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Abstract

The behavior of the minimum laxity scheduling policy on a multiprocessor and
of the earliest deadline scheduling policy on a single processor are examined in
this paper. The state of the system under either policy can be represented by
binary strings and the state evolution is described by a simple transition function.
Formal arguments are given to show that these binary string representations and
the transition functions may be used to simulate these policies correctly. This
model can be used to generate probabilistic models for estimating the performance
of both policies.
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1 Introduction

The design and analysis of policies for scheduling customers with real-time constraints
is receiving increasing attention these days. When customers have deadlines until the
beginning of service, it has been shown that the minimum laxity policy maximizes the
fraction of customers that begin service by their deadlines [2] for a large class of systems.
When the deadlines are until the end of service, similar results have been established
for the earliest deadline policy [2]. The problem of analyzing the performance of these
policies has not been solved. A primary reason for the lack of a successful analysis is
the lack of a formal mathematical model to describe the behavior of these policies.

The purpose of this paper is to remove this deficiency. A formal model is developed
which represents the state of the system at some point in time { under either the mini-
mum laxity or earliest deadline policies by a diagram consisting of groups of customers
and binary strings. There is a binary string associated with each group of customers
that encodes a partial history of the system up until that time ¢. Simple rules are given
that describe how the state of the system changes over time in response to different
events such as arrivals, departures, and deadline misses. Formal arguments are given
to show that the diagrams and transition rules can be used to correctly simulate both
the minimum laxity policy on multiple servers and the earliest deadline policy on a
single server. Last, these results are applied in several cases to obtain Markov chains
representations of these two policies.

The paper is structured as follows. In sections 2 and 3 we focus on the minimum laxity
scheduling policy. Section 2 introduces the concept of a diagram and a transition
function that can be used to describe the dynamics of the systerri. Section 3 contains
formal arguments that the diagram and transition function can be used to correctly
simulate minimum laxity. Section 4 outlines similar results for the earliest deadline
scheduling policy, and seclion 5 summarizes the paper.

2 Events, History and the Minimum Laxity Policy

In this section, we develop a descriptive model of the minimum laxity scheduling policy.

Decfinition 1 The minimum lazily policy (ML) is the non-idling policy that schedules

the customer closest lo ils deadline. Customers that miss their deadlines while in the
qucue are removed from the queue.



We consider its behavior in a system containing ¢ identical servers. Given a set of

customers {c;}32, with arrival times @ = {a;}{2,, such that 0 < a, < a» < ---, service
times o = {0}, and deadlines d = {d;}{,, then the behavior of ML can be repre-
sented by a sequence of events coupled with the times at which they occur. There are
three events corresponding to arrivals, departures and deadline misses. An arrival of
customer ¢; will be denoted by . A departure of a customer will be denoted by 2 where
¢; is the customer that is scheduled to the server following the departure. The event
that no customer enters service is denoted by 0. Last, 7 corresponds to the event that
the deadline of customer c; expires. We use the notation E to denote an event. and

s = (a,0,d) to denote the input sample.

Definition 2 A history H(s) is a sequence (C1,11),(Ca,1a),- - where C; denotes the

i-th event and t; the time at which it occurs. The history depends on the input sample
s.

Ezample. Consider a single server system. Let a = {1,5,7,10,11,15}, ¢ = {8,4,69,12,16, 8}
and d = {32,22,27,25,90,33}. Th history of this system is

17):(2,8),(4,10),(5,11),(4,12),(6,15),(2, 22),
25), )

(1,1),(2,5),(3
24), (4, (§ 7),(1,32),(8,33),(5,90),(0,93)

)
(3,

Definition 3 An event history H,(s) is the sequence of events E,, Es, - - - corresponding
to the history H(s).

The event history for the above example is

When there is no source of confusion, we will omit the argument s from H(-) and H,(-).

We now introduce the concept of a diagram which can be thought of as a partial state

description of the system. Its usefulness in describing the behavior of ML will become
apparent in section 3.

