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Abstract

The Mneme persistent object store project has as one of its primary goals
to support cooperative, concurrent, and reliable use of large, distributed col-
lections of objects. In our case, distribution is intended to mean not only
physical dispersion, but also some autonomy or independence of subcollections
of objects—that is, the object space is under some degree of decentralized man-
agement. Providing independence of subcollections of objects has interesting
implications as to how to address and retrieve objects efficiently. Here we de-
scribe the need for and benefits of independent subcollections of objects, exam-
ine the addressing implications, and show how these implications have affected
the design of Mneme. Most particularly, we argue against the appropriateness
of a large flat store of bytes or even of object identifiers, and in favor of richer,
more flexible, structures. We also contend that comparable performance can
be achieved by careful implementation of the richer structures, with consider-
ably more functionality and flexibility than flat structures provide. The cost is
increased complexity of the supporting software.

This paper will appear in the proceedings of the Second International Work-
shop on Database Programming Languages, Gleneden Beach, OR, June 1989,
being published by Morgan-Kaufmann. This version has the same text, but is
formatted differently.



1 The problem

We wish to consider the problem of addressing and manipulating objects in an essen-
tially unbounded distributed space of persistent objects. The objective is to understand
how to implement a large distributed virtual object space, on top of which an object-
oriented database programming language (DBPL) might be built. The general style of
object we have in mind is roughly that of Smalltalk—a self-contained vector of fields,
many of which are references to other objects. The problem is difficult because all of these’
conditions hold simultaneously:

e We desire good performance, in both space and time.

e There are very many objects.

The objects are spread around a decentralized distributed system.

Most of the objects are small.

Objects may persist between program executions.

The first two conditions give rise to a series of arguments about addressing within a
large space of objects. As will be seen, we come to the possibly controversial conclusion
that rather than using long, globally unique ids or a large “flat” virtual address space,
we should use short addresses, assigned and interpreted in context. The third condition
raises issues of autonomy and independence, which reinforce part of our proposed design
approach, namely that the object space should be structured into disjoint localities of
objects under somewhat separate management. The fourth condition motivates some of
the details of translation, specifically, managing objects and object addresses in groups
to reduce per-object overheads. The last condition explicitly makes the point that we
must manage permanent memory resources as well as those of running processes. Further,
since persistence implies that at least some objects will be long-lived, persistence demands
flexibility to reorganize and reallocate resources as patterns of use shift over time.

1.1 The system model

For clarity, we spell out our model of the distributed system context in which the
object store is to reside. The system consists of a number of client processes, running on
a distributed collection of computers, supported by a number of server machines, loosely
confederated to provide the large distributed persistent object store. We are not directly
concerned with the means and cost of communication, but wish the scheme to work well
across a local area network. New clients and new servers can be added freely, and we desire
the object naming and access mechanisms to scale as the store grows to quite large sizes.



1.2 Mneme

Mneme (the Greek word for memory) is the name of the persistent object store system
under development at the University of Massachusetts. Its goals subsume the goals of the
system discussed in this paper. Mneme is additionally concerned with issues such as sup-
porting multiple languages, making use of more than one kind of back end storage server,
and providing support for multiple object management strategies and policy extension. A
single user, non-distributed prototype has been running since September 1988. Further.
information on Mneme, its goals and concepts, and implementation strategies taken in the
first prototype can be found in [Moss and Sinofsky, 1988].

1.3 The opposing view

Our position is that relatively short, contextual addresses for objects will work best, on
cost and functionality grounds. The opposing view is that long, non-contextual (global)
addresses are better. In this view, every object would have a globally unique object
identifier. Such an identifier is most easily envisioned as a fixed length bit string, i.e., a
logical (but not physical) pointer to the object it identifies. An id does not directly encode
the object’s location (though it may contain a hint), so there must be additional mapping
information. Such names are thus location independent [Khoshafian and Copeland, 1986.
If we are willing to give up some location independence, we can reduce the mapping
overhead by tying the name (id) to the location of the object within a large shared virtual
address space. Since there have been serious proposals in recent years to build databases
within large virtual address spaces, we consider the issues in detail below. Many of our
arguments have to do with the size of the addresses. These arguments mostly apply to
flat spaces of unique identifiers as well, since the sizes of global unique ids and global
virtual addresses are similar. We consider global ids after global virtual addresses. After
presenting our arguments against large flat address spaces, we present the relevant aspects
of the Mneme design, indicating how it meets our goals.

1.4 Size of the address space required

Before considering the arguments for and against long addresses, let us make some
(necessarily rough) estimates as to just how long they may need to be. Clearly, the
application environment and needs of the organization using the system have a lot to say.
Since we desire a system that scales well, we consider moderately large collections of data,
though perhaps not the largest collections that could be envisioned. We should also be
generous, since memories and address spaces tend to grow with time as technology makes
it feasible to have more memory within a system.

