OROS:
Toward a Type Model for
Software Development Environments

William R. Rosenblattt
Jack C. Wiledent
Alexander L. Wolf?

COINS Technical Report 89-67
July 1989

tSoftware Development Laboratory
Computer and Information Science Department
University of Massachusetts
Ambherst, Massachusetts 01003

tAT&T Bell Laboratories
600 Mountain Avenue
Murray Hill, New Jersey 07974

This report to appear in
ACM Object-Oriented Programming Systems,
Languages and Applications Conference
New Orleans, LA., October 1989

This work was supported by grant CCR-8704478 from the National Science Foundation with cooperation
from the Defense Advanced Research Projects Agency (ARPA Order No.6104).

ORros: Toward a Type Model
for Software Development Environments

William R. Rosenblatt !
Jack C. Wiledent
Alexander L. Wolf?!

tSoftware Development Laboratory
Computer and Information Science Department
University of Massachusetts
Amherst, Massachusetts 01003

tAT&T Bell Laboratories
600 Mountain Avenue
Murray Hill, New Jersey 07974

Abstract

Three important goals of next generation software de-
velopment environments (SDEs) are extensibility, inte-
gration and broad scope. Our work on OROS is predi-
cated on the hypothesis that a type model, incorporated
into an environment’s object manager, can contribute to
achieving those goals. This paper reports on an attempt
-at applying object-oriented typing concepts in the do-
main of software development environments. We believe
“that the result is a type model that has properties of in-
terest both to software environment builders and also

to builders and users of object-oriented systems in gen-
-eral.

1 Introduction

This paper describes ORoS [19), an object-oriented type
model! that we have developed as part of our research

!In this paper, we distinguish between type system, n specific
collection of types developed for use in some application (such as
a particular software environment), and type model, a framework
or mechanism for defining type systems.

on object management for next generation software de-
velopment environments (SDEs). This research is being
done as part of the Arcadia project [25), a collaborative
software environment research program encompassing
groups at several universities and industrial organiza-
tions. The objective of Arcadia is to develop advanced
software environment technology and to demonstrate
this technology through prototype environments.

Three important goals of next generation software de-
velopment environments, such as those envisioned by
Arcadia, are extensibility, integration and broad scope.
In particular, Arcadia environments are intended to be
extensible in order to support -experimental investiga-
tion of software process models and evaluation of novel
tools in the context of a complete environment. At
the same time, Arcadia environments must remain in-
tegrated, both externally, to aid users of the extended
functionality, and internally, to facilitate tool coopera-
tion, environment maintenance and further extension.
Arcadia environments are also intended to be broad in
scope, i.e., to support a wide variety of development ac-
tivities, not merely monolingual program development
and execution, and therefore to include many different
kinds of tools and objects.

These goals require that Arcadia environments facili-
tate the addition, modification and replacement of any
and all kinds of environment components, which are
such things as tools, management data or process de-
scriptions. This in turn requires the availability and
control of detailed, manipulable information concerning

the properties of software product components, such as
specifications, designs, code, test data, or documenta-
tion.

Our work on OROS springs from the belief that envi-
ronment extensibility and integration will be enhanced
by treating both environment components and software
product components as instances of types. In particu-
lar, a type system provides a classification scheme that
can explain the roles of various kinds of components
and their relationships to other kinds of components.
If the classification scheme can be enforced, by check-
ing that all components are proper instances of known
types and that their uses are always in accordance with
the properties associated with their types, then it can
greatly facilitate reliability and modifiability of an en-
vironment. Naturally, it must be possible for environ-
ment and tool builders to define their own type sys-
tems if this approach is to be a help rather than an
impediment. Similar observations, as applied to pro-
grams rather than environments, have motivated the
increasingly widespread use of abstract data typing and
object orientation in modern programming languages
and database systems.

