4

A PERFORMANCE ANALYSIS
OF MINIMUM LAXITY AND
EARLIEST DEADLINE SCHEDULING
IN A REAL-TIME SYSTEM

J. Hong, X. Tan, D. Towsley
Department of Computer and Information Science
University of Massachusetts
Amherst, MA 01003

COINS Technical Report 89-71
July 1989

To appear in IEEE Transactions on
Computers, December, 1989.

A Performance Analysis of Minimum
Laxity and Earliest Deadline
Scheduling in a Real-Time System

J. Hong!, X. Tan, D. Towsley?
Department of Computer & Information Science
' University of Massachusetts

Ambherst, MA 01003

July 1989

Abstract

In this paper we study the performance of a real-time system in which jobs either all have
deadlines until the beginning of service or deadlines until the end of service. In the first case
we analyze the minimum laxity scheduling policy (M L) when there are ¢ processors and, in the
latter case, the preemptive resume earliest deadline scheduling policy (ED) when there is one
server. In both cases, the analysis assumes a Poisson arrival process, exponential service times
that are not known to the scheduler, and exponential laxities or deadlines. In both cases, we
develop families of upper and lower bounds on the fraction of jobs that miss their deadlines. The
pessimistic bounds are of special interest because they correspond to a family of implementable
policies, M L(n) and ED(n), n = 1, -- where the performance approaches that of ML and ED
as n increases, but at the cost of increasing overhead. Numerical results show that the bounds
are tight, that the difference between the performances of policies that do not use deadline
information, (e.g., FIFO) and ML and ED is nonnegligible and that, even for small values of
n,(e.g., n = 3), M L(n) and ED(n) perform well when compared to M L and ED.

1The work of this author was partially supported by the National Science Foundation under grant
DCI-87-96236.
2The work of the last two authors was partially supported by the Office of Naval Research under

contract N0014-87-K-0796 and the National Science Foundation under grant DCR-85-00332.

1 Introduction

There has been increased interest over the last several years in developing models for
evaluating the performance of scheduling policies for single and multiprocessor systems
which serve jobs with time constraints. Unlike models for traditional computer sys-
tems which attempt to predict average job delays, models of real-time systems must
accurately estimate the fraction of jobs violating their constraints. In this paper we
describe a model for obtaining upper and lower bounds on this performance metric for
policies that give priority to jobs with the tightest time constraints. The analysis is
conducted under the assumptions of Poisson arrivals, exponential service times, and
time constraints that are exponential random variables. We consider two systems, one
in which jobs must begin service by a time constraint and another system in which jobs
must complete service by a time constraint.

Time constraints on the beginning of service are typically called lazities and time
constraints on the end of service are called deadlines. Panwar and Towsley [?] have
shown that the minimum lazity policy (ML) maximizes the fraction of jobs beginning
service by their laxity out of the class of all non-preemptive work conserving policies for
the G/M/c + G system (here the last G denotes that laxities can come from a general
distribution) when constraints are to the beginning of service. They also prove that
the earliest deadline policy maximizes the fraction of jobs meeting their constraints
out of the class of work conserving policies that allow preemptions for the G/M/1 + G
system when jobs have constraints to the end of service and where service times are
not known to the scheduler. This policy will preempt a server whenever a job arrives
that has a tighter constraint than the job in service. In this paper we develop models
that provide bounds on the fraction of jobs meeting their laxities for the M/M/c+ M
system. We describe a similar model that provides bounds on the performance of the
M/M/1 + M system when jobs have deadlines. Estimates of the performance of ML
and ED are given as the average of the upper and lower bounds. The paper concludes
with a comparison of the accuracy of these approximations to simulation.

The pessimistic bounds on the fraction of jobs making their time constraints correspond
to the performance of two new policies, M L(n) and ED(n) which, for small values of =,
(e.g., n = 3) incur little overhead, and yet provide performance comparable to that of
ML and ED. Briefly, ML(n) uses the ML on the first n jobs in the queue and handles
the remaining jobs in a FIFO manner. Hence, if the total number of jobs is n+m, then

M L(n) requires O(n) time per job and ML requires O(n + m) time per job.> ED(n)
behaves in a similar manner. In the case of deadlines until the beginning of service, we
compare the performances of ML(3), ML(2), ML and work conserving policies (e.g.,
FIFO, LCFS) that do not use information regarding time constraints when scheduling

jobs. A similar comparison is performed In the case of constraints until the end of
service.

Numerous papers address the problem of designing and analyzing the behavior of
scheduling policies for real-time systems. In addition to showing the optimality of ML
and ED for the systems described above, [9,10] show the optimality of these policies
or variants of these policies for a variety of other systems. The analysis of queueing
systems handling customers with deadlines has been addressed in numerous papers
(2,3,1,4,5,8,6,11,14]. However, except for [14], none of these papers have focussed on
scheduling policies that use information on time constraints when scheduling jobs. The
last paper provides an approximate analysis of a variant on ML that places the job
with the largest laxity at the end of the queue and serves the remaining jobs in FIFO
order.

In addition to the above literature that focusses on the exact analysis of simple policies,
there exists a growing literature on the design and evaluation (through simulation) of
heuristics for scheduling jobs with real-time constraints. The reader is referred to (12]
for references to this work.