First, how many objects might we wish to address? Within a complex engineering design
(e.g., the space shuttle or a jumbo jet) there will be millions of components, many drawings,



revisions, notes, documents, etc. Consider the problem of designing and maintaining a fleet
of jumbo jets. In general we need a record of all the components in each individual plane,
for maintenance records, and all of this must be kept available (possibly in archival storage),
as well as the complete history of repairs, revisions, etc. With a few hundred planes, each
with on the order of a million parts, and hundreds of hours of maintenance per year, it
is easy to run into something like billions of objects online and billions, perhaps trillions,
of archival records over the life time of the product. There are likely into the millions of
pages of documents produced, some of them textual, many with graphics. Clearly we will’
need well over the currently typical 32 bits. |

Assuming that address lengths, like word sizes, are most convenient when they are
powers of two, we should use 64 bit addresses, or possibly even 128 bits. For concreteness,
we will frame our arguments as 32 versus 64 bits, but the principles are the same for other
sizes. We also note that 64 bits is probably adequate as either the virtual address size or
the size of globally unique ids.

At this point, a reasonable question to ask is: If we favor 32 bits over 64, would not the
same arguments have led us to retaining 16 bits rather than 32 in the struggle not so many
years ago that led to broad abandonment of 16 bit address spaces as being too small? The
answer is yes, the cost argument by themselves would lead to the smaller address space.
The balancing factor is how many objects a program needs to name and access directly for
the program to run efficiently (i.e., not spend too much effort managing its name space).
It is clear that 2!° is simply too small, and we admit that for some applications 2% is a bit
restrictive, especially since multiple gigabyte main memories will shortly be feasible. Still,
as we hope will become clear, it may be reasonable to use short addresses from within
programs, even if they turn into longer addresses for actual memory accesses.

2 Why not use a large flat virtual address space?

First, let us review the purported advantages of a large flat address space. They are
easy to enumerate:

o System software is relatively simple and well understood, being essentially a virtual
memory paging mechanism, perhaps augmented with locking, logging, and special
fetch and replacement policies for some parts of the address space.

o User software is simplified in that it deals only with ordinary virtual memory pointers.
This speeds and simplifies object and search structure traversal, avoids format con-

versions, and reduces the amount of object copying required, as noted in [Copeland
et al., 1988].

e Hardware support is well understood and easy to justify.

Systems that have taken the large virtual memory approach include the Intel 432
[Organick, 1983; Intel Corporation, 1981], the IBM RT [Chang and Mergen, 1988], the



Bubba project [Copeland et al., 1988], CPOMS and related systems [Brown and Cockshott,
1986; Cockshott, 1987; Connor et al., 1989], and MONADS [Keedy and Rosenherg, 1989).
[Chang and Mergen, 1988] and [Copeland et al., 1988] deal more especially and completely
with problems of concurrent access and reliability (transaction support). In particular, past
objections to flat stores that have been addressed with some success include concurrency
control, recovery, and buffer management.

While a flat address space is undoubtedly appealing because of its simplicity and ap-
parent efficiency, the approach has a number of problems, which we feel are severe enough
to justify abandoning the approach for decentralized systems of the scale we envision. Here
is a list of the difficulties we find with large flat address spaces:

e The large number of address bits required have a negative impact on the price-
performance of a system, in its cpu as well as its memory hierarchy.

e Managing a large persistent virtual address space presents complications that oper-
ating system virtual memory managers have not usually addressed.

e The flat structure is inappropriate for a decentralized system because it interferes
with autonomy. It also interferes with efficient, decentralized resource management
(e.g., garbage collection).

2.1 The price-performance argument

Address size has a variety of impacts on the price-performance of a computer, which
we enumerate as completely as we can here. Note that we are concerned with virtual
address size, not physical address size. Hence we are not concerned with the width of
the physical memory address bus, the number of physical memory address pins on chips,
and the like. Let us assume that we are comparing two address sizes, wide and narrow
addresses: For concreteness we can think of these as 64 bits and 32 bits respectively, but
the same principle applies regardless of the absolute size of the addresses.

A global effect that the virtual address size tends to have is that the machine’s natural
word size will be at least as big as the virtual address size, so that pointers (virtual
addresses) will fit in a word. This will almost certainly be true of a RISC machine. Thus,
while the virtual address size need not have a direct impact on the physical memory address
bus width, it will tend to impact the physical memory data bus width.

2.1.1 Impacts on the CPU

Wide virtual addresses require wide registers to hold them. These wide registers not
only require chip area proportional to the width of the registers, they also require wider
buses and more pins on the chip to move data to and from memory, etc. This impact
is largely proportional to the width, and mainly requires the chip be bigger, giving lower
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yield and higher power consumption for the same technology and number registers. Thus
the chip will cost more but not offer increased Minctionality beyond the wider values.

Worse, the ALU, shifters, and other manipulative components will not only be bigger,
but some of them may be slower. For example, addition will take longer with larger
numbers given the same technology and degree of carry look ahead logic. For a rough
estimate, we could model addition times as a fixed time plus a constant times the logarithm
of the word length (i.e., one extra level of carry look ahead logic for each doubling in the
word length), i.e., ¢; + ¢c;log, w where w is the width in bits. The worst case would be’
small ¢; and large ¢;, and doubling from 32 to 64 bits would give a ratio of addition times
equal to g = 1.2. Thus the slow down (under this simplistic model) is no worse than 20%.
Still, even a 5% or 10% slow down cannot be justified unless one really needs the wider
words.

At this point we should mention that an independent justification for wide words would
be a need to handle many large integers or to offer higher precision floating point numbers.
This is perhaps why most supercomputers have relatively wide words (60 or more bits are
typical). We note, though, that the community of concern appears largely satisfied with
the properties of 32 bit machines as far as arithmetic goes—the concern is about offering
better object and database technology, not higher precision numbers.