This paper reports on an attempt at applying object-
oriented typing concepts in the domain of software de-
velopment environments. Most of the other efforts to-
ward environment type models with which we are fa-
miliar have essentially adopted or adapted some exist-
ing type model, either from a programming language
or from a database schema language. In contrast, the
OROs model has been developed through a top-down
requirements definition effort, and has been specifically
tailored to support environment object typing needs.
We believe that the result is a type model that has prop-
* erties of interest both to software environment builders
‘and also to builders and users of object-oriented systems
in general.

The next section of the paper outlines the Oros type
model and provides brief examples of its major features.
Due to space limitations, we refer readers interested in
detailed examples to technical reports (19, 27). Sub-
sequent sections compare OROS with related work and
describe our experiences with experimentation and im-
plementation. We end with a summary and statement
of future research directions.

2 The OrRos Type Model

In developing a type model, one must settle upon:

* a set of primitive types, from which all others are
constructed; and

e a type definition mechanism, which allows the type
system to be built up inductively from the primitive

types.

As we indicated in the introduction, OROS is moti-
vated by our view of significant concerns for software en-
gineers building and experimenting with environments.
In the remainder of this section we elaborate on the
observations that we have made concerning typing re-
quirements for environment object management and the
primitive types and type definition mechanism of Oros
that have resulted from those observations.

2.1 ORos Primitive Types

In selecting a set of primitive types for use in envi-
ronments, we began by asking ourselves what kinds
of “things” are of primary interest to environment
builders. Our observation was that there are three fun-
damental kinds of “things” that compose environments.
Using the term entity to denote the most general, all-
encompassing category for “things” (i.e., everything is
viewed as an entity), we identified these three funda-
mental kinds of entities:

objects — essentially passive pieces of information
about a software product or environment, such
as management data, design documents or source-
code modules;

relationships — conceptual connections among enti-
ties, such as the connection among all source-code
modules belonging to some software product; and

operations — manipulations that can be. performed
on entities, such as compllmg a source-code mod-
ule

The impl.ication of this is that, in the OROS type model,
everything in an environment is an instance of type
entity. Further, everything is also an instance either
of type object or of type relationship or of type
operation. Thus, these three types are subtypes of
type entity, according to the notion of subtypmg de-
scribed in Section 2.3.

A specific software environment’s type system would
include, in addition to the OROS primitive types, a set
of specialized subtypes derived from them. For ex-
ample, something that is an instance of type object
might also be an instance of the subtypes text.object,
source.code and Ada_source_code, each of these sub-
types being more specialized and restrictive than its
predecessor. In fact, we envision the definition, main-
tenance, modification and refinement of a type system
to be a significant part of the work of an environment

builder or experimenter who is using Arcadia environ-
ment technology.

Our second, related obsetva.non concerning the prim-
itive types for an environment type model was that all
three of the types introduced above are of equal sig-
nificance. That is, we do not believe that objects are
of greater importance than relationships, nor any other
such prioritization, from the perspective of environment
builders and experimenters. This provides the rationale
for the name ORos, which derives from Object, Rela-
tionship and Operation System?.

The inclusion of operation and relationship types in
ORos, as well as its co-equal treatment of all three prim-
itive types, sets OROS apart from most other object-
oriented type models, as we explain in Section 3.

2.2 Type Definition Mechanism

Given our view of the appropriate primitive types and
their co-equal status, we next considered properties
needed in a type definition mechanism. This consid-
eration was also driven by some observations.

The first observation was that, although abstract data
types have traditionally been defined in terms of the op-
erations that can be applied to instances of them, rela-
tionships are equally important determiners of a type’s
properties — particularly in the SDE domain. For ex-
ample, the fact that an object-code module is related
to some source-code module by the compiled-from re-
lationship may be at least as important a property of
type object-code as the fact that the link operation
can be applied to instances of that type.

