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Abstract

This paper presents a formal model of taxonomy tree and an efficient algorithm for
taxonomy-based machine learning. The application of taxonomy tree to Chinese pho-
netics is reported. By using the taxonomy tree algorithm, a computer can partition
all Chinese consonants into different groups, which matches the classical taxonomy
of Chinese consonants. The concepts of labials, alveolars, velars, prepalatals,... in
Chinese phonetics have been rediscovered by a computer.

1 Introduction

Similarity-Based Learning method has received a great deal of attention recently. This
machine learning method involves the comparison of several instances of a concept in or-
der to find features shared among them and differences between them. Common features
are assumed to definc a useful concept [1][2].

By our common knowledge, “animal” is a concept, cat, dog, horse, chicken... are all its
instances, "cat” is another concept whose instances include white cat, black cat,... and so
on. It is by the common features that people form concepts. Similar to human learning,
the concern of similarity-based learning in inductive concept acquisition has been the
determination of characteristic descriptions, which represent concepts by summarizing
the properties that hold true for all instances of the concept. Characteristic descriptions



are typically encoded as a single conjunction of maximally specific features. One of the
most important problems in similarity-based learning is how to detect similarity and
differences between examples to reveal regularities [2].

In this paper we present a mathematical model, by which we can describe what is a
concept in a computational way and thereby can design an algorithm to discover some
new concepts using a computer.

To achieve this goal, we may define a distance function d(a, b) of two things a and b. The
value of d(a,b) may be chosen as the total number of features at which a and b do not

agree. If this distance is small, we may put a and b together.

If at the same time, d(b,c) is also small, we may put ¢ into the same class, then both
a and c are in the same class. However, we can not guarantee that d(a,c) would be
small. Based on d(a,b), we can define a sophisticated distance function D(a,b) such that
if a and b are in the same class (in the extension of a concept) but ¢ is not in the class
(not in the extension of the concept), then we have D(a,b) < D(a,c) = D(b,c), i.e,
the distance between two items in the extension of a concept is always smaller than the
distance between any item in the extension and any item not in the extension.

Based on this distance function, we can define a complete taxonomy tree and prove that
there is always such a unique tree. In this complete taxonomy tree, each leafis a concrete
item, each inner node corresponds to a concept.

We give an efficient algorithm to find the unique taxonomy tree.

As an application, we use this concept learning method to Chinese phonetics. Using this
algorithm, a computer can partition all consonants into 9 groups. A computer has formed
concepts corresponding to labials, alveolars, prepalatals, velars... in Chinese phonetics.

Compared with the classical taxonomy of Chinese consonants which has been established
and improved for thousand of years, the result obtained by computer is very reasonable.
The complete taxonomy tree for Chinese vowels is also obtained.

The taxonomy tree depends on the distance function. There are many different ways
to choose a distance function. Some features may added, some may ignored, and some
may weighted. Our results simply depend on the information that whether or not a
combination of a consonant and a vowel exists in a standard Chinese dictionary. If we
could consider the places of articulation as additional features, the result obtained can
be improved further.



2 The Taxonomy Tree

It is very convenient to describe the taxonomy by a tree structure. Figure 1 shows part
of the tree represents animal taxonomy.

Animal

7\

Bird Beast

(wings, feather, .. (legs, teeth, no wings,.

/\ /\

Swallow Eagle

Fig.1
Formally, we give the following definitions:

Definition 1 A tazonomy tree of size n is a labelled tree with n leaves, each inner node
has at least two sons and labelled by a concept, each leaf is labelled with a different item.

We consider the distance between two items.

Definition 2 If for any pair of items p, g, we define’ a non-negative number d(p,q)
satisfying

d(p,p) =0
d(p,q) = d(q,)
d(p,q) < d(p,7) + d(r,q)

then we say d(p, q) is the distance between p and q.
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For example, we can measure the distance between two items by the total number of
features in which they are different from each other.

For a set of items S = {a;}, we can define a function D(a,b) of a,b € S as follows:

D(a,b) = Min {Maz {d(a:,ai+1)}}

In other words, D(a,b) is the minimum distance d such that we can arrive at b from a
by a sequence of jumps from an ilem to another: a = ¢y — a; — a2 — ... = a, = b, and
d(a;,ai+1) <dforeachi=0,1,...,n -1

Now we examine the matter from a different angle: each item is a vertex in a complete
edge weighted graph, each edge (a,d) is weighted by a number d(a, b), the length of the
edge. Then the number D(a,b) has the following properties:

1. If we remove all edges longer than D(a,b), then a and b are still connected, and
2. If we remove all edges longer than or equal to D(a,b), then a and b are disconnected.