How much bigger will the wide address chip be than the narrow address one? A
simplified model of the area of the cpu chip might be a; + a;log, w + azw, namely, there
is a constant part (e.g., the control section), a part that grows logarithmically with width
(perhaps a shifter control, carry look ahead, etc.), and a part that grows directly with the
width (registers, buses, ALU, and so forth). In the worst case, the wide address chip would
be nearly twice the size of the narrow address chip. Let us estimate the ratio of sizes as
1.5.

What is the ratio of the costs? There will be a fixed part and a part proportional to the
chip area, to produce a chip. This must be reduced according to the number of faulty chips
produced—that is, we need to estimate the difference in yield. Again, taking a very simple
model in which the number of flaws is proportional to the area, we would like to estimate
the yield of the wide address chip, y., given the yield of the smaller one, y,. Given the
average number of faults per unit area, f, and the total area A, we can estimate the yield
(the probability that a chip of area A will have no faults) as exp(—fA). Thus, with this
very simple model, we estimate y,, as exp(—fA,), which is exp — fA,(1.5), so y, = yl*.
For high yields this may not be very bad. For lower ones, it could be quite substantial.

2.1.2 Impacts on cache memory

Doubling the size of the addresses will double the cost of data part of a cache to hold the
same of addressable units (words), since the address size doubles, and, as argued above, the
data size will double, too. If we reduce the size of the cache to compensate for the increased



cost, we will reduce overall performance since we will take more cache misses. On the other
hand, since we can probably encode instructions into about the same number of bhits in
either the wide or narrow schemne, we do not necessarily need to double the cache size in
bits to get the same performance in wide scheme as in the narrow scheme. The desire for
simple RISC architectures may indicate against these savings, i.e., to maintain instruction
execution performance we might need to waste a lot of the additional instruction bits.
Assuming that about half the cache cycles are for instructions, the wide scheme would use
between 75% and 100% as many cache cycles as the narrow one. It seems unlikely that
there would be a net price-performance increase with the wide architecture, though, since
it entails more complex logic to unpack instructions, saves no data references, and requires
at least 50% more cache bits to hold the same volume of useful data (assuming the cache
is half instructions and half data). It would be interesting to do more detailed studies of
these issues.

2.1.3 Impacts on main memory

Except perhaps for instructions, character strings, and bit maps, the wide architecture
doubles the size of data, both pointers and numbers. Even code, strings, and bit maps
incur some penalty because they are generally padded out to the next complete word. The
padding overhead can be estimated as half a word per entity (code sequence, string, etc.).
Without measurements of object sizes and distributions, we cannot be precise about these
effects. In a system that is dominated by code, strings, and the like, the wide architecture
would incur little space overhead. In a system dominated by pointers and numbers, the
space required would approximately double. In the absence of more detailed data, which
is clearly application specific anyway, we conclude that we need on the order of 50% more
bits of main memory for the wide architecture. We take this as an estimate also of the
average increased size of objects, in bits, under the wide scheme.

Even if somehow it is only addresses (pointers) that are widened there is still likely to
be a considerable increase in size. We believe this because of our experience with various
heap-oriented programming languages, such as Clu [Liskov et al., 1977; Liskov et al., 1981],
LISP [Steele Jr., 1984; McCarthy et al., 1984], Trellis/Owl [Schaffert et al., 1986], and
Smalltalk [Goldberg and Robson, 1983]. We feel these languages are more representative
of future programming concerning ob ject size and use of pointers than are traditional (e.g.,
relational) databases, where pointers are rare. In heap oriented languages, pointers seem
to comprise 30% to 50% or more of the data in many programs. We note as an aside that
a database might actually shrink significantly if recast into a heap oriented language, since
many string keys would be replaced by shorter object ids or addresses, referring directly
to their target objects. The frequency of occurrence of pointers, etc., cannot be resolved
until representative applications are built and measured.



2.1.4 Impacts on secondary storage

Since objects are estimated to the 50% (between a few percent and 100%) bigger,
secondary storage must grow proportionally. The size has a direct impact on cost, but it
also has an impact on performance. 50% more bits must be transferred for each object.
Worse, objects will be more spread out, incurring increased secondary storage positioning
time (in typical modern devices, such magnetic and video disks and CDs).

2.1.5 Impacts on distributed system performance

Since objects are larger and words longer in the wide architecture, more bits need to be
transferred per object transmitted. Given fixed bandwidth (e.g., same number of systems
on an Ethernet), there will be more average delay before transmission can start, too.

2.1.6 Conclusions about costs

We have seen that doubling the word size of an architecture while holding other aspects
fixed has notable impacts on the cost and performance of the system, and virtually all these
impacts are negative. Thus, we do not have a time-space tradeoff, unless the additional
address space really makes programs more efficient by obviating their need to multiplex
their address space, and the performance increase of avoiding application address space
management outweighs the loss of price-performance incurred by the wider word size.

2.2 Complexity and cost of a large virtual address space

Extending virtual memory management techniques suitable for a 32 bit address space
to a 64 bit address space may have some problems. The sheer size of the space makes it
harder and more complex to manage in a number of ways. Here are some of the problems:

¢ How do we allocate and free virtual memory? The data structures necessary for the
bookkeeping can get to be quite large. Maintaining them efficiently and robustly
will not be simple. There is an analogous problem in allocating and freeing sec-
ondary storage, except perhaps that the problem is worse since it has more direct
and substantial impacts on performance.

e How do we page efficiently? The allocation algorithms presumably builds and main-
tain map information about where virtual memory resides on secondary storage. The
sheer size of the mapping information itself is a problem. We will need to find ways to
cache it intelligently or else page faults will tend to require two or more independent

secondary storage accesses: one or more to access the mapping information, and then
one to fetch the page.