It is also interesting to note that relationships can
subsume the notions of attributes and components of-
ten used in object-oriented type models. In fact, many
such schemes use “attribute” or “property” as a kind of
syntactic shorthand for binary, unidirectional relation-
-ships between objects (2, 10, 30]. For example, a type
compiler may have a component of type parser; OROS
could be used to model this via a parser-of relation-
ship. ORos supports relationships among arbitrarily
many entities of arbitrary types; attribute- or property-
like relationships are merely a particular case.

A second observation along these lines was that the
set of applicable operations and relationships should not
only serve to define object types, but is equally signifi-
cant in defining relationship and operation types. That
is, it should be possible to define relationship types in
terms of the relationships in which they can participate
and the operations that can be applied to them, and
similarly for operation types. Thus, the upshot of the
preceding observations is that a type, be it an object

2“Oros” (Opos) is also Greek for “mountain”. Oros is one of
the prominent features of the Arcadia landscape.

type, a relationship type or an operation type, is de-
fined (at least in part) by the set of all operations and
the set of all relationships applicable to entities of that
type.

The following is a simple example of an ORos type
definition; the reader is referred to [19] for more detailed
examples. This example shows how a typical object type
from the SDE domain can be defined in terms of asso-
ciated operations and relationships. Although syntax is
not a major concern at the level of generality of ORos,
this and subsequent examples employ an ad hoc type
definition syntax.

type source._code is
parents:
object
operations:
edit, compile
relationships:
source_to.object.code,
design_to_source.code
end

The “parents” field of this definition specifies that type
source.code inherits operations and relationships from
type object, i.e., that source_code is an object type.
Type object might have operations such as create and
delete; these operations also apply to instances of type
source.code. In addition, source code objects can be
edited and compiled; also, they participate in relation-
ships with obJect-code modules and with design docu-
ments.

We have also observed that operation and relation-
ship type definitions should include interface descrip-
tions: operations in terms of their parameter lists, rela-
tionships in terms of the types of their tuple elements.
We refer to both of these as signatures; both are es-
sentially lists of name/type pairs. Thus, for example,
the compile operation on the above source_code type
might have the following type definition:

type compile is
parents:
operation
signature:
(src : in source.code;
obj : out object_code)
end

Notice that, for signatures of operation types, we use
parameter modes (in, out, inout) in a manner simi-
lar to Ada. The definition of the relationship type
design.to_source_code might look like this:

type design to_source_code is

parents:
relationship
signature:
(des : design.document;
8Ic : source.code)
end

The final observation we have made about type defi-
nition relates to our goal of providing environment ex-
tensibility. As new capabilities are added to an envi-
ronment based on a type model, new types must also
be added; these types should integrate readily with the
rest of the environment. We have found that environ-
ments often contain entities that are aggregations of
other entities, e.g., stacks, arrays, lists, etc. Extend-
ing an environment, then, often involves modifying the
types that describe such aggregations so that they can
be used with new types. The type model should make
it easy to perform such modifications.

One way to accomplish this is via parametric types,
e.g., stack(integer]. Several object-oriented systems,
such as Vbase (2], Napier88 [10], Galileo [1], and Trel-
lis/Owl [22] have included similar mechanisms. In
ORos, type definitions can optionally include arbitrarily
many formal parameters, which are declared at the start
of the definition and then can be used throughout the
rest of the definition. Parameterized types, then, are
instantiations of parametric types with existing types
as actual parameters. Formal parameters of paramet-
ric types can also include restrictions on what kinds of
types can be used as actual parameters.

For example, the following definition of type
Telation can be used to create relational-database-like
objects:

type relation(R : relationship] is
' parents:
object
operations:
insert(R], delete[R],
select[R], ...
end

Relation can be parameterized by any relationship
type (i.e., type relationship or any subtype thereof).
This definition implies the necessity of parametric op-
eration types such as the following:

type insert(R :
parents:
operation
signature:
(rel : inout relation(R];
item : inR)

relationship] is

end

Using the relationship type definition above, we can
create a parameterized type definition for relations of
design.to_source.code tuples:

type design_to_source_code.rel is
relation[design to_source_code]
end

Creating this definition would imply the creation of
appropriately parameterized versions of insert(],
delete[], etc. Note, of course, that this mechanism can
be used to easily define “relations” over newly-added re-
lationship types.

