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their deadline. For the preemptive G/M/c/K queue with deadlines until the end
of service, STE maximizes the fraction of customers completing by their deadlines
out of the class of service independent policies and LTE minimizes the fraction
completing by their deadlines out of the class of non-idling, service independent
policies. In all of these systems, STE is the policy that schedules customers closest
to their deadlines and, in the case of buffer overflow removes the customer closest
to its deadline. LTE, on the other hand, schedules and removes customers farthest
from their deadlines. We further show in the case of the nonpreemptive G/M/c/K
queue where deadlines are to the end of service, that the best service time inde-
pendent policies (i.e., those that provide low loss probabilities) belong to the class
of shortest time to extinction with inserted idle time (STEI) policies. This result
is shown to be true for the G/GI/c/K queue in the case that deadlines are to the
beginning of service. Here an STEI policy requires that the customer closest to his
deadline be scheduled whenever a customer is scheduled. An STEI policy also has
the choice of inserting idle times while the queue is nonempty. Last, some results
are given for systems where servers take vacations.



1 Introduction

Increasing interest has been shown recently in the design and analysis of real-time mul-
tiprocessor systems. The workloads served by these systems consist of customers that
have real-time constraints, i.e., customers must complete or enter service by specified
deadlines. For some systems it is unacceptable for any task to miss its deadline. In
these systems task service demands are usually well understood and a substantial lit-
erature has focussed on the development and evaluation of scheduling policies for these
workloads, [14,15]. Other workloads consist of tasks for which it is not critical that all
tasks meet their constraints. Usually, the service requirements and the arrival patterns
are not as well understood and the objective is to design policies that will minimize
the fraction of tasks that miss their deadlines. The purpose of this paper is to study
optimal policies for this second class of workloads.

In this paper we consider as our model for a multiprocessor, a multiple server queue
with either finite or infinite capacity, that serves customers with deadlines. We study
the effect of different service and buffer overflow policies on the fraction of customers
which successfully complete service, i.e., do not miss their deadlines. We show that, out
of the class of service-time independent policies, the shortest time to eztinction policy
(STE) maximizes and that out of the same class of policies that are also non-idling
the longest time to eztinction policy (LTE) minimizes the fraction of customers that
successfully complete service by their deadlines for the preemptive continuous/discrete
time G/M/c/K queue when customer deadlines are to the end of service. Here STE
is the non-idling policy that schedules the customer closest to his deadline and, in the
case of buffer overflow, removes the customer closest to its deadline. LTE schedules or
removes customers farthest from their deadlines.

When we restrict ourselves to systems that do not allow preemptions, we have two
kinds of results. First, out of the class of non-idling service time independent policies,
STE and LTE respectively maximize and minimize the fraction of customers making
their deadlines for the continuous/discrete time G/M/c/K queue. This result holds
for systems where deadlines are to the beginning of service or to the end of service.
Second, out of the class of service time independent policies, the best policies lie in
the class of shortest time to eztinction with inserted idle times (STEI) policies. This
holds true for the G/M/c/K queue when deadlines are until the end of service and
for the G/GI/c/K queue when deadlines are to the beginning of service. preemptions.
Whenever the queue is not empty, an STEI policy either schedules no customer or
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schedules the customer closest to its deadline. Buffer overflow is handled by these
policies by removing customers closest to their deadlines.

Last, some additional results are presented for preemptive systems. These include 1)
an extension of the above results to systems where servers take vacations, 2) STE is
the optimum STEI policy for the G/G/c queue, i.e., STE maximizes the fraction of
completions before deadlines, and 3) the policy that maximizes the fraction of customers
that complete by their deadlines in the G/G/c/K queue belongs to the class of non-
idling policies.