The point we are making is that any system supporting a large address space must deal
with the issues of scale that have not been tackled by most operating systems to date. It



is glib to claim that going from 32 to 64 bits is trivial. We feel that some of the mapping
and address space management techniques we have developed for Mneme conld apply to
flat address spaces, too. this does not reduce the force of our other arguments against flat
space, though.

2.3 Problems of autonomy, flexibility, and efficiency

In fairness, most of the proposals for large virtual address spaces have been for cen--
tralized systems. We are concerned with large distributed systems and must allow for
considerable autonomy, that is, independent management of resources (processors, mem-
ories, disks, etc.) in the system. The size of the address space is not the problem here.
Rather, it is the lack of structure—the fact that the space is flat. At the very least we
would need to introduce some kind of protection mechanism and check access to pages ac-
cording to client and application. In addition to access to resources, autonomy influences
their allocation and reclamation.

The flat space is also likely to be overly automatic, to have its access policy built
considerably into the hardware of the system. Thus, it is likely to be inflexible. The
flat address space is not conducive to hardware heterogeneity. It is also not conducive
to heterogeneity of object format, and, more important, to variety in object management
policies. We believe that it is important to be able to identify interesting subcollections
of objects and to specify the policy to be used in managing a subcollection. This need
has been recognized by database system implementors, presented as a complaint about
the inappropriateness of common operating system virtual memory management policies
for database page management. More modern systems support some policy variation, for
example, [Copeland et al., 1988] describes a system with two policies.

2.3.1 Advantages of a structured address space

The easiest way to add to this argument is to point out the advantages of dividing
the address space into separately managed localities, where each locality has considerable
independence regarding the allocation and reclamation of objects in its locality, the de-
tails of locating and buffering ob jects, of object formats, and of concurrency control and
resiliency. Here are some of these advantages:

o Localities can use management policies suited to the objects they contain. The only
restriction is that policies cannot vary so much as to cause unresolvable conflicts
between localities, since we assume that clients can use objects from more than one
locality at the same time. For example, arbitrary mixture of concurrency control
policies cannot be supported, since timestamping and locking may give different
serialization orders, but optimistic and pessimistic techniques can be mixed. Not
only is policy variation nice to have, it is essential to be able to add and tune
policies to applications in order to achieve acceptable performance.



¢ Localities help organize the data into independently useful pieces for the users and for
applications. Thus, localities may allow simple and reasonable techniqnes to extract
meaningful subsets of data to share with other users, to copy, Lo replicate, elc. A
flat space makes it difficult to locate and extract a meaningful subset of data, insert
it into a similar space elsewhere, and then use it meaningfully.

e As argued in [Bishop, 1977, localities are essential for effective garbage collection in
very large address spaces! The alternative is to impose ad hoc, unenforced, and prob-
ably unenforceable rules (i.e., programming conventions) about where to insert levels
of indirection, to restrict the patterns of inter-object references (e.g., the data must
form a tree in the system described by [Copeland et al., 1988]), or to forego garbage
collection—itself a problem since compacting garbage collection and the resulting
reclustering and compaction of objects have significant performance advantages over
time. We expand on this particular advantage of structured address spaces below.

e Localities make it easier to support a degree of autonomy for data, and concomitant
access control. This can be thought of as part of “object management policy”, but
is distinct from the performance and correctness aspects previously mentioned.

¢ Localities more readily support heterogeneity of hardware, operating systems, storage
formats, and communications protocols. A system incorporating the appropriate
support for localities thus provides a more plausible migration path from current
systems, and into existing organizations. While it is not a subject we are pursuing,
a locality might manage to hide beneath itself a traditional database system and to
provide object access to the data managed by that system.

2.3.2 Efficient resource management

Let us sum up why we believe a flat space is not conducive to efficient resource man-
agement.  This is mainly because it tends to force too much commonality of policy and
algorithm. For example, with a flat space, we probably need to decide in advance whether
and how garbage collection will be performed, and state (and if possible, enforce) a number
of conventions to make garbage collection possible and practical. In a similar vein, there
are problems in choosing a page size to use throughout a large heterogeneous system, not
just because of hardware variations, but even more because of differing characteristics of
different objects. Because of the lack of policy variability, it is harder to take advantage
of user or application knowledge to improve performance.

A flat space may also encourage centralized rather than decentralized management,
e.g., of allocation of pieces of virtual address space, leading to bottlenecks and critical
failure points in a decentralized system. Localities lead naturally to decentralized resource
management and autonomy.

1Bishop called localities areas.
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2.4 A detailed example: garbage collection

In order to make some of the above arguments in favor of structured rather than flat
address spaces more concrete, we now discuss the issue of garbage collection in more detail.
First, consider what is necessary in garbage collecting a large flat space. We may be able to
locate pointers and distinguish them from non-pointer data, or we may not. If we cannot
distinguish pointers from non-pointers, then we must use a conservative garbage collec-
tor: one that assumes every quantity is a pointer and thus retains all storage apparently
referenced. Note that a conservative collector must not move objects directly referenced.
This inability to compact could be a severe problem, since compaction and reorganization
affects clustering and improves run-time performance, sometimes dramatically.