2.3 Subtyping and Semantic Intertype
Relationships

We have considered several kinds of relationships among
types (or intertype relationships) throughout the de-
sign of OROs>. We separate intertype relationships into
two basic categories: semantic intertype relationships,
which are relationshps among types’ behaviors (such
as subtyping), and structural intertype relationships,
which are relationships among types’ definitions (such
as inheritance). A characteristic of OROS that differen-
tiates it from other object-oriented type models is that
it includes both kinds of intertype relationships and also
separates them carefully.

Subtyping is included in such systems as Emerald
[5], Galileo and Trellis/Owl. The basic idea is that,
given two types A and B, A is a subtype of B if an
instance of A can be used wherever an instance of B is
required, but not necessarily vice versa. In the SDE
domain, for example, one might like to specify that
a design.document can be treated as a text_object
(e.g., it can be printed or put through a text format-
ter). - :

Subtyping among object types has been treated for-
mally by various authors, notably Black et al. {4], whose
notion of types includes operations with arguments and
results (i.e., with signatures). However, it does not
include relationships associated with object types, nor
does it include operation and relationship types as such.
Thus, their results could not be directly applied to the
full OrRos model. Because these features of OROS are
mostly novel, there is little or no precedent for the no-
tion of subtyping or “subtyping-like” semantic intertype
relationships that take them into account. In fact, we
conjecture that one fixed set of rules may not be flexible
enough to cover all such intertype relationships that we

INote that the concept of intertype relationship should not be
confused with the type relationship, introduced in Section 2.1,
or a relationship associated with a type definition, introduced in
Section 2.2,

feel are interesting in the SDE context. A major cur-
rent focus of our research is to discover the nature of
these intertype relationships and what sorts of rules are
necessary {0 express them.

2.4 Inheritance and Structural Inter-
type Relationships

Like the designers of other object-oriented systems, we
believe that inheritance provides a useful shorthand for
type definition as well as a convenient way to repre-
sent a type system’s organization. However, we have
observed that inheritance is just one of an entire fam-
ily of interesting relationships among type definitions.
As mentioned above, we refer to these as structural in-
tertype relationships. Space constraints permit only a
brief synopsis of our work on them here.

Structural intertype relationships provide a way to
describe and/or control differences among type defi-
nitions that is more precise than existing inheritance
mechanisms. As an example: Smalltalk [13] provides
single inheritance along with the ability for a subclass
to override inherited operations (methods) as well as to
add new methods. In our terms, this corresponds to
three kinds of structural intertype relationships:

inherit — the superclass’ definition is copied, and there
is a guarantee that any subsequent changes in the
superclass’ definition are reflected in the subclass

add — the subclass can add a method

‘delete — the subclass can delete a method and replace
it with a new one by adding it?.

In ORos, the add and delete relationships can apply to
a type definition’s operations, relationships, or signature
. elements.

We are experimenting with creating a small, yet com-
plete, set of structural intertype relationships for ORros
and its various implementations. For example, the pres-
ence of subtyping in a type model (as described above)
suggests the need for the structural intertype relation-
ships specialize (i.e., replace with a subtype) and gen-
eralize (i.e., replace with a supertype). We expect to
report further on this in the future; for now, we note
the similarity of this to our previous work on describing
precise interface relationships between software modules
(28, 29).

4Note that it is not possible to simply delete 2 method from a
Smalltalk subclass. :

3 Related Work

Because the ORos type model is intended specifically
for the specification of object management systems for
software development environments, we consider it in
light of previous work in this application area. As with
all such work, of course, we acknowledge such influences
as traditional database systems (e.g., [8, 20]), object-
oriented systems (e.g., [13, 15, 24]), type theory (e.g.,
6, 9]) and integrated SDEs (e.g., [7, 12, 18]).