The shortest time to extinction (STE) policy, which will be described in Section 2, is
very similar to the earliest due date (EDD) scheduling policy proposed by Jackson [12].
Consider a set of n tasks {T;,1 < i < n} with the corresponding n due dates {d;,1 <z <
n}. Let the finishing times under schedule § be fi(S ). Then the lateness of T is defined
as f;(S) — d; and the tardiness is defined as maz{0, f;(S) — d;}. Jackson showed that
the maximum lateness and maximum tardiness are minimized by sequencing the tasks
in the order of non-decreasing due dates. As we shall see in Section 3, STE scheduling
differs from EDD scheduling in that it never schedules tasks which are already past
their due dates. Note that the tasks and their due dates are known a priori under
Jackson’s model. Similar problems, for models other than queueing systems, have also
been studied in [8,16,19,20,23]. In the packet-switching context, variations of the EDD
policy for queueing models have been studied in [13,4]. Doshi and Lipper consider
optimal service disciplines for queues with delay dependent customer behavior [9]. In
queueing theory literature, queues with impatient customers have been usually analyzed
assuming a FCFS scheduling policy [1,6,10]. An analysis of STE for the preemptive
M/M/1 queue (deadlines to the end of service) and the nonpreemptive M/M /c queue

(deadlines to the beginning of service) can be found in [17).

In (18], we have considered the problem of a single server queue with impatient cus-
tomers under the assumption that deadlines are until customers enter service. We
showed that STE is optimal for a large class of infinite capacity single server queues.
The shortest time to extinction with unforced idle times (STEI) class of policies are
shown to be optimal for a larger class of queues. Similar results for the continuous
time single server infinite capacity queue when the deadlines are to the end of service
can be found in [17,2]. Our results generalize these previous results in several ways.
First, our results are for multiple server queues, and in some cases, servers are allowed
to take vacations. Second, in the case, of finite capacity queues, they include the effect



of buffer overflow policies. Last, the results in [17,2] are based on interchange argu-
ments which obscure their physical interpretation. The proofs in this paper are based
on defining a state of the system based on the set of extinction times of the customers
in the system and using a forward induction argument to establish dominance of one
state over another when operating under different policies. This method provides a
clearer understanding of the differences between STE, LTE, and non-STE policies. In
addition, we are able to establish orderings among buffer occupancies between STE,
LTE, and non-STE policies (Section 6). This approach has also been used to develop
bounds on the performance of these policies, (see [11}).

This paper is organized as follows. Section 2 contains a model of the system under
study along with definitions of the different scheduling policies of interest to us. The
main results of the paper are contained in sections 3, 4, and 5. Section 3 contains the
results for systems with deadlines to the end of service that allow preemptions, section
4 contains results for systems for systems with deadlines to the beginning of service,
and section 5 contains results for systems with deadlines to the end of service without
preemptions. Section 6 provides some extensions of these ordering results to buffer
occupancies. We summarize our results in Section 7.

2 Definitions and Notation

We consider three different multiple server queues,

o Preemptive queues with deadlines to the end of service.

e Nonpreemptive queues with deadlines to the end of service where a customer that
misses its deadline while in service is aborted,

o Nonpreemptive queues with deadlines to the beginning of service,

We assume that the queue has a capacity for K customers. In all of these systems let
T: denote the arrival time of the i-th customer and A; denote the time between the
arrivals of the (¢ — 1)-th and i-th customers. We assume that 4; is a random variable
with arbitrary distribution. Let E; denote the extinction time of the 2-th customer
(i.e., the time by which it must be served). Here E; = T; + D; where D; is a random
variable with a general distribution. We shall refer to D; as the real time constraint or

the relative deadline for customer i. Last, let {B;}1<; be an independent and identically
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distributed (i.i.d.) sequence of random variables with a general distribution which will

be used to assign service times to customers.

We shall use the notation Ay = {4:h<i<n, Dy = {Di}i<i<n, Bn = {Bi}1<i<n, and
Sy = (An,Dy,By),1 < N. In addition, whenever we focus on a specific sample
realization of the above r.v.’s, we shall use lowercase notation (i.e., a; for 4;, etc ...).
Furthermore, we shall let @ = {a;}1<i;, b = {bih<i, d = {d:}1<i, an = {aihicicn, by =
{b:}1<i<n, and dy = {d:}1cicn. Last, let s = (a,d,b) and sy = (an,dn,bn), N =
1,.... These last two quantities will be referred to as an input sample and finite input
sample respectively.