The worst problem we face, though, is the need to examine the entire address space
to establish that an object is no longer referenced and can thus be reclaimed. Hence,
all garbage collection is essentially global, a daunting and unrealistic approach in a large
distributed environment. An explicit deletion scheme may be the only viable alternative,
but it raises serious software reliability concerns (dangling references) and complicates
software design. Explicit deletion has hidden performance penalties as well, particularly
when compared with the better compacting garbage collection schemes. A compacting
collector can use linear allocation, rather than a free list or other strategy, making allocation
very efficient (quite readily done inline in a few instructions). We have already noted that
compaction will tend to improve performance by improving clustering and locality. Finally,
there is the overhead in design, the distortion of program structure, and, in the case of
reference counting storage reclamation, higher run-time cost.

Let us turn to a space structured as a collection of independently managed localities.
Following Bishop [Bishop, 1977], we distinguish between intra-locality and inter-locality
references. Inter-locality references require special interpretation, which may be done by
the referenced locality. If each locality maintains some sort of incoming reference table
(IRT) then external references to objects in a locality can be controlled and filtered, and
are insulated from rearrangement of the objects within the locality. That is, the IRT
contains some kind of pointer to the object within the locality, and when the object moves,
we simply update the reference in the IRT.

We can accomplish significant garhage collection independently, too. In this case, the
IRT is used as a set of roots. A locality may also have a set of “natural” roots—ob jects
that semantically “belong” in the locality. If an object is not reachable from either set of
roots, it can be reclaimed. If an object is reachable only from the IRT (i.e., not from the
natural roots), then it needs to be retained, but it is also a good candidate to move into
another locality. Entries in the IRT can be marked with a count of the number of localities
that have references to the object in question. As we garbage collect an area we can detect
that it no longer refers to objects in other areas, and decrement the reference count in
the IRT entries for those objects in the other areas. This work can almost certainly be
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done offline, if some care is taken about the order in which things are processed. It is even
possible to take unilateral action and reclaim an ohject, leaving behind a specially marked
IRT (or somehow preventing use of the same object id again) so that a dangling reference
can be detected and reported. If objects reachable only from the IRT and not the natural
roots of a locality are moved to localities that refer to them, then global clustering will be
improved. Further, cycles of garbage among localities will, over time, collapse until they
are within a single locality, and then will be reclaimed at the next garbage collection of
that locality.

The point is that we gain considerable autonomy: each locality has significant latitude
in its management policies and algorithms. We also gain considerably in performance
of garbage collection. This is because we can garbage collect pieces independently, we
can garbage collect them more frequently, we can use policies appropriate to the locality,
and we can get more machines operating in parallel. We will also have more smooth,
incremental operation, rather than having long periods during which the system cannot
be used. (Actually, it should be clear that stop-and-collect is completely unreasonable for
systems of the scale we are considering.)

2.5 Conclusions about large flat virtual memory

We have presented rather detailed arguments as to why, on the grounds of price-
performance, a narrow address space should be preferred over a wider one. We have
also argued that a flat space, such as that offered by virtual memory, is less desirable than
a structured space, on grounds of autonomy, flexibility, and efficiency, the efficiency coming
from allowing more tailoring of policy to the situation at hand, and possibly from more
decentralized management of resources.

3 Why not a large flat object id space?

The width and the autonomy/flexibility arguments largely apply to a large flat object
id space as well as they do to a large flat virtual address space. An id space is different in
that it offers more flexibility through increased location independence. We may be able to
move objects, resize them, even garbage collect them, much better than we can manage
a virtual address space. Still, the autonomy and flexibility arguments, as well as the
price-performance arguments, apply. In fact, an object id space introduces the additional
problem of locating objects within the physical resources of the system. If objects are
typically smaller than pages, the overhead may be higher than in the virtual memory
system. Because objects can move, change size, and so on, there may be an additional
level of indirection, incurring both time and space costs. These costs it may be better to
bear, though, because the flexibility is valuable. This is an instance where more detailed
measurements of the overheads of the indirection will be necessary to resolve the issue.
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4 What about long but structured addresses?

Suppose we attempt to gain the flexibility and autonomy we desire by introducing the
concept of localities and structuring addresses to indicate a locality and a location within
that locality. There are several possible problems with this approach. First, in the case
of virtual memory (as opposed to object ids) autonomy is undermined by the export of
addresses within a locality and ability to access within a locality directly (i.e., unmediated .
by the locality’s mechanisms). This is solved by using object ids or a similar level of
indirection. Second, the names embed the locality directly, likely making it a bit more
difficult to move objects from one locality to another. But the biggest problem is that the
addresses are still long, and the price-performance argument applies.

5 Narrow client address spaces

The above arguments lead us to conclude that we need to avoid long addresses, that we
need to structure the object space into localities, and that there must some indirection in
object reference to obtain the desired degree of flexibility. We now consider techniques for
using narrow addresses, and as a side effect describe many aspects of Mneme’s approach.
There are actually two related but distinct issues: use of narrow addresses within running
client, and use of narrow addresses in the persistent storage format of objects. In this sec-
tion we consider narrow client addresses. The following section considers narrow addresses
in secondary storage.