The paper is organized in the following way. Section 2 contains a definition of ML and
the analysis leading to bounds on its performance. A new policy ML(n), n = 2,3, -,
which yields a pessimistic bound on the performance of M L is also introduced in Section
2. Section 3 defines ED and describes bounds on its performance. The analysis leading
to these bounds is omitted as it is nearly identical to that contained in Section 2.
Numerical results are found in section 4. Section 5 summarizes the contributions of the
paper.

2 The Minimum Laxity Scheduling Policy

This section begins with a definition of ML and the Markov chain, M, which describes
its behavior in a M/M/c + M system. The Markov chain M is modified to obtain

3These times can be reduced to O(logn) and O(log(n + m)) by use of a data structure such as a

heap. However, this may not be more efficient than a list unless m is large.

two new chains, M~(n) and M™*(n) which yield pessimistic and optimistic bounds on
the fraction of jobs making their deadlines. The pessimistic bound corresponds to the
performance of an implementable policy M L(n) which is also defined. Conditions for
the ergodicity of the Markov chains are also established in this section.

2.1 The Minimum Laxity Policy and its Markov Chain Rep-
resentation

In this subsection, we define ML and the Markov chain representation of its behavior
on a c processor system. The proof that the Markov chain presented here actually
models ML can be found in [7].

We consider ¢ processors serving jobs from a single queue. Jobs arrive according to a
Poisson process with parameter A. Each job requires a service time that is exponentially
distributed with mean 1/4. In addition, there is a deadline associated with each job.
A job is thrown away if it cannot begin execution before its deadline; otherwise it is
executed. A job that is thrown away is considered to be lost. We denote the interval of
time between the arrival of a job and its deadline as its lazity. We assume that laxities
are exponentially distributed r.v.’s with parameter o. The exponential assumptions
are necessary to obtain a tractable continuous time Markov chain.

Any number of different policies can be used to schedule jobs to processors. However,
Panwar and Towsley [10] have proven that the minimum laxity scheduling policy (ML)
maximizes the fraction of jobs that begin their service by their deadlines from the class
of all policies that never allow processors to go idle while there is work in the queue.
Here ML is the nonpreemptive policy that always schedules the job with the smallest
laxity, i.e., the job closest to its deadline.

The behavior of the system is described by a continuous time Markov chain, M, having
state (I(t), S(t)) where I(t) denotes the number of jobs in service, 0 < I() < ¢, and
S(t) is a binary string taken from the set B = {A} U1(0 + 1)*. In other words, S(t)
can be either a null string, A, or any binary string beginning with a 1. Whenever S(¢)
is not the null string, it is useful to visualize it as the concatenation of g(t) > 0 strings
(groups of bits) where each string consists of one or more 1’s followed by one or more

0’s (except for the last string which may include no 0’s), i.e.,

S(t) = 1™Q™1™2Q"2 ... 1™ Q") m; > 0,1 <7< g(t), n; >0,1<:i< g(t) -1,

ngwy 2 0, g(t) > 1.

The allowable states for M is § = {(n,A)|0 < n < ¢} U {(c,s)|s € B}. The string S(t)
can be interpreted as a partial history of the system up to time ¢. Let n(s) denote the
number of bits in the binary string s € (0 + 1). The bits in the string correspond to .
the n(S5(t)) most recently arrived jobs whose deadlines have not passed. 0’s correspond
to jobs that have made their deadlines whereas 1’s correspond to jobs still in the queue.
Consider the j-th group, 1™0™ within S(¢). This group corresponds to m; + n; jobs
of which n; have made their deadlines (but their deadlines have not expired) and m;
reside still in the queue. S(t) carries the additional semantics that the group of m; jobs
still in the queue have deadlines larger than the n; jobs that already left the queue.
Thus the deadlines of these jobs cannot expire until the deadlines of the n; jobs do.
Furthermore, the group of m; jobs still in the queue have deadlines larger than the

Zfi?_l_l n; jobs that have made their deadlines but whose deadlines are later than t.

These are the jobs represented by zeros to the right of the j-th group in the string S (2).

The Markov process M exhibits the following behavior.

Arrival An arrival has the effect of either incrementing i by one if 7 < ¢ or adding a
1 to the right of s if i = c¢. The transitions are illustrated below:

(3,A) = (E+1,A), i<e,

(c;s) = (c,s1), se€B.

Service completion A departure has the effect of decreasing i by one if s = A or
changing the rightmost 1 in s to a 0 otherwise. The transitions are illustrated

below:
6A) 5 (G=1,A), 1<i<e,
(¢,810™) =5 (c,80™), seB-— {A},0<n
(¢,10") =5 (c,A).

Deadline Expiration Transitions due to the expiration of deadlines occur only if
s # A. Consider s = 1™ (Q™1™2Qm2...1m0™, For 1 < j < g — 1, one of the n;
0’s is deleted if the deadline of any of the m; + n; jobs within the j-th group

expires. This occurs with rate (m; + n;)a. The same happens to the g-th group
provided ny > 0. If n, = 0 and the deadline of one of the mgy jobs in the g-th
group expires, then a 1 is deleted from that group. In either case this occurs with
rate (mgy + ng)a. The transitions are illustrated below:

(¢,511"0™s,) (ntm)a (¢,51,1"0™'s,), 1 € {A}U1(0,1)°0, 5, € B, 1 < m,mn,

T

(e;81") 5 (c,81™1), s € {A}U1(0,1)"0.