Definition 4 A diagram is either an integer from the set {0,1,---,c} or a sequence
of g > 0 groups. The ith group consists of a set S; containing n; distinct customer

identities and a word w; € 1¥0% of length n;, The word in the last group need not
contain 0’s, i.e., w, € 110",



The system can be represented by a diagram after each event. We describe now how
the diagram changes with the occurrence of each event. Let D; denote the diagram for
the system after the i-th event. We define a function % that takes two arguments, an
event and a diagram, and produces a new diagram.

o The arrival event j:

If the diagram consists of an integer less than ¢, then the next diagram corresponds
to the next integer,

P(G,m)=n+1, 0<n<ec

If the diagram consists of the integer c, then the next diagram consists of a single
group containing the customer that arrived and w =1,

¥(5,¢) = {5}1.

I the diagram consists of a sequence of groups and the word associated with the
last group consists of all 1's, then add the customer to the last group and add an
additional 1 to the corresponding binary string,

¥(5, D815y = D(SuU {})1¥*;, D e D*; SC N.

where IV is the set of natural numbers, D* is the set of diagrams of which the
associated word of the last group has at least one 0. The set of all possible dia-
grams is denoted by D. The formal descriptions of D* and D are given later in
this section.

If the word associated with the last group ends in a 0, then add a new group
consisting of the arriving customer and associate a 1 with it,

P(7, DSw0) == DSw0{j}1; D € D*; S C N; w € 1107; |w| = |S].

o The deadline miss cvent j:

If the customer that misses its deadline is not contained in any group, then the
diagram does not change,

¥(Gim)=n, 0<n<e,

%(3,D)= D, DeD;jgSDY)IS(D) 1.



Here S(D) is the union of all of the groups of customers, S(1) = U{_,S;. If the
customer belongs to a group whose associated word has at least two zeroes, then
remove the customer from the group and remove one zero from the word,

¢(3, D15w00D2) = D](S - {j})WODQ;Dl € D+; Dz € D;
JES;SC N;we 170,

If the customer belongs to a group for which the associated word contains a single
0, then merge the group with the next group after removing the customer and
the 0, -

(G, Dr1511"108wD,) = Dy(SU S, — {iN1¥-'wD,, D, € D*; D, € D;
j € 51;51752 C N.

If the customer is contained in the last group and the associated word consists of
no 0, then remove that customer from the last group and delete one 1 from the
associated word.

¢'(.3,‘D51'S') = D(§ - {j})1°1"'), D e D.

If the last group consists solely of that customer, then remove that group from
the diagram,

1/’(.-7-aD{.7}1) = D, DecD,
6N = .

The departure event j: If the present diagram is a positive integer, then the next

diagram is that integer less one,
1/’(1,”):”_1, 1<{n<ec

If the word associated with the last group contains two or more 1’s, then the next
diagram is obtained by changing the rightmost 1 to 0,

$(3, DS1"0¥1") = DS1*10IS-"+ D e D;SC N,[S|> 2 1<n<|S)

If the word associated with the last group contains only one 1, then the last group
is merged with the next to last group,

%(3, DS1w5,101%171) = D(8,U8)w0, D € D; $,,5, C N} w € 1¥0%; jw| = |Sy].
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If the present diagram consists of a single group whose associated word contains
one 1, then the next diagram is the integer ¢

(D, 5108y =¢, §C N.

Here D* and D are defined as

Dt = {Slwlszwg---Sgwg:S,- CN,w; €170%,1<1<g,
S,ﬂS_,-:(D,i;éj,l <1 Sgnq:O:la"‘}

and

D = {S1wnSwy---Syw,: S C N,w; €170%,1 <i<g-1,w, €170,
Sinsj :wvi #])1 Si,jfg:.(]:o’l,"'}-

Beginning with the diagram 0, the sequence of diagrams corresponding to the example
in the previous section is given below,

013 {2313 {2,3}11 3 {2,3}10 & {2,3}10{4}1 >
{2,3}10{4,5}11 3 {2,3}10{4,5}10
{2,3}10{4,5}10{6}1 > {3,4,5}110{6}1 &
{3,4,5}100{6}1 % {3,5}10{6}1 3
{5,6}11 5

e s oo

We let ¢(i,s) denote the diagram that occurs from applying the first 7 events of H,(s)

to the initial diagram 0. Again, when there is no source of confusion, we will omit the
parameter s.