5.1 Loom

Accessing a large space of objects from a machine with a narrower address space has
certainly been done before. One well known system, LOOM, is described in [Kaehler and
Krasner, 1983] and [Kaehler, 1986]. LooM stands for “large object oriented memory”, and
it provided access from a 16 bit wide machine to objects residing in a 32 bit addressed
store on disk. The only goal of that system was to expand the effective virtual memory;
we have additional goals. Further, LOoOM was invented to get around inadequate address
space, while we are seeking to keep addresses shorter to boost performance and fit well
with existing 32 bit architectures. That is, the degraded performance of widths larger than
the currently typical 32 bits, such as 64 or 128 bits, does not imply that going narrower
than 32 bits would introduce savings. In fact, as we narrow, eventually we reach a point
where we cannot maintain addressability of an application’s active collection of objects,

and we will induce something akin to thrashing of the mapping of the vast object space
into the smaller client address space.
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LooM was found to be effective in two ways. First, it did expand the space of objects
that could he used in a Smalltalk system, allowing one to go heyond the 32K object limit?
LooM was also judged to make effective use of very scarce main memory, by “paging”
on an object rather than page basis, and building a working set of objects rather than
pages. With the highly constrained memory available, this seemed to outweigh the cost
of retrieving objects individually from secondary storage. Given adequate main memory,
clustering objects would likely have been more effective, at least we are assuming so in the
design of Mneme. It is not at all clear that, given adequate main memory, 32K objects"
would represent the “working set” of a substantial application. The point we are making is
that LOOM was dealing with severely constrained main memory, whereas we are willing to
assume that main memory is adequate to prevent address space “thrashing” (and probably
physical memory thrashing as well).

5.2 Temporal locality

So, we are assuming that the virtual address space of the hardware supporting clients
is adequate for the programs and data actually used at one time. This assumption relies
on a principle of temporal locality: that an application accesses only a small fraction of
the object space at any given time. There is a further assumption that the hardware’s
virtual address space is adequate for the applications’ temporal localities. The principle
of temporal locality seems intuitively true, and is related to the well established principle
of locality relied upon in designing and using memory hierarchies. The difference is that
we are talking about what an application needs to name or address, rather than what it is
actually manipulating. Still, we believe the principle holds and hope to verify it in practice.
(It cannot be proven in any formal sense, being an empirical principle.)

On the other hand, whether or not 32 bits in particular is large enough for applications’
temporal localities clearly depends on the application. We believe that it will be adequate
for many, perhaps most applications, but that that there may be some applications where
32 bits is inadequate. Also, as processing speeds and memory size increase, the address
size may need to increase as well. If our arguments and principles hold up, though, it
should not be necessary to go beyond 64 bits for a very long time.

To be more explicit, we could define the temporal locality of an application at time
¢ for period At as the set of object ids used by the application from ¢ — At to t. Note
that this differs from the working set, which is the set of objects actually manipulated
(accessed) from ¢ — At through £. The chief difference is that an object id can be passed
around without accessing the object to which it refers. Note that given a the speed of the
processor and a value At we can bound the size of the temporal locality as well as the
working set. Suppose, for example, we decided that it was reasonable to make adjustments

2While the object ids were 16 bits, one bit is a pointer vs. non-pointer tag bit, giving only 15
bits of object id.



14

to the address space on the order of seconds. Then we need the virtual address space to be
large enough that not every address can be manipulated within a second. While this is not
the only consideration (we need also to understand the cost of adjusting the addressable
set of objects), it does tend to support the notion that 32 bits is likely to be adequate until
we have must faster machines.

5.3 Mapping between the client and object spaces

It is clearly necessary to maintain a mapping of client space to the object space if
we are to use narrow pointers. That is, we must be able to allocate client address space
dynamically to objects, and to reclaim no longer used address space, too, so as to handle
long running client programs. The maintenance of client address space is analogous to
the maintenance of real memory and virtual memory mapping tables in a virtual memory
system. The two tasks are not precisely the same for two reasons. First, we are managing
client address space, not the client’s real memory, which can be managed by traditional
virtual memory or buffer management techniques, or a combination of them. Second, the
address space need not be a space of bytes or words, but may be a space of objects, named
by object ids. In Mneme, the client space is an id space.

We will use the term client id (cid) for an object id as used by the client, and global id
(gid) for a form that uniquely identifies an individual object within the entire object space.
It will turn out that in Mneme gids are never explicitly built, but they are conceptually
present as a locality and an id within that locality.

5.3.1 Mapping cids to gids and virtual addresses

We must be able to map cids to main memory addresses in order to manage virtual
(and real) memory. that is we must be able to locate an object in memory, if it is currently
resident. Likewise, for non-resident objects, we must be able to locate them in the store
and fault them in. For that we need the object’s gid. Thus each cid has an associated gid,
and possibly a virtual memory address as well. Note that the cid to gid mapping must

be available for all named objects, whereas the cid to virtual memory address mapping is
only for the resident objects.

5.3.2 Mapping gids to cids

Since objects as they arrive from secondary storage will have some form of gid in them
(this issue is considered in detail in the next section), we will need to be able to convert

from gids to cids, so as to determine the name the client is using for the objects mentioned
in any object that is fetched.