Later in this section we will show that M is an irreducible positive recurrent chain.
Hence we define the limiting state (I, S) = lim;—.oo(I(t), S(t)) and let m(i,s) = Pr[] =
1,8 = s}, 1 <i < ¢, s € B. The equations satisfied by these probabilities can be found
in the Appendix.

The fraction of customers lost, @, can be computed from the stationary distribution
by the following expression

PP (p=: rlh e = i) m)

We have the following result regarding the correctness of M. The proof can be found
in [7].

Theorem 1 The Markov process M ezactly simulates ML in the sense that the long
term fraction of customers lost under ML equals Q given in equation(1).

We conclude this subsection with the proof of the irreducibility and positive recurrence
of M. We find it useful for the proof of the next theorem and the comparison of
different systems to introduce the idea of stochastic ordering between two r.v.’s

Definition 1 Let X and Y be two r.v.’s. The r.v. X is stochastically greater than or
equal to Y (written as X >, Y) iff

PriX <z]<Pr[lY <z|], -o0<z< 0.

Theorem 2 The Markov chain M is an irreducible positive recurrent chain for A > 0,
p>0,a>0.

Proof. First we show that M is irreducible. We do this by showing that it is possible
to transition from (0,A) to any other state (i,s) € S in a finite number of steps and
from (4,s) back to (0,A) also in a finite number of steps. We consider (0,A) — (3, s)
first. If 7 < ¢, then s = A and the transition occurs with n successive arrivals. If i = ¢
and s = 1™ (™ ...1™sQ"s, then the transition occurs with ¢ + m, +n; arrivals followed
by n; departures followed by m; + n, arrivals followed by n, departures followed by - - -
followed by m, + n, arrivals followed by n, departures.

The transition (¢,s) — (0,A) is shown in a similar manner and is omitted.

Next we show that (z,A) is a positive recurrent state for some 1 < i < ¢. To do this we
show that the mean time between visits to (0,A) is finite. Consider a new Markov chain
M corresponding to a M/M/co queue with arrival rate A and service rate a. Let L(t)
denote the number of customers in the infinite server system at time ¢. It should be
clear that L(t) >, n(S5(t)). Hence we have that Prn(S(¢))] = 0] > Pr[L(t) = 0]. The
event n(S(t)) = 0 corresponds to the finite set of states {(i,A)|1 < i < ¢}. It follows
that there is some 7, 1 <7 < ¢ such that Pr[I(t) = ¢,5(¢) = A] > 0 for 0 < t. However,
this can only occur if (¢, A) is visited infinitely often and the mean time between visits
is finite.. Therefore (7, A) is a positive recurrent state. Since M is irreducible, it follows

riecessarily that every (4,s) € S is positive recurrent. O

2.2 The Policy ML(n) and the Markov Chain M~(n)

We now describe an implementable scheduling policy that is simpler to analyze than
ML and provides an upper bound on the loss probability for M L. We divide the queue
into two parts, @, and Q. @, can hold at most n jobs. If the total number of jobs
waiting for service is less than or equal to n, then they are placed into Q. Jobs in Q,
are scheduled using M L. However if there are more than n jobs in the queue, we place
new incoming jobs into @;. When the scheduler moves a job from Q; to a processor,
it also moves a job from Q; to Q in the order of arrival. In short, Q; is a ML queue
of size n and @, is a FIFO queue of unbounded size.

Accordingly, we define a new Markov process M~(n) with state (I=(t,n), S~ (t,n))
where I~ (t,n) is the number of busy servers and S~(¢,n) is the partial state history at
time ¢ > 0. The state space is §7(n) = {(n,A)|1 < n < c} U {(c,s)|s € B~(n)} where
B-(n)=1 (U?;oz(O‘l)i) 0*U1(0"1)"~20"1~. State transitions obey the following rules.

Arrival The same as in M

Service Completion The behavior is the same as in M if the total number of 1’s in
s is less than or equal to n. If the total number of 1’s exceeds n then the n-th 1
from the left is converted into a 0.

Deadline Expiration The same as in M

We define (I7(n), S7(n)) = limy_.o(I~(t,n), S~ (¢,n)) and let 7~ (4,5,n) = Pr[I~(n) =
i,57(n) = s] denote the stationary distribution of M~(n). These probabilities exist
whenever A > 0, 4 > 0, a > 0 and satisfy a set of equations similar to those given for

().

The Markov chain can be shown to simulate M L(n) correctly and the loss probability,
@~ (n) is given by the same expression as @ with 7~() replacing ().

2.3 The Markov Chain M*(n)

We define another continuous time Markov chain M*(n) to have a state (I*(t,n), S*(t,n))
taken from the set S*(n) = {(n,A)]1 < n < ¢} U{(e,s)|s € B*(n)} where B¥(n) =
1 (U?;oz(ﬂ"l)i) 0~J1(0~1)*~20"1"0". Transitions between the states are governed by the

following three rules.

Arrival If 7 < ¢ then s = A and ¢ is incremented by 1. If i = ¢ and the number of 1’s
in s is less than n, then append a 1 to the right end of s. If the number of 1’s
in s is greater than or equal to n, then insert a 1 after the n-th 1 in s counting
from the left.

Service Completion Same as M.