Requirements for SDE object managers have been
suggested by Bernstein (3] and Katz [14], among others.
Such requirements have been combined with results in
the above areas to produce object management systems
and type models that, like OROS, have been intended
specifically for SDE applications. Thus it is not surpris-
ing that, among the type models of which we are aware,
those that most closely resemble OROS have all been
developed with similar applications in mind. These sys-
tems/models include Encore [30], Napier88, Vbase and
Gaia [26].

Like all of these, OROS conforms to the definition of
“object-oriented” (e.g., [9] or [16]), because it includes
notions of abstract data types and inheritance. ORros’
primary additions to the “ADTs + inheritance” formula
are:

e inclusion of operation and relationship types,

e co-equal treatment of objects, relationships and op-
erations, and

e separation of structural (e.g., inheritance) and se-
mantic (e.g., subtyping) intertype relationships

Of the above systems, Napier88, Vbase and Gaia in-
clude notions corresponding to operation types (called
“procedures” in Napier88). Operations in Gaia (i.e., in-
stances of its “operation” class) encompass Ada proce-
dures and functions, whose argument lists are as general
as OROs operation type signatures. However, Vbase op-
erations and Napier88 procedures only allow one value
to be returned, which is not as general. This generality
of ORos signatures is useful, for example, for modelling
software tools that produce more than one output (such
as compilers that produce cross-reference listings in ad-
dition to object code). Furthermore, none of these other
systems explicitly address subtyping among operation
types, while OROS does.

ORos supports relationships as parts of all type defi-
nitions. Encore supports binary, unidirectional relation-
ships as “properties” of object types, while Napier8s
supports them as record fields. Furthermore, OROS in-
cludes relationship types; like Rumbaugh [21), we feel
that relationships should be supported as separate en-
tities. For example, relationship instances (or tuples)

are ideal for representing dependencies among software
objects in the manner of the MAKE tool of the Unix®
operating system [11]. Such relationships might involve
instances of several different types; therefore, attribute
or record-field schemes cannot model them directly. In-
tegrating this kind of information with an environment’s
underlying type system, and not relying on separate
tools like MAKE, has been shown to promote tool in-
tegration, reliability and modifiabilty [7].

Like Encore and Napier88, Vbase and Gaia support
relationships as parts of type definitions, but the latter
two also support relationship types. However, Vbase’s
are limited to binary (one-to-one) relationships, while
Gaia’s can be one-to-one, one-to-many or many-to-one,
where “many” means “a set of instances of the same
type.” OROS supports all of these plus relationships
among arbitrarily many entities of arbitrary types (nec-
essary for representing MAKE-like information, as stated
above). OROS also supports subtyping among relation-
ship types; again, this is not explicitly addressed by any
of these other systems.

All of the other systems treat object types as primary
except Vbase. Vbase’s taxonomy of primitive types in-
cludes several types that have co-equal status; three of
these correspond to OROS’ object, relationship and op-
eration types.

Finally, ORos includes a careful separation of the
notions of inheritance-like “structural” and subtype-
like “semantic” intertype relationships. Moss and Wolf
[17] advocate this approach and suggest that most ex-
isting object-oriented systems intertwine the two con-
cepts; Snyder [23] also discusses how the two concepts
affect each other. Galileo includes the separate con-
cepts of type (intensional specification) and class (ex-

- tensional spec1ﬁcatlon), it uses inheritance in the con-
text of classes (i.e., subclass/superclass) and subtyping
in the context of types. In contrast, OROS is purely a
type model, but it incorporates both kinds of intertype
relationships and treats them separately.

4 Experience and Implementa-
tion

We have gained some experience with the ORos type
model by taking two very different approaches to ex-
perimentation with and implementation of it.

4.1 Prototype User Interfaces

The first of these approaches involves experimentation
with support tools that define user interfaces to OROS.

®Unix is a registered trademark of AT&T.