It is not difficult to prove that this is a distance function. Furthermore, we have the
following triangular inequality

D(a,b) < Maz{D(a,c), D(c,b)}

Definition 3 A complete tazonomy tree is a tazonomy trec which has the following prop-
erties:

1. If a, b are items in the same subtree and c is not in this subtree then

D(a,b) < D(a,c) = D(b,c).

2. If a node has three subtrees and items a,b,c are on these three subtrees respectively,
then

D(e,b) = D(b,c) = D(a,c).

Theorem 1 Assume that a distance function d is defined on a set of n items, then there

is always a unique (up to isomorphism) complete tazonomy tree which can be found by
the following algorithm:

Consider the indirected graph of n items. For each pair of ilems (z,7) there is an edge
with weight d(i, j), the length of edge (i, j).



Remove the edges which have the largest weight until the graph becomes disconnected.
Then draw a root and several sons under the root. Each son corresponds to a connected
components. Repeat this for all connected components.

Proof. Assume that items q, b are in the same subtree and c is not in this subtree, then
at some point of the above procedure, all edges longer than or equal to a number, say
l, have been deleted, a and b are in the same connected component, but ¢ is not in this
component. Therefore by our definition, D(a,b) < 1,1 < D(a,c)and I < D(c,b). By the
tniangular inequality, we have property 1.

Assume that there is a node which has three subtrees containing items a, b, ¢ respectively,
then at some point of our procedure, there is a connected component (corresponding
to the node). The largest weight of the remaining edges in this component is I. By
deleting all edges of weight [ in this component, it is not connected any more: it has
three connected components containing items a, b, ¢ respectively. Then by our definition,
D(a,b) = D(b,¢) = D(c,a) = I, we have property 2. Therefore there exists at least one
complete taxonomy tree.

Assume that we delete the edges one by one according to their weights until the graph is
disconnected after the deleting of all edges of weight [. At this moment, the total number
of connected components is, say, ¢ > 1. Assume also that there are ¢y sons under the
root of a complete taxonomy tree and the distance D(a,b) between any two items a and

b in different subtrees under the root is /.

Then first, we claim that [ = [;. Clearly, since after the removal of all edges whose weight
is greater than I, the graph is still connected, we have I; < . Butif l; < [, then the
removal of all edges whose weight is greater than or equal to ! will disconnect the graph.

Therefore there are two items @ and b such that D(a,b) > [ > [, a contradiction.

Secondly, we claim ¢ = ¢;. By the definition of the complete taxonomy tree, we know
that after the removal of all edges whose weight is greater than or equal to I, the graph
is divided into exactly ¢ connected components. Since I = I}, we have ¢ = ¢;. Using the
same argument, we can show that all complete taxonomy trees are isomorphic to each

other inductively.

There are n? edges. After the removal of some edges, we use the depth first search to
find the connected components, the time needed is O(n). Therefore the time complexity

is O(n®). QED.



This method is top-down. Now we give a bottom up method. We assume there is no
edge in the graph of n items at the beginning. Then we add the shortest edge(s) to it.
Then add the next shortest edge(s) to it,....

The bottom up taxonomy algorithm:

begin

Sort the triples (d(3,7),1,7) by their first arguments. Put them in Q;
While @ is not empty do

begin

Select and remove all edges in @ that have the minimum value d(, j);

If these edges connect different subtrees then put all subtrees under a common root ( to

form a new larger subtree );

end

end

For each new added edge (a, b), we should find the roots of those two subtrees containing a
and b respectively. The time is proportional to the depth of the taxonomy tree. Therefore

the total time complexity is O(n?d), where d is the depth of the taxonomy tree.

By the union-find algorithm, we can reduce the complexity to O(n?log™n). Since the

best sorting algorithm needs time O(n2log n), the total complexity of the algorithm is
O(n?log n).

To show the application of the taxonomy-based learning, we choose Chinese phonetics as
an example.