5.3.3 Implementing the maps: logical segments

The space consumed by the maps and the time required to consult them have critical
impacts on system performance. One of the key ideas in the implementation of Mneme
is to avoid having a map entry for each object. We group the ids together into logical
“pages”, where all the ids on the same “page” have the same upper bits and differ only in
some number of lower bits. We call such a “page” a logical segment. Note that the objects
named by the ids in a logical segment can vary in size and consume no predetermined .
amount of space. The ids all map to the same “page” of client id space, though, and
further, the objects will either be all resident or all absent (they are stored and retrieved
as a unit). Naturally, the objects in a logical segment should be stored contiguously on
disk. We return to the issue of physical object storage below.

We believe a good size for logical segments is between 128 and 1024 object ids. OQur
current prototype uses 1024, but we expect to switch to 128, to give more flexibility in
object placement. Still, it will require experience and measurements to determine the best
size in practice.

The benefit of logical segments is smaller maps. Since we are talking about thousands,
millions, or more objects, the benefit is significant in that it may mean the difference
between fitting the map in real memory and not. If the map does not fit in real memory,
then an object fault involves at least two secondary storage accesses, one for the map and
one for the object. Note that we are giving up some location independence (all objects in
the same logical segment are mapped, fetched, and stored together), but possibly cutting
secondary storage access costs in half.

The Mneme scheme does have the drawback of preventing objects from being redis-
tributed among logical segments (reclustered) without changing their ids. We expect
reclustering to be done periodically within localities, and that localities will be maintained
in such a way that their objects can be renumbered without affecting other localities (i.e.,
inter-locality references should use an incoming reference table).

5.3.4 Implementing the maps: associating cids and gids

To convert from a gid to a cid, we ignore the lower order bits and map the segment.
We could have a table with an entry for segment currently mapped into client address
space, and probe it by hashing. This would offer the greatest flexibility in assignment of
gid segments to cid segments. What we chose to do in our prototype is to map entire
localities contiguously. That is, all logical segments of a locality being used by a client
are mapped into a contiguously numbered set of client logical segments. Thus, to map
from a gid to a cid, we merely add on a base segment number determined by the locality
containing the gid being mapped. Since this mapping is generally done only when ob jects
have been fetched into virtual memory, we know the locality and the mapping turns into

a simple relocation, adding a known value to each pointer.
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We note that converting gids to cids is a relatively frequent operation, and must be
done before an id is released for client use. There are two times that il might be reasonable
to do the conversion. One is when an object is fetched from secondary storage. At that
time, we might convert all gids in the object to cids. If we fetched a group of objects
together, we could convert them all at once, or we could convert each of them as they are
first used. Which technique is best depends on how many of the objects are used, and the
cost of detecting first use. The other two to do the conversion is as an id is fetched from
an object (every time it is fetched). Again, the desirability of this method over converting '
whole objects is related to application properties, in this case how many accesses are made
to ids in objects versus how many total ids there are in the objects. This basically boils
down to how heavily the application uses its objects before it is done with them: heavy use
suggests converling in advance, light use suggests converting on fetches out of objects. The
current prototype converts on each fetch, but we may change to whole object conversion
since it integrates more efficiently with programming language run-time systems (avoiding
the need for a procedure call to access an object field containing an id).

Mapping entire localities into client space contiguously as we do leads to very efficient
gid-to-cid mapping, which is why we chose it, but it does have some drawbacks. First,
large localities eat up the client id space, so that clients cannot access a large number of
large localities, even if they are using only a few objects in each locality. Secondly, we
should over-allocate client space to allow the locality to grow while it is used. We run into
difficulty if so many objects are created in the locality that the allocated client id space is
consumed. The solution is to allocate an additional, larger, chunk of client id space. The
original chunk can remain, though we need to take a little care concerning aliases (two
client ids can mean the same object). How severe these problems are is one of the issues

we hope to discover in developing and using the prototype.

Converting from a cid to a virtual address involves ignoring the low bits (i.e., forming
a client segment number) and mapping the client segment to a location in memory. That
location contains a table of pointers to each object in the logical segment, indexed by object
number (the low bits of the original id). Thus, our scheme has embedded within it a kind
of distributed ohject table. Note that the cid to virtual address table need only be large
enough for the number of logical segments actually resident at one time. This suggests
implementing it as a hash table, similar to inverted page tables. Because cids form a linear
space, we could also use a more traditional linear map, and simply index by client segment,
number to an entry that indicates whether the segment is present, and if so, where. This
is analogous to the page tables implemented on many systems. The hashing scheme has
the advantage of being smaller, since it needs entries only for resident segments, not for
all addressable segments. At the moment, we have implemented a variant of the directly
indexed scheme, but will be switching to the hashed scheme shortly.
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5.3.5 Clustering objects: physical segments

As previously mentioned, we fetch and store all the objects of a logical segment as a unit.
In fact, we allow one or more logical segments to be joined together into a single physical
segment, where physical segments are the unit of transfer between virtual memory and
secondary storage. A physical segment has three parts: a header, describing the segment;
an object table part, with one slot for each object, arranged so that the slots for each
logical segment are contiguous; and an object data part, that contains the actual contents:
of each object. The object table entries are self-relative pointers to the object data, so
that the entries do not need to be adjusted when the physical segment is transferred to or
form secondary storage.

Importantly, physical segments do not have any predetermined size, and may even
change size through their lifetime. The variable length of physical segments gives Mneme
a flexibility advantage over paged systems with fixed size pages. In terms of fetching
data from secondary storage effectively, the physical segments make it easier to fetch what
is needed, since they group together exactly what is appropriate to fetch at once. A
paged system needs either predictive algorithms, or information equivalent to the physical
segment information of Mneme, to do as good a job.