We believe that a powerful user interface can dramat-
ically increase the utility of a type model to an SDE
builder or maintainer. To date, we have built two inter-
active user interfaces (browsers) for OROs, one in Prolog
and the other in Lisp. Both of these maintain type sys-
tems by allowing type definitions to be created, modified
and deleted; both also perform full consistency check-
ing.

We feel that such browsers are particularly useful in
the SDE domain. As stated in the introduction, exten-
sibility and integration are major goals of the Arcadia
project. In an environment based on ORos, a major ac-
tivity related to these goals is the addition of new types
and the modification of the type system to accommo-
date them. Because such a type system may well have
hundreds of types, an appropriate user interface (e.g.,
with powerful graphics) can allow an environment main-
tainer to concentrate on large parts of the type system
without having to wade through the details of individual
type definitions.

Just as importantly, we feel that a browser should
perform moderately “intelligent” tasks that assist in
environment type system maintenance. For example,
when new functionality is added to an environment, the
browser could determine where newly-defined types fit
best in the existing type system by finding types that
are most similar to them. This information, in turn, can
suggest which existing environment components can be
reused to support the new functionality and what new
capabilities need to be developed. The inferences that
must be performed to make such determinations would
make use of the semantic and structural intertype rela-
tionships described in Sections 2.3 and 2.4.

4.2 Interoperability Support

The major goals of Arcadia environments imply that
they must support interoperability, which we define as
the ability of two or more tools to communicate or work
together despite having been written in different lan-
guages. In contrast to the Unix operating system, for
example, in which interoperability is hampered by the
need to do ad hoc translation of structured data into
byte streams (and vice versa), we have found through
experimentation that a sufficiently rich type model such
as OROS can go a long way toward providing interoper-
ability in an SDE.

We have been using a subset of OROS in an experi-
ment on near-term practical use of type model features
to support interoperability. This subset, described in
detail in [27], was chosen specifically to support inter-
operability of tools written in Ada and C, the predom-
inant languages used to build Arcadia prototype soft-
ware. It includes all the basic features of ORoOS, uses

simplified sets of rules for inheritance and subtyping,
includes “simple” object types (such as integer) that
correspond closely to built-in types of the above lan-
guages, and embodies a small set of primitive type im-
plementation semantics.

This OROS subset has been used as a basis for an
experiment, also detailed in {27, on the interoperabil-
ity of data between the domains of two Ada-based tools
that employ somewhat different type systems. One of
these tools manages persistent graph structures, while
the other manages relations in the manner of relational
databases. In the experiment, OROS-subset type defini-
tions were developed and used to guide the hand-coding
of Ada packages that enable graph structures to be ex-
pressed in terms of relations and vice versa. The result
is an implemented example of interoperability, produced
with the aid of the OROS subset.

In addition, we have implemented a tool that auto-
mates this process: the tool accepts type definitions
and code for implementations of operations, and out-
puts Ada packages that are interfaces to the defined
types. We plan to extend this tool so that it can out-
put C as well as Ada code. True interoperability, as the
definition above suggests, implies the ability to com-
municate data between applications written in different
languages; therefore, an important future direction for
our work in this area is the development of tools that
allow the use of an OROs-based type model to achieve
interoperability among several different languages.

5 Summary and Future Direc-
tions

' We have described ORos, an object-oriented type model
‘that we have designed to meet the specific needs of ob-
ject management systems for software development en-
" vironments. The properties of OROS result from obser-
vations we have made about the requitements of such a
type model. We have also discussed our experimenta-
tion and implementation experiences.

Experiments such as that described in Section 4.2
have been our most important source of feedback about
the efficacv of basic OROS concepts. We expect OROS
to be “fine-tuned” as we continue such experimenta-
tion, particularly as we make further progress towards
automated type implementation support. We also plan
to work towards integration of this “low-level” support
with the “high-level” user interface ideas we described
in Section 4.1.