Deadline Expiration Same as M

This chain is irreducible positive recurrent for A > 0, ¢ > 0, @ > 0 and does not corre-
spond to any implementable policy. Let 7% (4,s,n) denote the stationary distribution
for M*(n). It satisfies a set of equations slightly different from those satisfied by ()
which are omitted here. Once the stationary distribution is obtained, the fraction of
jobs that miss their deadlines, @*(n), can be obtained from equation (1) by replacing
() with 7+(). |

2.4 Bounds on the Performance of ML

In this section we show the following ordering between the loss probabilities obtained
from the three chains, Q= (n) > Q@ (n+1)>2 Q@ > Q" (n+1) > Q*(n), 1 < n.

In order to do so we introduce a dominance relation among elements in S. Let nl(s)
denote the number of 1’s in the binary string s. Let P(,s) denote the position (count
from right) of the i¢th 1 from the left end of s; if ¢ > n1(s) then P(s,s) = 0.

Definition 2 For 2,2z, € S, where 21 = (i1,51), 22 = (i2,82), =, dominates z,

(21 = z2) if the following three properties are satisfied.

1. 3 2 1y,

2. nl(s1) 2 nl(s2),

J. P(i,81) < P(4,82),5 = 1,---,nl(s;) whenever nl(s;) > 0.
We introduce three transformations on S,

1 ¥, operates as follows
B@HA) = G+1LA), 1<i<e,
Pa((e,8)) = (e,81), s€S,
2. 1, ; operates as follows, 7 =1,2,---,¢-

(i_l’/\)) 1SjSiSC,
(1:,/\), 0<i1<3<eg

Busl i) = {

bui((6,10°) = (¢,A), 0<34,
buil((c,s10°)) = (¢,807%1), 0<i, s€1(0+1)".
3. $aj operates as follows, j = 1,2, -
| beillin$) = (i), n(s) < jy
Yai((i611%055)) = (4, 511%s5), 51 € 1(0+1)", 55 € (0+1)", n(1¥0s,) = 7, 0 < k,

Ve ;((3,519)) = (4, s1971),

8

The first step towards proving the ordering between the three Markov chains is the
following Lemma.

Lemma 1 Ifz, <X 2y, z;,25 € S, then

¥a(z1) =2 ¥a(=2), (2)
")bl-l,j(ml) j 1!’#,_7'(32), 1 SJ S c, (3)
Yaij(21) =X VPaj(ze), 1<7 (4)

Proof. Throughout the proof we will use the notation z; = (11,%1), 22 = (22, 52),
P(25) = (i},85), 7 = 1,2, d = nl(s;) — nl(sz), and &' = nl(s}) — nl(s,). We will

establish the three properties of dominance in all three cases.

Equation (2). Consider ;.
1. 4y = min(¢,%; + 1) < min(e, iz + 1) =3}

2. d'=d+x(i1 = c) — x(i2 = ¢) > d > 0.* The first inequality is due to property 1 of
the dominance relation between z; and z,.

3. If nl(s;) = 0, then we are done. If nl(sz) > 0, then P(i,s}) = P(i,s3) +1 <
P(i,5,) +1 = P(3,8).

Equation (§). Consider 4,;, 1<j<ec.
Liy=4—x(s1 =Aand j<4;) >4 —x(s1 =Aand j <i,) > i3 —x(s2 =Aand j <

1:2) == 2’2.

2. There are two cases
a)d>0:d>d—-12>0.
b)d=0:d=d>0.

3. If n1(s;) = 0, then we are done. If nl(s,) > 0, then

P(i,s3) = P(i,s2) — 1 < P(4,81) — 1 < P(3,s)).

Equation({). Consider ¢, ;, j =1,2,---.

“Here x(P) takes value 1 if the predicate P is true and 0 otherwise.

1# =i, >4y = 1)
2. There are two cases.

a) If n1(s,) > nl(s;) then it follows that nl(s}) > nl(s}).

b) If n1(s;) = nl(s;) then because of property 3 of dominance, it follows that
nl(s]) > nl(s)).

3. Notice that in any case, we have P(i,s) > P(i,s') > P(i,s)—1. There are two cases.
a) If a 1 is deleted from s,, then we can assume that this is the right most bit in s; and
therefore we have

P(i,87) > P(i,81) — 1 = P(i,8,) — 1 = P(4,55).

b) If a 0 is deleted from s,, then because P(1,s;) > P(1,s;) and the first bit is always
a 1, some bit is also deleted from s,. There are two subcases.

i) A 1is deleted from s,. In this case there is no 0 to the right of this bit in s; and we can
assume that the 0 and the 1 are both deleted from the k-th position from the right in s,
and s, respectively. Then when P(i,s;) > k we have P(i,s}) = P(i,s;)—1 > P(i,s,) —
1 = P(i,s3). When P(i,s;) < k, we have that P(,s}) = P(i,s;) > P(i,s;) = P(i, s}).
ii) A 0 is deleted from s;. Assume that P(i,s}) < P(i,s}) for some i, and this i is
the smallest index for which the inequality holds. This can only occur if P(Gi,s))+1=
P(i,51) = P(i,s2) = P(i,}), a 0 is deleted at position k; = P(i,s;) — 1 in s1, a 0 is
deleted at position k; > P(7,s;) in s, and there is a 1 at position k; in s,. This leads
to P(i +1,s;) = k; > P(i + 1,s,) which is a contradiction.