3  Chinese Consonants Classified According to
the Place of Articulation

Phonetics is an essential subject in the study of spoken language. The study on Chinese
phonetics has a long history. Phoneticians have done much rescarch on it and obtained
many valuable and important results. The consonant classification is one of them [3]14].
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In traditional Chinese phonetics, there are 21 consonantal initials and 35 ( simple or
compound ) vowels. According to their Place of articulation, consonants in Chinese
may be classified into six categories. They are labials, denti-alveolars, prepalatals, post-
alveolars, alveolars and velars. Labial refers to the interaction of both lips, labio-dental
to that of the lower lip and the upper teeth and the rest indicate characteristic locations

which the tongue either touches or appro- aches. They are classified and arranged in this
way for the following reasons:

1) The consonants of each category have their homorganic nature in articulation.
2) In the constitution of syllables, certain sets of initials occur before certain sets of finals.

3) It is more convenient to compare the consonants of each category with those in other
Chinese dialects.

The Chinese consonants are tabulated in Tab.1.

Labials: bpm{ |
Denti-alveolars: | z ¢ s ﬁJ
Alveolars: dtnl |
Prepalatals: zh ch sh r]
Post-alveolars | jqx |
Vs Jgkh

Tab.1.

Except these 21 consonants, we have two other consonants, y and w, which can be
combined with Chinese vowels. Therefore we have altogether 23 consonants.

In the following, we apply our algorithm to find the complete taxonomy tree and compare
our result with the above classical one.

First of all, we should find a distance function d. A syllable in standard Chinese is
gencrally made up of an initial (a consonant) and a final (a simple or compound vowel).
We look at the ”Xin Hua” Dictionary (a standard Chinese dictionary) and make a table
of syllable-formation (See Table 2) [4]. Each consonant corresponds to a column, and
cach simple or compound vowel corresponds to a row. If the ith initial can go with the
jth final, we put 1 in the crossing entry of row i and column j, otherwise, we put 0 in
it. For example, "ma” (mather) is a Chinese word in this dictionary, where "m” is a
»_»

consonant and "a” is a vowel, then we put a L in the crossing entry of the row ”a” and

column 7m”.



zh

sh

zh

z

s sh t w

l m n p q r

k

3

b cch d £ g h

A A A At A AOFMOOO0O00C0O00OCHMMOMAMOAHOMAHO R
A AAAAAAAOAOOCOOCOOOCOCOOOCOMAMHOOM0000HHOA
A0 A A 1O 0O0A00O0O000AFHOOAHHAMHOAAOOAOOMRMOO~O
COO0O0O0 OO OCO O EHridrdertrdi 10000 AO0O0AO0O0MOO~NO
At A0 OO0 N 100000000000 HOODAO0OOO0O000O000O
AAAAAAAOAADQOO MO AMOMOOOEH MO0 HOO0O0O0HAOA
A AAAAAAAOAO0O0OO00O0COOIO0O0HHONAHROHAHOAAO
AAAAAAOO AT AONO0O00000CO0O0O0COHAHA100AA000O0AAO A
COMAHt MO 1O NO0O00000O0OVOFNMHHOOFNOOOOHHO A
000000 OOOMOMAMMAHRMAIO00O0H0O0HO0OO0HOOAO
AAAAAOO A A ANOOAOMAAHOOHOHNHOOO0OO0ODO0OOOOOOO
AARAAAAAAA A AT A A A A A A A MO O0O00HOOO
AAAAAAAAAAOOOOAOAHArHO AR HOAAQOO0000000O000
MEHA A A A A OO A A A AN AAANOAAANAADAHOQCOFNOHO -
A AAAAAA1O000000000000HHHOHHOHHOMHO
COO00CO0CO0OCOO A0 AAMHAHAHMNAHHOOO0OO0OHOOHOORHOOAO
1111111110.0000000000011101101101101
MAAA A A AAAAO0OO000000CO0O00CO0O0ONAHMHOAHHOHAOMHAO M
HFOA 100N A10000000000O0FONHMOOO0DO00OOO00O0O
AHEAAAAAAAAAOCOAOCOH MO MOAHOMHHAMNOOHOOOOFHMHO A
AAAAAAO A AOAO000000000O0HAHHOMNHOAHOHAOA
1111110110100000000001110010@001101
AR AAAOAAAAO0O0HO A1 100 HOOHO00000000O0QO
g

o
9N
ol

g

o
" GG ]
OOV Y DA A

ang

Q
LY

ian

[ 1
LR

uan
dan
uai
uan

G 2 o Ao
g 0002333 P332

Tab. 2.



