has a constant
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number of columns, i.e., the number of pose space dimensions n. Thus, for
3-dimensional objects, A typically has 6 columns. The linear programming
algorithm employed could be designed with a constant n = 6 dimensions
in mind, with the loss of generality resulting in greater efficiency. In fact,
Megiddo [11] has introduced a linear programming algorithm with a time
requirement that is linear in the number of constraints when the dimension-
ality is fixed. Although the algorithm is double-exponential in the number
of dimensions, its application toward the maximization of pose could be ad-
vantageous when a large number of sensed features yields a large number of
constraints.

Second, the algorithm presented in section 5 lends itself well to parallel
implementation. Each of the m; iterations of the inner loop, as well as the !
iterations of outer loop, may be executed in parallel, with few computational
dependencies to be found among them. Moreover, very few access and
storage conflicts occur. For example, the pair of pose constraints arising
from each sense datum are placed in the datum’s own pair of rowsin Ax < b,

so no storage bottleneck takes place.

Owing to the pose function linearizations involved in our constraint con-
struction technique, the sensors utilized for acquiring the surface points and
normals must be very accurate. The linearized pose functions provide de-
creasingly valid approximations of the propagated pose deviations as the
sense variable error ranges increase in size. The algorithm is currently being
evaluated for various sensory error magnitudes. We are planning a robot
implementation of this algorithm using the JPL/Stanford hand as a testbed,
with fingertip-shaped force sensors supplied by Brock Research, Inc.

8 Conclusion

We have presented a technique for constructing a constraint volume in pose

space which contains the set of object poses that are consistent with sensory
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data acquired from the object’s surface. Pose functions defined over sense
and feature symmetry variables are linearized about the nominal object
pose, so that linear sensory error bounds may be mapped into pose space to
form hyperplanar pose constraints. The pose constraints Ab < x are then
submitted to a linear programming algorithm, together with any desired
pose direction c, in order to determine the maximum possible extent of the
pose along c. The resulting pose optimizations will be useful in the realms

of path planning, obstacle avoidance, and object-based force control.
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Appendix I

DERIVATIVES OF POSE FUNCTIONS FOR LINEAR EDGE FEATURES

O fa, fn 1T

9p; - M
a(fz:fy)fz)T —_

dpy m
8(f2rfy:fZ)T = -n,

ad,

8 {fz, fy fo)T

T
Juld <cos(na +2),sin(ne + 2), o> < (£ - p)

O (fzs fyr J2)T

S = o x (59,97 - P)

0o fo, fo)T) _ OWfarforf)T) _ 8fan S0 f)T) _
Op: dpy dd,

In,

T T T T
6((f¢’fa,f¢) ) - f((cos(na+§-),3in(na+§)a0> )

a((f¢: fﬂ: fib)T)
ong

= §(z)

3((fss fos f)T)

38, = £(n.)
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Appendix II
DERIVATIVES OF POSE FUNCTIONS FOR POINT VERTEX FEATURES

Let vector function ¢(y) = r denote the axis of a differential rotation

resulting from a differential increase in Euler angle 4.

Ofntntd” _ | o S o
8 (pz, py, )" 00 1
Werul — (g)x (£ -p)
a(fz,fysfz>T — 0 f—
3 - ¢(6) x (f —p)
3 z) yJz T
Weduld — (4)x (s~ p)
3 (fs, fo, f4)T _ Fg 8 g
a(Pz’Py:Pz>T | 000 ]
O stutfe) _ | o o o
a(¢,0,¢)T i 0 0 1 ]
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Appendix II1
CALCULATING THE NOMINAL POSE

Calculation of a modelled object’s pose from sparse surface points p;
and normals or edge directions n; proceeds in two stages [7]. First the
object’s orientation is derived, described as a rotation R = rot(k,8) of 8

radians about an axis k. The position of the object is then calculated as a

displacement vector v.

A nominal rotation R = rot(k, 8) of § may be calculated using any two
distinct normals n; and n,; sampled from the object. If there are more
than two distinct normals available, the rotation descriptors k and # may
be computed for each pair of normals, and the nominal rotation R can be
obtained by averaging the results.

To derive rotation axis k from sensed normals n; and nj, we compare
the normals with their nonrotated counterparts m; and m; in the object
model. Since the displacements m; — n; and m; — n; resulting from the
rotation about axis k must both be perpendicular to k, the rotation axis

may be calculated as their cross product:
k = (m1 - nl) X (mz - nz)

The angle of rotation # is computed as the angle separating the projec-

tions of any m; and n; onto a plane whose normal is k, or equivalently:
0 = (m; x k) (n; x k)

Having parametrized the nominal rotation matrix R = rot(k,#8), the
translatory component of the pose may be calculated as follows. Given any
sensed surface point p; residing in a plane whose equation in the object
model is m; - [z y 2|T = d;, we obtain the following planar equation in scene

coordinates:
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Rm; - (pi—v)=4d;

Such equations in three unknowns v;, vy, and v, may be generated by
each surface point p; and combined to form a system of equations whose
solution provides the pose component v. Each point acquired from a planar
surface generates one equation of this form, while a point acquired from
a polyhedral edge or vertex generates two or three equations, respectively.
Three distinct equations in v, vy, and v, are sufficient to determine v.
When more than three equations are produced, v may be obtained as the

best least squares solution to the overdetermined system of equations (see

[8])-
Appendix IV

PROJECTING THE NOMINAL POSE ONTO A SINGLE FEATURE’S
HYPERSURFACE OF POSES

The set of object poses consistent with the {th feature’s m; nominal sense
variables o;; may be described as an (n — m;)-dimensional hypersurface in
n-dimensional pose space, where n — m; is the number of surface symmetry

variables 1;; This hypersurface of poses is depicted schematically in figure 9

as the pose function curve f(g;, 1/7,) The nominal pose % does not generally
lie on a feature’s pose hypersurface, so we opt to choose the closest point on
the hypersurface to x.

The following numerical technique has been employed to compute the

symmetry variable vector ¢; for which f (6, ¥;) is the closest point on the
feature’s pose hypersurface to the nominal pose %. The nominal pose is
iteratively projected onto the hyperplane defined by the current “best” hy-
persurface point § and the slope at §¥. Subroutine HPROJ computes the
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hyperplanar projection, using the columns of a pose Jacobian to represent a

basis for the vector space coset comprising the hyperplane. Each projection

W yields a new symmetry variable vector 1); by way of the inverse pose func-
tion, and ¥ is updated via the forward pose function. Figure 9 illustrates the
calculation of ¥ for two iterations. In our experience, § converges rapidly
toward the closest point on the hypersurface to %. Three or four iterations

are sufficient to obtain a precise projection.

Begin /* Compute f*(5;,x) */
X—-w
Repeat

£-1(6:,x) — o
f(Eir 'J;t) - )-’

l:af!&'.‘-,zl-;;!} - J
a(v:) .

HPROJ(x,y,J) =W
Until § converges
Return J,-

End
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Figure 1. Sensing a 2-D object vertex
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Figure 2. Symmetry uncertainty in 3-D pose space






Figure 4. Surface point in planar face coordinates (object at origin)

Figure 5. Surface point in planar face coordinates (object not at origin)
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Figure 6. Surface point in linear edge coordinates
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Figure 7. Surface point in vertex coordinates
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Figure 8. Polar coordinate represention of a surface normal
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Figure 9. Projecting the nominal pose onto a feature’s pose hypersurface