5.3.6 Summary of narrow client addresses

We have discussed how a client can use narrow addresses, and given details of Mneme’s
approach to client addressing of objects. The approach has some similarity to LooM,
except that we map entire logical segments of object ids at a time, rather than individual
object ids. We also map whole localities of segments contiguously, to reduce the wide-to-
narrow id conversion cost. Having considered addresses from the client’s point of view, we
now turn to the issue of how addresses are stored within objects.

6 Narrow objects in secondary storage

If we narrow just the client address space and not the objects, we fail to handle a number
of the objections to wide addresses, most notably longer per-object secondary storage and
network access times and higher secondary storage and buffer space requirements. So,
in Mneme we have gone beyond LOOM and narrowed the secondary storage format of
objects, too, to 32 bits. Just as client narrowing required a temporal locality assumption,
in narrowing secondary storage we assume that spatial locality holds—that most pointers
relate pairs of objects in the same locality rather than different localities. If this assumption
is not true then we have not clustered the data at all effectively and performance will be
terrible anyway.
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6.1 Inter-locality references and forwarders

In Mneme, the primary locality concept is the file. A file provides a space of up to
about 23 objects, which refer to each other by short (32 bit) ids. Thus an id in an object,
which we call a file id (fid), always names an object in the same file. When it is necessary
to name an object in another file (a different locality) one refers to a local forwarding
object. The forwarding object has a header bit set to indicate that it is a forwarder, and
the contents of the forwarder can be used to locate the target object. Note that since.
objects can be arbitrarily large, an arbitrary amount of information can be made available
for doing the forwarding.

Rather than providing a single, built-in, forwarding scheme, we plan to allow a variety
of schemes, as well as to allow systems programmers to add new ones if they wish. The
mechanism can be used to provide symbolic, contextual, and a variety of other dynamic
kinds of links. This enhances the usefulness and independence of each individual file. For
example, suitable stylistic use of forwarders could allow a single file with outgoing references
to be shipped to another system and reinterpreted, successfully, in the new local context.
To allow files to be garbage collected and reclustered independently, incoming references
should go through some kind of table so that the ids in objects need not propagate beyond
the locality, as we have pointed out before.

6.2 Policy domains: pools

In addition to the localities offered by files, Mneme also provides the notion of a collec-
tion of objects to be managed by a given policy. A Mneme pool is a set of objects, within
a single file, that have associated with them a set of policy decision routines. Every object
is placed in a pool when it is created; in fact, the pool is involved in the allocation and
placement of the object as the object is created. Some of the policy decisions the pool
can make include the size of physical segments for the pool, which physical segment is to
contain a newly created object, which physical segments should be pre-fetched in addition
to one being faulted in, the locking policy to apply to objects in the pool, etc. At a physical
level, a pool is a collection of physical segments, created and managed by the pool. New
object management strategies are formed by writing a routine to handle each of the policy

decisions made by pools, and then creating pools using the new routines.

6.3 Summary of narrow objects

Narrow objects are required in order to overcome the various problems with large
addresses for objects. Mneme uses 32 bit intra-locality references, and a forwarding mech-
anism for inter-locality references. Mneme also provides a smaller locality, the pool, for
delineating policy for collections of objects. These mechanisms solve the price-performance

and autonomy /flexibility problems with large and/or flat addresses in secondary storage.
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7 Narrow client ids and narrow objects together

Note that the narrow client id scheme, as well as the narrow object scheme, of Mneme
requires that some adjustment be made to object contents as seen by a client, since the
same file id can be used for two objects in different files, and they must clearly be given
distinct client ids to be used by the client at the same time. Since we must be able to
change ids, and since we desire the ability to garbage collect and renumber objects in a
locality, we need to be able to find and update all the pointers in each object. Currently
Mneme does that by segregating the pointers from the non-pointer data, though we are
considering the benefits and drawbacks of other techniques.

As previously noted, we are still researching the most effective techniques for trans-
forming objects between the “in locality” format (file ids) and the “in memory” format
(client ids), for one can process batches of objects at a time, or a single object at a time
(on first use), or not change the contents of the objects but make the id transformation as
pointers are fetched and stored.

8 Summary and conclusions

We have argued here as to the inappropriateness of large flat (single level) address
space for distributed persistent object stores. There are convenience and functionality
arguments in favor of dividing the store in somewhat independent localities. There are also
compelling arguments that the long addresses necessary to support a flat store will lead to
poorer performance in space and time than the narrower addresses that match nicely with
separate localities and more cost effective hardware. In addition to making these arguments
in a somewhat general setting, we described relevant aspects of the Mneme persistent ob ject
store prototjrpe, designed taking into account the the arguments presented.

Our conclusions are: .

e That flat spaces are inappropriate on grounds of functionality, and localities are
necessary in decentralized systems.

e That flat spaces, because they require a large number of address bits, use more space
and lime resources than a well designed system based on localities.

e That Mneme’s approach to large decentralized object stores is sound and promising.

Abandoning wide addresses in favor of narrow ones requires conversion of the addresses
between their external format (e.g., file ids) and internal format (e.g., client ids). A
- significant point we have made in this paper is that it will pay to do the id conversion as
opposed to using large name spaces—even if doing conversions costs a bit more, the added
functionality and flexibility is necessary and worth the additional cost.
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