The distance d(b, c) of two consonants b and c is defined as the total number of places
where these two columns are different. For example in the table, d(b,c) = 16. The
- distance between Chinese consonants can be easily computed.

Using the taxonomy algorithm, we can find the complete taxonomy tree. Figure 2 is the
complete taxonomy tree of Chinese consonants. A similar result is obtained for Chinese

vowels.

Therefore the consonants can be roughly partitioned into 7 roups and the vowels can be

partioned into 5 roups.

4 Two Dimensional Taxonomy

We refine the taxonomy by partition each group according to each member’s spellability
with

groups in another dimension. For example, the spellability of the consonant group c, s,
z, 1, ch, sh, zh, g, k, h with vowel groups can be represented by Tab. 3.

c|s|z|rjch|sh|zh|g|k|h
l

{i,..} I N

ok L]
T, d [T i T
@ (1] dl_‘lmlhl N 17
we, YT [ e |t
Tub.3.

The distance matrix 1s therefore



¢ s z r ch sh zh g k h

c 0000 1 1 1 111

s 0000 1 1 1 111

z 0000 1 1 1 111

r 0000 1 1 1 111

¢ch 11110 0 0111
sh 1111 0 0 0 1 11
zn 1111 0 0 0 1 11
g 1111 1 1 1 00 0

k 1111 1 1 1 000

R 1111 1 1 1000

Tab.4.

By the same algorithm, we partition this group into 3 subgroup {c, s, z,7}, {ch, sh, zh},
{g,%k,h}. The other consonant groups will not be decomposed. The final result is as
follows:

{ec, 5,2, 7},
{ ch, sh, zh },
{9,k R},
{j,a,2}
{b,p,m},
{fiwh

{d, t}

{n 1},
{v}

The vowel groups will be decomposed as follows:
{ a, ai, an, ang, ao, ¢, €1, en, eng, ou, u,
uan, un, ong, ui, u0 } =

{ a, ai, an, ang, ao, e, €i, en, eng, ou, u 1

{ uan, un, ong, ui, uo }.

{ ia, iang, iong, ian, in, i, ue, i, 14N,
igo, ie, in, ing, tu, } =>
{ ia, iang, iong, ian, in, i, ie, },

{ i, ian, iao, ie, in, ing, in }.




The final partition of Chinese vowels is as follows:
{ e, ai, an, ang, ao, ¢, ei, en, eng, ou, u },

{ un uan, ong, ui, uo },

{ ta, dang, iong, ian, in, i, ie },

{4, dan, iao, ie, in, ing, in },

{i}

{ ua, uai, uang },

{o}

We choose one element as the representative for the group, then the Chinese spelling rule
can be represented by the following table:

c|chig|f|bld|n!ljiy
a|lj1i1(1]1 1 1
un | 1] 1 |1 1(1 1
1a 1 1
i 11111 1
1 |1
ua 11 ]
o 1]1 1 1]

Tab.5.

Compare Tab. 2 with Tab. 5, we notice that there are 23 "missing”s. A missing of a
combination does not mean that it is not possible. It only means that it happens there is
no such a combination in the standard Chinese, but it is possible that this combination

appears in other Chinese dialect.

5 Conclusion and Future Research

A formal model of taxonomy trece and an efficient algorithm for machine concept learning
have been presented. As an example, by using this algorithm we rediscovered some
important concepts in Chinese phonctics. Under the new taxonomy discovered by out
algorithm, the rules of spellability of Chinese consonants and vowels appear very concise.
T'he new taxonomy basically mat- ches the classical rules. Some novel parts suggest some

idea to phoncticians.

10



This method can also be used to form concepts in many other fields. A computer might
discover concepts like line, point, square, circle,..., by comparing many pictures, if we
knew what were those fundamental features that could be used to distinguish or identify
these pictures. This method might be particularly useful to natural language study.
We may input many papers and documents into the computer, and let the computer
to discover the concepts like verb, noun, pronoun, and so on, by comparing the context
sensitivities between words. More and more subconcepts might be discovered, and a
refined grammatical system of rules might be established.
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