¢) If nothing is deleted from s, it is trivial to establish condition 3. -

This completes the proof of the lemma. a

We define two additional transformations 9, j, 1 < j < ¢, and 9, as follows:

1. ., ; operates as follows,
Vua,il(2:8)) = ¥3((3,5)), nl(s) <m,
Puni((€51182)) = (¢,510s2), 51 € 1(0+1)", s3 € (04 1), N1(s;) =n — 1.
2. 1y, operates as follows,
¥aa((4:8)) = ¥a((4,5)), nl(s) <=,
¥au((c,51182)) = (¢,8111s5), 81 € 1(0+1)", 53 € (0+1), nl(s;) =n—1.

10

These transformations correspond to a completion event in M~(n) and an arrival eyent

in M™*(n) respectively. From this definition we have the following Lemma,

Lemma 2 For any z € S, we have

"buu.j(a’) =2 ¢#n+1.j(“’) 2ui(z), n>1

and
¥a(z) 2 ¥, (2) 2 ¥a(z), n>1.

Proof: The proof follows from the definitions of 9., ; and ¥, using similar arguments
to those used to prove lemma 1. 0

A consequence of the two preceding Lemmas is

Theorem 3 The following orderings ezist between M, M~(n), and M*(n), n =
L2,--,
It(t,n) 24 I'(t,n+1), n=1,2,---,

I+(t7n) 2at I(t) st I_(tan) n=1s2)"'1
I"(t,n+1) 2, I"(t,n), n=12,---,
for t > 0 provided that the above orderings hold at t = 0, and

Ith) 2,4 IT(n+1), =n=12,-.--,

It(n) 24 I >, I"(n) n=1,2,---,

I'n+1) 241" (n), =n=12,---.

Proof. The proof of the first three relations is by induction on the times at which
arrivals, service completions or deadline misses occur using the results of lemmas 1 and
2. Once the first three relations are established, the second set of relations between the

limiting values of I, I=(n), and I*(n) follow from Stoyan {13, Proposition 1.2.3, p. 6].
O

11

Corollary 1 The following ordering ezists between M, M~(n), and M*(n), n =
1, ,

Q+(n)SQ+(n+1), n=112a"',

Q+(n)S QSQ_(n)a n=1:2a" ’

R (n+1)<Q (n), n=12,--.
Proof. All three chains are ergodic; consequently stationary distributions exist for

each of them. The probabilities that a job misses its deadline in the three systems are
expressed as

iz Pr[l =idlip
Q - 1 A)
() — iz PrlI~(n) = d]ip
L TPl = i
() =1- i

As a consequence of Theorem 3 we have

ZPrI+(n)—z]>ZPr I=i> 3 PrI-(n)=i], n=1,2,...

i=1 =1 - 1=1
This establishes the corollary. a

Remark. With a little bit more effort, it is possible to establish strict znequahtzes among
the miss probabilities in the Corrolary 1.

3 The Earliest Deadline Scheduling Policy

In this section we define the policy ED and its Markov chain Mgp. We then modify this
Markov chain to obtain two new MC’s Mgp(n) and M}, (n) that provide pessimistic
and optimistic bounds on the fraction of jobs that miss their deadlines under ED. For
the case that ED operates on system with a single processor, its behavior is remarkably
similar to that of ML operating on a single processor. Hence, all of the development
in the previous section applies with little modification to ED. This is unfortunately
not true when the number of processors is greater than one.

12

3.1 The Earliest Deadline Policy and its Markov Chain Rep-
resentation

We consider one processor serving jobs from a single queue. Jobs arrive according to a
Poisson process with parameter A. Each job requires a service time that is exponentially
distributed with mean 1/u. In addition, there is a deadline associated with each job.
A job is thrown away if it does not complete execution before its deadline. This can
occur while the job is in the queue or while it is in service. If the job is in the queue at
the time that the deadline is reached, the job is thrown out. If the job is in service at
the time that the job reaches its deadline, it is aborted and then thrown out. In either
case the job is considered lost from the system. We denote the interval of time between
the arrival of a job and its deadline as its relative deadline and we assume that they
are exponentially distributed r.v.’s with parameter a.

Panwar and Towsley [10] have proven that the earliest deadline scheduling policy (ED)
maximizes the fraction of jobs that complete service by their deadlines from the class
of all policies that use no service time information, allow preemptions, and never allow
processors to go idle while there is work in the queue. ED is a preemptive policy that
always executes the job closest to its deadline.

The behavior of the system is described by a continuous time Markov chain, Mgp,
having state Sgpp(t) € B. Here Sgp(t) has the same interpretation as it does in M
except that it now includes the job in service.

The Markov process M exhibits the following behavior.

Arrival An arrival has the effect of adding a 1 to the right of SED(t). The transitions
are illustrated below:

sle, s € B.

Service completion A departure has the effect of changing the rightmost 1 in Sgp(t)
to a 0. The transitions are illustrated below:

s10" 5 S0, seB-{A}, 0< n.

10" X A

Deadline Expiration Transitions due to the expiration of deadlines occur only when
s # A. Consider s = 1™1Q™1™2Q"2...1™s0". For 1 < j < g — 1, one of the n;

13

0’s is deleted if the deadline of any of the m; + n; jobs within the j-th group
expires. This occurs with rate (m; + n;)a. This also occurs to the g-th group
provided n, > 0. If n; = 0 and the deadline of one of the m, jobs in the g-th
group expires, then a 1 is deleted from that group. In either case this occurs with
rate (my + ng)a. The transitions are illustrated below:

s1%0ms, EIE 5 qmomels, s € {A}U1(0,1)°0, s, € B, 1 < m,n,

s1® 5 51771 s e {A}U1(0,1)0.