3 The meaning of the diagrams

Consider a set of arrival tines, service times and deadlines. Let D = ¢(j) = ¢(j, s). Let
$:(D) denote the i-th group, w;(D) the binary word associated with S;(D), m;(D) the
total number of 0's in w;(D), and n;(D) = |S;(D)| the total number of customers in set



Si(D). When there is no ambiguity, we will omit the argument D. Consider a finite set
of positive real numbers, T'. We define Small(n,T) to be the subset of 7' that contains
the n smallest elements in' T'. Let S be a set of customers. We define Min(m, S) to

be the subset of S, which consists of the m customers with the smallest deadlines. In
other words, if T = {d}, : k € S}, then k € Min(m, S) iff dy € Small(m,T).

Lemma 1 If S, T are mutually ezclusive sets of customers such that |S| = m, then
(T - Min{n,T})US)— Min{m,(T — Min{n,T})US} = (TUS) - Min{n+m,TUS}

whenever n < |T|.

Proof. Let A = (TUS) - Min{n + m,TU S} and B = ((T - Min{n,T})U S) —
Min{m,(T — Min{n,T}) U S}. Assume z € A and = ¢ B. This implies that
there are n elements in Min{n,T} that are less than z and m additional elements
in (T — Min{n,T}) less than z. Hence we conclude that = ¢ 4 which contradicts our

assumption. Hence we have A C B. The Lemma follows from this and the fact that
|A| = |B|. 0

This lemma states that if we remove the n smallest elements from a set T, add m new
elements and remove the smallest m elements from the resulting set, we obtain a set
identical to the one obtained by adding the m elements first to T and then removing
the n + m smallest elements from this set.

Consider a history under ML up to and including the 1-th event. Let D) = ¢(t) contain
g groups Si,S53,+--,8,. The event history can be divided into g + 1 periods labeled
+=0,1,--+,9. Period 0 contains all events prior to the arrival of any customer con-
tained within §;. Period i begins with the event of the first arrival of a customer in
S; and contains all events prior to the arrival of any customer in S;;;, 7 = 1,2,---.
Last, period g begins with the arrival of the first customer within Sy and includes
all events up through E,. An illustration of this decomposition is given for diagrams
{2,3}10{4,5}10{6}1 and {3,5}10{6}1 from our earlier example. For the first of these
diagrams, there are four periods, period 0 - 1, period 1 - 2,34, period 2 - 5,6,7, period
3 - 8. The second diagram has the following three periods, period 0 - 1,2, period 1 -
3,4,5,6,7, period 2 - 8,9,10,11.

Clearly, all customers contained in the set S; U S, U--- U S, have arrived before time
t and are alive, since we have added their names to this set when they arrived, and
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have deleted their names if they die before time t. More specifically, S; is the set of
customers that are still alive and that arrived during the i-th period, 71 =1, -, g. We
can prove the following lemma.

Lemma 2 Consider the system at time t. Under ML, the number of customers alive
at time t that departed during the i-th period is equal to m;, i =1,---,g.

Proof. The proof is by induction on ¢.

Basis Step. 1t is obviously true when t = 0, since the diagram is the integer 0 and there
are no periods.

Inductive Step. Now assume that the lemma is true for . We show that it is also true
for £ + 1. There are three cases corresponding to the different events that can occur at
time ¢. The parameters g, §;, w;, and m;, ¢ = 1,---,g correspond to ¢ and ¢, S/, w,

and m! correspond to £ + 1.

Case onc. If the (1 + 1)-th event is an arrival of a new customer, then there are two
subcases.

Subcase 1. The associated word w, of the last group ends with a 1. In this case, the
new customer is placed into the last group and a 1 is added to the word w,. This
produces w; = w;, S; = S}, and m! = m; fori = 1,2,--.,9 — 1. The lemma is true in
this case for ¢ + 1 since no new departure occurred during the last period.

Subcase 2. The string w, ends with a 0. In this case we add a new group, the ¢’ = (g+1)-
th one. The lemma is clearly true in this case.