The other major future direction in our research is the
further investigation of theoretical concerns brought up
by some of OROS’s novel type modeling concepts. The
most important of these concerns are subtyping-like in-

tertype relationships among operation and relationship
types (Section 2.3) and structural intertype relation-
ships among type definitions (Section 2.4).

Acknowledgements

We appreciate the contributions made by Michel Bosco,
Lori Clarke, Eliot Moss and Peri Tarr to the work de-
scribed here. We also appreciate the comments and sug-
gestions provided by our other colleagues in the Arcadia
consortium. ,

At the University of Massachusetts, this work was
supported in part by the National Science Foundation
(CCR-87-04478) with cooperation from the Defense Ad-
vanced Research Projects Agency (ARPA order 6104).

References

[1] Antonio Albano, Luca Cardelli, and Rengzo Orsini.
Galileo: A Strongly-Typed, Interactive Conceptual
Language. ACM Transactions on Database Systems,
10(2):230-260, 1985.

(2] Timothy Andrews and Craig Harris. Combining Lan-
guage and Database Advances in an Object-Oriented
Development Environment. In OOPSLA Conference
Proceedings, pages 430-440, October 1987. Published
as ACM SIGPLAN Notices, vol. 22, no. 12, December
1987.

(3] Philip A. Bernstein. Database System Support for Soft-
ware Engineering—An Extended Abstract. In Proc.
Sth International Conference on Software Engineering,
pages 166-179, April 1987.

{4] Andrew Black, Norman Hutchinson, Eric Jul, and
Henry Levy. Object Structure in the Emerald System.
Technical Report 86-04-03; University of Washington,
Department of Computer Science, April 1986.

(5] Andrew Black, Normian Hutchinson, Eric Jul, Henry
Levy, and Larry Carter. Distribution and Abstract
Types in Emerald. IEEE Transactions on Software En-
gineering, SE-13(1):656-76, January 1987.

Luca Cardelli and Peter Wegner. On Understanding
Types, Data Abstraction and Polymorphism. ACHM
Computing Surveys, 17(4):471-522, December 1985.

(6

—_—

(7

Geoffrey Clemm and Leon Osterweil. A Mechanism for
Environment Integration. Technical Report CU-CS-
323-86, Department of Computer Science, University
of Colorado, April 1986.

(8) E.F. Codd. A Relational Model of Data for Large
Shared Data Banks. Communications of the ACAM,
13(6):377-387, June 1970.

(9] Scott Danforth and Chris Tomlinson. Type Theories
and Object-Oriented Programming. ACM Computing
Surveys, 20(1):29-72, March 1988.

[10]
(11]

(12]

(13]

(14]

(15)

(16]

(17)

ps],

(19]

20)
(21]

[22)

Alan Dearle, Richard Connor, Fred Brown, and Ron
Morrison. Napier88—A Database Programming Lan-
guage? In Proc. 2nd International Workshop on
Database Programming Languages, pages 213-229, June
1989.

Stuart I. Feldman. Make—A Program for Maintaining
Computer Programs. Software—Practice and Ezperi-
ence, 9(4):255-265, 1979.

Ferdinando Gallo, Regis Minot, and Ian Thomas. The
Object Mangement System of PCTE as a Software
Engineering Database Management System. In Proc.
2nd ACM SIGSOFT/SIGPLAN Symposium on Practi-
cal Software Development Environments, pages 12-15,
December 1986. Published as ACM SIGPLAN Notices,
vol. 22, no. 1, January 1987.

Adele Goldberg and David Robson. Smalltalk-80: The
Language and its Implementation. Addison-Wesley,
1983.

Randy H. Katz. Information Management for Engi-
neering Design. Springer-Verlag, 1984.

David Maier, Jacob Stein, Allen Otis, and Alan Purdy.
Development of an Object-Oriented DBMS. In OOP-
SLA Conference Proceedings, pages 472-482, November
1986. Published as ACM SIGPLAN Notices, vol. 21, no.
11, November 1986.