We define the limiting state Sgp = limy_.o Sep(t) and let mgp(s) = Pr[Segp = s,
s € B. These probabilities exist whenever A > 0, g > 0, @ > 0. The equations are
similar to those for ML and are not included.

The Markov chain M can be shown to simulate ED correctly, [7], and the fraction of

customers lost, @gp, can be computed from the stationary distribution by the following
expression

(1 —mep(A))e

Qep=1- 3 . (5)

3.2 The Policy ED(n) and the Markov Chain M3z p(n)

We now describe an implementable scheduling policy, ED(n), that is simpler to analyze
than ED and provides an upper bound on the loss probability for ED.

We divide the queue into two parts, @; and @;. @; can hold at most n jobs including
the job in service. If the total number of jobs waiting for service is less than or equal to
n, then they are placed into Q. Jobs in @, are scheduled using ED. However if there
are more than n jobs in the queue, we place new incoming jobs into @,. When a job
completes service and leaves);, we move a job from @, to @, in the order of arrival.
In short, @, is a ED queue of size n and Q, is a FIFO queue of unbounded size.

Accordingly, we define a new Markov process Mgp(n) with state Szp(t,n) where
Sgp(t,n) is the partial state history at time ¢t > 0. The state space is B~(n) (as defined

in section 2.2). State transitions obey the following rules.

Arrival The same as in Mgp

14

Service Completion The behavior is the same as in Mgp if the total number of 1’s
in s is less than n. If the total number of 1’s is greater than or equal to n then
the n-th 1 from the left is converted into a 0.

Deadline Expiration The same as in Mgp

These rules generate a Markov chain which can be solved to obtain the loss probability
under ED(n).

3.3 The Markov Chain M3,

We define another continuous time Markov chain MEp, to have a state SEp(t,n) taken
from the set B*(n + 1). Transitions between the states are governed by the following
three rules.

Arrival If the number of 1’s in s is less than or equal to n, then append a 1 to the
right end of s. If the number of 1’s in s exceeds n, then insert a 1 after the n-th
1in s counting from the left.

Service Completion Same as Mgp.

Deadline Expiration Same as Mgp

This does not correspond to any implementable policy but leads to a lowerbound,
Q@%p(n), on the fraction of jobs that miss their deadlines.

We state without proof the following result regarding the ordering between the Markov
chains Mgp, Mgp(n), and MEp(n).

Theorem 4 The following ordering exists between Mgp, Mgp(n), and MEp(n), n =
1,
QED(“) < QED(TL+1)$ n= 1a2v"'$

QED(n) < Q < QED(n)i n= 1,2,' "ty

Qpp(n+1) < Qzp(n), n=1,2,.--.

15

4 Numerical Results

In this section we study the tightness of the bounds on @ generated by M L(2), M L(3)
and M*(2) and the bounds on Qgp generated by ED(3) and M£,(2). We also examine
the efficiency of FCFS, M L(2), and M L(3) for scheduling customers with laxities and
FCFS and ED(3) for scheduling customers with deadlines to end of service. However,
first we wish to comment on the computational requirements for obtaining the bounds.

Consider the Markov chain M~(n). The state of this chain can be represented by
the n—tuple (uq,--,u,) where u; represents the number of 0’s between the i-th and
({4 1)th1in S-(n), % = 1,---n — 1 and u, represents the number of jobs in the
FIFO portion of the queue. These variables can take on any nonnegative integer value.
Hence, we truncated the state space in order to obtain estimates for @=(n). In the case
of ML(2) and M L(3) we are left with two and three dimensional finite state Markov
chains respectively. In all cases, it sufficed to delete all states with values of u; greater
than 20. A similar procedure was used in order to obtain optimistic bounds from
M*(2) and for obtaining the bounds for the performance of ED.

4.1 The Performance of ML

In general, we find the bounds to be the closest when deadlines are tight and to widen
as deadlines increase in length. In addition, they are also close for small arrival rates
and tend to widen as the job arrival rate increases. Table 1 illustrates this behavior
by comparing the pessimistic bounds on Q generated by ML(1) (FIFO), ML(2), and
M L(3), the upper bound on Q generated by M*(2), and Q obtained from simulation
for the case of a single processor. Results are given for different values of the arrival
rate A and mean laxity 1/a. In all cases, the times are normalized with respect to the
mean service time 1/p.

We observe that the natural estimate for @, (@~(3)+@*(2))/2 never deviates from the
estimate obtained by simulation by more than 3.1%. Typically, the error is considerably
less than that when either 1/a = 2,4 or A < .6. We have also observed that the bounds

become closer as the number of processors increases (data not shown here).