Case two. The (t + 1)-th event is a deadline miss, k. Let c¢; € S;. There are three
subcases.

Subcase 1. The string w; contains more than one 0. In this case, one 0 is deleted
and ¢ is removed from S;. We have m} = m;, S} = S; for j # i and m} = m; - 1,
S; = S — {k}. The lemma holds in this case provided that ¢, departed during the
i-th period. We show this by contradiction. Assume that ¢, did not depart the queue
during the i-th period. Since the policy is ML, ¢; could not have been in the queue
when the customers corresponding to the m! 0’s in w! departed. Hence the arrival of
¢k could only have occurred during period j > ¢. This contradicts the fact that k € S;.
Subcase 2. There is only one 0 in w;. In this case, we delete this 0, remove the
customer’s name [rom the i-th group and merge group ¢ with group i +1, if 7 < g. We
have S = §; U S;41 — {k}. An application of lemma 1 along with an argument similar
to that given for the previous subcase yields the desired result.



Subcase 3. There is no 0 in w;. In this case the ith group must be the last group; we
delete the name of the customer from the last group and delete a 1 from the word w;.
The lemma is obviously true.

Case three. If the (t 4 1)-th event is a departure, we convert the rightmost 1 to 0.
There are two subcases.

Subcase 1. If there is more than one 1 in w,, then the rightmost 1 is converted to 0.
Then we have m = m, + 1, which is exactly the total number of customers that are
still alive at time ¢ + 1 and that departed during the last period.

Subcase 2. If there is only one 1 in w,, then this 1 converts to a 0, the last two words are
concatenated, and the last two groups are merged. That is, g’ =~ g - I, Sg = Sy U S,
Mgy = mg_; + m, 4+ 1. The diagram at time ¢ + 1 has one less period associated with
it. The number of customers that are still alive and that have departed during period
i=1,---,¢'— 1 has not changed, but since the new last period, g', consists of the last
two periods with respect to #(t) in addition to event ¢t + 1, the number of departures

during this last period is the sum of the departures during the old two last periods and
the departure at ¢ + 1. This corresponds to mgy and the lemma holds for this case.

This completes the proof of the lemma. O

A customer c is lost under ML if it misses its deadline before it begins service.

Theorem 1 When the event k appears, c; is removed from some set S;. The customer
¢k i8 lost under ML iff and a 1 is removed from the word w; in the diagram immedialcly
preceding that event.

Proof. If c; is removed from some S; and a 1 is removed from w;, then the customer
must appear in the last group, 1 = g, and there is no 0 in the word wq. By the preceding
lemma, this means that ¢, arrived during the last period, and during this period no
live customer has departed the queue. Therefore, customer ¢, did not depart the queue
before missing his deadline.

On the other hand, if ¢, is taken away from S; and w; contains some 0’s, then by the
preceding lemma, during the i-th period some customers departed the queue. Since all
customers in S; U S, U--- U S; are still alive at time t, ¢ is among them. Because ¢ is
about to die (miss its deadline), c;’s deadline is smaller than that of any customer in
the queue. We know that during period i, m; > 0 customers departed and according
to ML, ¢, must be among them. Hence, ¢, began service before its death. i



Lemma 3 The queue length after the t-th event is the total number of 1’s in all words
wi, 1 =1,2,..., g, in the diagram ¢(1). If g = 0, then the diagram is an integer p which
corresponds to the number of busy processors.

Proof. The total number of customers (up to event t), which are still alive at time ¢
and which arrived during period i, is n;. The total number of customers that are still
alive at time ¢ and that departed the queue during period 7 is m;. Therefore, the total
number of customers in the queue after the ¢-th event is

_}j‘;(n; — m;)

which is exactly the total number of s in all w;, 1 = 1,2, .-+, g.

Therefore, the queue length is 0 if the total number of 1’s in all words w;, i = 1,2,---,9,
1s 0. This means that g = 0 and the diagram is an integer corresponding to the number
of busy processors. 0

4 The Policy ED

In this section we treat the earliest deadline policy (ED) operating on a single server
in a similar manner as we treated ML in the preceding two sections. Because of the
similarity, we omit many of the details and just describe the results.