R. Morrison, A.L. Brown, R. Carrick, R. Connor, and
A. Dearle. On the Integration of Object-Oriented and
Process-Oriented Computation in Persistent Environ-
ments. Persistent Programming Report 57, Department
of Computational Science, University of St. Andrews,
St. Andrews, Scotland, January 1988.

J. Eliot B..Moss and Alexander L. Wolf. Toward Prin-
ciples of Inheritance and Subtyping in Programming
Languages. Technical Report 88-95, Dept. of Com-
puter and Information Science, Univ. of Massachusetts,
November 1988.

Patricia A. Oberndorf. The Common Ada Pro-
gramming Support Environment (APSE) Interface Set
(CAIS). IEEE Transactions on Software Engineering,
SE-14(6):742-748, June 1988.

William R. Rosenblatt, Jack C. Wileden, and Alexan-
der L. Wolf. Preliminary Report on the OROS Type
Model. Technical Report 88-70, Department of Com-
puter and Information Science, University of Mas-
sachusetts, Amherst, Massachusetts, August 1988.

Lawrence A. Rowe and Michael R. Stonebraker. The
POSTGRES Data Model. In Proc. 13th International
Conference on Very Large Data Bases, pages 83-96,
September 1987.

James Rumbaugh. Relations as Semantic Constructs in
an Object-Oriented Language. In OOPSLA Conference
Proceedings. ACM, October 1987. Published as ACM
SIGPLAN Notices, vol. 22, no. 12, December 1987.

Craig Schaffert, Topher Cooper, Bruce Bullis, Mike
Kilian, and Carrie Wilpolt. An Introduction to Trel-
lis/Owl. In OOPSLA Conference Proceedings, pages

(23]

(24)

(25)

(26)

(27]

(28]

(29}

(30]

9-16, September 1986. Published as ACM SIGPLAN
Notices, vol. 21, no. 11, November 1986.

Alan Snyder. Encapsulation and Inheritance in Object-
Oriented Programming Languages. In OOPSLA Con-
ference Proceedings, pages 38-45, November 1986. Pub-
lished as ACM SIGPLAN Notices, vol. 21, no. 11,
November 1986.

Bjarne Stroustrup. The C++ Programming Language.
Addison-Wesley, 1986.

R. N. Taylor, F. C. Belz, L. A. Clarke, L. J. Osterweil,
R. W. Selby, J. C. Wileden, A. L. Wolf, and M. Young.
Foundations for the Arcadia Environment Architecture.
In Proc. 3rd ACM SIGSOFT/SIGPLAN Symposium on
Practical Software Development Environments, pages
1-13, December 1988. Published as ACM SIGPLAN
Notices, vol. 24, no. 2, February 1989.

Don Vines and Tim King. Gaia: An Object-Oriented
Framework for an Ada Environment. In Proc. 3rd In-
ternational IEEE Conference on Ada Applications and
Environments, pages 81-92, May 1988.

Jack C. Wileden, Alexander L. Wolf, William R. Rosen-
blatt, and Peri L. Tarr. UTM-0: Initial Proposal for a
Unified Type Model for Arcadia Environments. Arcadia
Design Document UM-89-01, Department of Computer
and Information Science, University of Massachusetts,
Ambherst, Massachusetts, February 1989.

Alexander L. Wolf. Language and Tool Support for Pre-
cise Interface Control. Technical Report 85-23, Dept.
of Computer and Information Science, Univ. of Mas-
sachusetts, September 1985.

Alexander L. Wolf, Lori A. Clarke, and Jack C. Wile-
den. The AdaPIC Toolset: Supporting Interface Con-
trol and Analysis Throughout the Software Develop-
ment Process. IEEE Transactions on Software Engi-
neering, 15(3):2560-263, March 1989.

Stanley B. Zdonik and Peter Wegner. Language and
Methodology for Object-Oriented Database Environ-
ments. In Proc. 19th Annual Hawaii International Con-

ference on System Sciences, pages 378-387, 1986.