Figures 1 - 3 illustrate the performance of FIFO, M L(3) and ML for different numbers

of processors ¢ = 1,4,8, two different mean laxities, 1/a = 2,8 as the traffic load

16

One Processor

oS
2e 1 ---FFo .
T | e ML(3) LR
D ™ . A
0 g 1 —— sim. ’/zﬁ/
o -2 o+
< '3 ”
'g //,;g/ I,/ O
29 = A

© & PRGN
-~ - ~ £
[=} = 4 .'x/
2> //ﬁ" ,” e
= 4 e -7 9
L o = ’r’ __»"'-’
g lla 2 —é,«_.’_,,e—’

- -’

[o] = =
E o | 1/(1 8 @~

o L

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Offered Load

Figure 1: Comparison of ML, ML(3), and FIFO on One Processor.

increases. In these figures, all times are normalized with respect to ¢/pu.

We make the following observations. When the laxities are small, the difference between
the performance of ML and ML(3) is negligible. However, there can be up to a 5.7%
increase in the fraction of jobs lost when FIFO is used. When the laxities increase a
difference appears between M L(3) and ML. However, the difference between M L(3)
and FIFO also increases (11% difference in fraction of jobs missing deadline in the case
of 1 /o =8,A=1.2and ¢ =1). Hence by using a little bit of information, namely, the
laxities of the first three jobs in the queue, M L(3) provides a performance improvement
over policies such as FIFO that use no laxity information without i incurring the overhead
of ML. Briefly, the cost of inserting/removing elements from the queue under ML is
either O(m) (using a queue) or O(log m) (using a heap) where m is the number of jobs
in the queue whereas the cost of inserting/removing from the queue under M L(3) is

o(1).
4.2 Performance of ED

In this subsection we examine the accuracy of the bounds for the ED policy operating
on a single processor. Figure 4 illustrates the behavior of ED(1) (FIFO), ED(3) and
the optimistic bound based on M%p(2), as a function of the offered traffic for three

17

Al l/a| ML(1) | ML(2) | ML(3) | Simulation Approx. | M*(2)
(FCFS) (@-(3) + @*(2))/2

0.2 2 .0665 | .0648 | .0646 .0639 .0646 | .0646
0.4 2 1319 .1271 1257 1253 1256 .1256
0.6 2 1954 | 1877 | .1840 .1838 .1838 .1837
0.8 2 2559 | .2465 | .2401 2394 2397 .2394
1.0 2 3130 | 3032 | .2942 2935 2937 2932
1.2 2 3662 | .3569 | .3463 .3453 .3455 .3448
0.2 4 .0427 | .0405| .0399 .0397 .0399 | .0399
0.4 4 .0905 | .0840 | .0805 .0800 .0802 | .0800
06| 4 1429 | 1327 1235 1224 1224 1213
0.8 4 1988 | .1869 | .1707 1675 1680 | .1654
1.0 4 .2564 .2450 2238 2178 2193 .2148
1.2 4 .3141 .3046 | .2822° 2747 2767 2713
02| -8 .0251 .0231 .0225 0222 0224 .0224
0.4 8 .0570 | .0510| .0463 .0453 .0456 .0450
0.6 8 .0971 | .0877| .0748 .0707 .0711 | .0675
0.8 8 1460 | .1355| .1136 .1006 1030 | .0925
1.0 8 2033 | .1943| .1679 1445 .1503 1327
1.2 8 2665 | .2604 | .2374 2122 .2188 .2002

Table 1: Comparison of Bounds and Simulation for one Processor.

18

Four Processors

o O
£% 4 --- FIFO 5
T e e
§ | M
(@] . o S+
o | —— sim. B e
£ N i s
5 o l/a =2 ’. S,
.9 7z 7 < S

* .
=2 - A iy
- 70 rard
° o Lz LA
> A 2 A . /1/ =8
% o & - B a
[0] i o ’/’.-/"
v T
o o P
o o e.:-f-—“@'

o

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Offered Load

Figure 2: Comparison of ML, ML(3), and FIFO on Four Processors.

Eight Processors

o
O .
£° | --- FIFO R
ke
g] - ML(3) A
Dc,, 8 : ,4"' o
1 —— sim 1/,=2 L s
{4 ol 5
) © @ ,.é //.-'//
{/;] , o’ .'o
g o
., Vd "/
b g s
o © PR
> T T ¥ s
£ o AR R Y
3 e
] ~ LA
S ,.—-0'!/.:'5"’
i o. - 0——-.@0:::_’.—
o

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Offered Load

Figure 3: Comparison of ML, ML(3), and FIFO on Eight Processors.

19

One Processor

0.4

0.2

Probability of Missing Deadline

0.0

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Offered Load

Figure 4: Accuracy of Bounds and Comparison of FIFO to ED(3).

different mean deadline intervals, 1/a = 2,4,8. Also included are loss probabilities
obtained from simulation for the case 1/a = 8 and high traffic loads. We first observe
that for low traffic loads, the fraction of jobs that miss their deadlines can be expressed
as /(e +1). We also observe that the bounds are not as close to each other for this
system as they were for ML. For example, using the average of the bounds as an
estimate for Qgp may result in an error of as much as 15%. when 1/a = 8 and the

arrival rate exceeds 0.8. The errors are significantly less for other reported parameter
values.

We also observe a significant difference between FIFO and ED(3). ED(3) can decrease

the fraction of jobs that miss their deadlines by as much as 15% at very little increase
in overhead.

5 Summary

In this paper we considered the problem of analyzing ML and ED for systems in
which jobs have real-time constraints. This is important because these two policies are
known to be optimal under a large class of workload assumptions. We observed that the
Markov chains associated with these policies are not amenable to exact analysis. Hence
we modified the Markov chains so as to develop two families of Markov chains which

20

can be shown to provide bounds on the performance of ML and ED. The resulting
Markov chains were easier to solve numerically.