Definition 5 The earliest deadline policy (ED) is the non-idling policy that schedules

the customer closest to its deadline. Customers that miss their deadlines while in the
sysitem are immediately removed.

There are two variants, depending on whether preemptions are allowed. We consider
solely the preemptive policy. Henceforth ED refers to this policy.

Given a set of customers {¢,}%, with arrival times {£;}$,, such that 0 < ¢y <ty < ---,
1 -] =1

service times {0,}$2,, and deadlines {d;}%,, the behavior of ED can be represented by
a history and event history in the exactly the same way as ML.



Ezample. Consider a single server system. Let a = {1,5,7,10,11,15}, 0 = {8,4,69,12, 16, 8}
and d = {32,22,27,25,90,33}. The event history is

1,2,3,2,4,5,6,2,4,2,4,3,1,1,6,5,5.
Diagrams under ED are similar to those under ML.

. Definition 8 A diagram under ED is either the integer 0 or a sequence of g > 0 groups
where the ith group consists of a set S; containing n; distinct customer identities and
a word w; € 110% of length n;, The word in the last group need not contain 0’s, i.e.,
wy € 170",

The system can be represented by a diagram after each event. We describe how the
diagram changes with the occurrence of each event. We define a diagram transition
function 9 that takes two arguments, an event and a diagram, and produces a new
diagram.

o The arrival event j:
If the diagram consists of the integer 0, then the next diagram consists of a single
group containing the customer that arrived and w = 1,

$(4,0) = {5}1.
In all other cases, 3 behaves in the same way as for ML.

o The deadline miss event j: The transition function v has the same behavior under
ED-P as ML except if the diagram consists of a single group with one customer
and the associated word contains no 0’s. In that case,

¢(3:{3}1) = 0.

o The departure event j: The transition is identical to the transition under ML

with the exception of when the diagram consists of a single group with a single 1
in the binary word. In this case, it is

¥(3,510") =0, j€ S5, SCN, n=0,1,---.
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The sequence of diagrams corresponding to the example given earlier in this section is
given below.

05 {1313 {1, 2}-11 3 {1,2,3H11 4 {1,2 3}110 2 {1,2,3}110{4}1
{1,2,3}110{4,5}11 & {1 2,3}110{4,5, 6}111 {1,2, 3}110{4 5,6}110
{1,3,4,5,6}11110 5 {1,3,5,6}1111 3 {1,5,6}111 & {1,5, 6}110 2R
{5,6)11 & {5}1 &

Arguments similar to those given in the previous sections can be applied to establish
the following properties of the diagram and transition function for ED.

Theorem 2 The customer ci is lost under ED whenever the event k appears, ci is
removed from some set S; and a 1 is removed from the word w; in the diegram imme-
diately preceding that event.

Theorem 3 The number of customers.in the system after the n-th event is the total
number of 1’s in all words w;, © = 1,2,...,g, in the diagram ¢(n). If g = 0, then there
are no customers in the sysiem.

5 Applications

The above results can be used to develop probabilistic models of systems that use either
ML or ED. For example, if the arrival process is Poisson with rate A, the service times
are exponential r.v.’s with parameter p and the time between a customer’s deadline
and arrival time is an exponential r.v. with parameter. @, then either ML or ED can
be modeled as a Markov chain with states corresponding to the diagrams without
the customer identities, i.e., the S; is unnecessary.! A description of the equilibrium
equations that the stationary probabilities must satisfy for these systems is found in

[1].

The assumption that the arrival process be Poisson can be relaxed to be any renewal
pm('vs's' by t-mb('dding a Markov chain immediately prior to arrival instants. In this

'lumuvm Llu roups creales a ~t¢tc subject to Lwo interpretations, namely state 1. This ambiguous
s B I A) P g

interpretation is removed by defining the state to be a pair (n, D) where n represents the number of

busy servers and D is a concatenation of the binary strings associated with the groups.
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case, the state description is again the same as the diagrams with the customer identities
removed.

In the case of a single server, it is possible to allow service times to come from any
distribution. In this case, a Markov chain can be embedded at instants of time in-
mediately following departures. The state is again defined to be the diagram with the
customer identities removed.
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