In addition, the Markov chains that produce the pessimistic bounds correspond to
implementable families of policies M L(n) and ED(n) where n corresponds to the max-
imum number of jobs at the head of the queue that are scheduled according to the ML
and ED rules. The remaining jobs are treated in a FIFO manner. We observed that
ML(3) and ED(3) can provide a 5% to 15% improvement in performance over a policy
such as FIFO that does not use any laxity or deadline information.

Several generalizations of this work appear straightforward. For example, it should be
possible to conduct a similar analysis of ML for the M/G/1+M system by studying
the system behavior at departure instances and for the G/M/14+M system by studying
the behavior at arrival instances.

The work reported in this paper does not completely solve the problem of estimating
the performance of ML and ED through analytic means. As we have observed, the
distance between the bounds on the fraction of jobs missing their deadlines increases
as the mean laxity and mean relative deadline increases. Hence work remains to be
done to develop tighter bounds for this region of the workload parameter space.

21

Appendix

We list the equations that must be solved by the stationary distribution, m(z,8), 1 <
¢, s € B,for ML.

Ar(0,A) = pm(1,A), (6) .
(A+ip)m(i,A) = An(d — 1,A) + (1 + Dpn(i + 1,A), 1<i<cg, (7)
(A + cp)m(c,A) = Am(c — 1,A) +ep Y m(c, 107) + am(c, 1), (8)
=0 :
[} g-1
Adcp+ad mij+d ni|w(c,1m0™ ... 1™e-1Qme-211™s) =
Jj=1 J=1
Am(c,1™1Q™ ... 1Me-1 (-1 1Mo 1)
g-1
+a) (mi + ng + 1)w(1™0™ .. 1™EQREFL L. [™1 QRe-1 1)
k=1
my—1
+a Y D (T4 1)r(amom ... gre-r1to1™E Qe L L 1Mo g1 1)),
kmp>1 I=1
mj,n; >0,1<j<g-1,my;>0,1<yg, (9)

g
(A + Cﬂ+az:(mj +n_-,')) 7‘,(c,].rruom ...1m90ﬂg) =

i=1

+ epm(1™0™ - .- 1™oQ™ 7 1) + cpm(1™10™ - - - 1™eTQRe)

g
+a) (mi + ng+ L)m(1™0™ ... 1™ QmF1 ... ™)

k=1
mip—1
+a Y D (L4 L)m(1mom ... gne-1101memigRE L L 1),
kmp>1 I=1
m;,mn >0,1<5<g,1<g. (10)

References

[1] F. Baccelli, P. Boyer, G. Hebuterne, “Single-Server Queue with Impatient Cus-
tomers”, Adv. Appl. Prob. 16, pp. 887-905, 1984.

22

[2] D.Y. Barrer, “Queueing with Impatient Customers and Indifferent Clerks”, Oper-
ations Research 5, pp. 644-649, 1957.

(3] D.Y. Barrer, “Queueing with Impatient Customers and Ordered Service”, Opera-
tions Research 5, pp. 650-656, 1957.

[4] J.W. Cohen, “Single Server Queues with Restricted Accessibility”, J. Eng. Math
3, 4, pp. 265-284, Oct. 1969.

[5] B. Gavish, P. Schweitzer, “The Markovian Queue with Bounded Waiting Time”,
Management Sci. 23, 12, pp. 1349-1357, Aug. 1977.

[6] R.B. Haugen, E. Skogan, “Queueing Systems with Stochastic Timeout”, IEEE
Trans. on Communications 28, 12, pp. 1984-1989, Dec. 1980.

[7] J. Hong, X. Tan, and D. Towsley, "The Binary Simulation of the Minimum Laxity
and Earliest Deadline Scheduling Policies for Real-Time Systems”, COINS Tech-
nical Report 89-70, Dept. of Computer and Information Science, University of
Massachusetts, July 1989.

(8] J.F. Kurose, R. Chipalkatti, “Load Sharing in Soft Real-Time Distributed Com-
puter Systems”, IEEE Trans. Comp. 36, 8, Aug. 1987.

[9] S.S. Panwar, D. Towsley, J.K. Wolf, “Optimal Scheduling Policies for a Class of
Queues with Customer Deadlines to the Beginning of Service”, J. ACM 35, 4,
pp. 832-844, October 1988.

[10] S.S. Panwar, D. Towsley, “On the Optimality of the STE Rule for Multiple Server
Queues that Serve Customers with Deadlines”, COINS Technical Report 88-81,

Dept. of Computer and Information Science, University of Massachusetts, July
1988.

[11] R.E. Stanford, “Reneging Phenomena in Single Channel Queues”, Mathematics of
Operations Research {, 2, pp. 162-178, May 1979.

[12] J.A. Stankovic, K. Ramamritham, eds., “Tutorial: Hard Real-Time Systems”,
Computer Society Press of the IEEE, 1988.

[13] D. Stoyan, Comparison Methods for Queues and Other Stochastic Models, John
Wiley & Sons, 1983.

23

[14) W. Zhao, J.A. Stankovic, “Performance Analysis of FCFS and Improved FCFS
Scheduling Algorithms for Dynamic Real-Time Computer Systems”, submitted to
the 1989 Real-Time Systems Symposium.

24