At this point in the paper we will not specify how service times from the sequence {B:}
are assigned to customers. The assignment rule will depend on which system we are
interested in and on what property we wish to prove with regard to that system. We
use the notation A/C/D/E+ F to denote a queue with customer deadlines where A,
C, D, and E have the same meaning as in Kendall’s notation while F describes the
distribution of the relative deadlines. Last, we make the assumption that {B;|1 < i} is
independent of {4;} and {D;}.

Let 7 be a policy that determines what customer in the queue is to be executed (if
any) whenever the server is free. This policy makes its decision based on the customers
that are eligible for service as well as on the past history of the system. We wish to
choose 7 so that we maximize the fraction of customers beginning service before their
respective extinction times. Consider a system in which exactly N customers arrive for
service. We define Vy(7) to be the number of customers served for this system. We are
interested in the fraction, Vy(7) = E[Vn(7)]/N, of customers served in this system.
We define the fraction of customers served in the system as N — oo (under policy =)
to be
V() = liminf V y(m).
N—oo

Finally, let V = sup, V().

Let Cx(t) = {¢j,Cips*»Cjn} denote the set of customers in the queue at time £ and
Ra(t) = {€i15Cin>* " »CinrCinsrs* "+ Cim } denote the set of all customers in the system at
time t,7; > 1, 1 < i < m. Here ¢; denotes the i-th customer to arrive to the system.
We denote the sets of extinction times associated with these two sets of customers are

denoted by E.(t) and R.(t).



Consider the actions that policy 7 can take at time t. If all the servers are busy,
then 7 takes no action if preemptions are not allowed. If any server is idle at time
{ or if preemptions are allowed, then 7 can either schedule no customer or schedule
customers from C,(t). Policy = is allowed to choose one of these actions according to
some distribution that depends on 7,C,(t) and the previous history H, (to be defined
later in this section). We define p;(m,t, H;) to be the probability that 7 schedules
customer ¢; € Cr(t),j = 1,2,--- on an idle server and po(m,t, H;) to be the probability
that r chooses to schedule no customer.

If = chooses not to schedule a customer at time ¢ and Cr(t) # 0, then it delays making a
new scheduling decision by a random amount of time 7 with some arbitrary distribution
function F,(z|H,) (r takes on discrete values in the case of a discrete time queue). The
policy does not perform a scheduling decision until either 7 time units elapse or an
arrival occurs. Without loss of generality, we may impose one last constraint on ,
namely, 7 is prohibited from scheduling two successive idle times on the same server
when the queue is nonempty unless they are separated by the arrival of one or more

customers.!

In the case that = is allowed to preempt customers, we introduce some additional
parameters. If 7 decides to schedule a customer at time i, then g(w,t, H,) is the
probability that the customer will not be preempted in the absence of customer arrivals
and service completions. The customer is scheduled for preemption with probability
1—g(m,t, H,) and is provided with 7 units of service where 7 has cumulative distribution
function H,(z|H,). The customer is preempted after 7 units of time provided it has
not completed by that time and there have been no arrivals or service completions
of other customers. If an arrival or a service completion occurs, then = is allowed to
reschedule the customer if it so desires.

Last, when a customer arrives to find the queue full, a policy = is required to determine
which customer to remove. In this paper we assume that any customer is a candidate
for rmoval, whether in service or waiting for service. Let customer c; arrive at time .
We let r;(m,t, H,) denote the probability that customer ¢; € R.(t) U {c;} is removed.

The history of the system up to time ¢t may be defined by H, = (a.,d:, 7, fi, €:, us,0:)
where a; is an ordered set of arrival times of all customers that arrive prior to t,d, is
an ordered set of relative deadlines corresponding to the customers that arrive prior

1 Any policy that schedules two successive idle times can be transformed into a policy that does not

schedule two successive idle times.



to t,7s, fi, €, are ordered sets containing the times of all scheduling decisions prior
to time t, the identities of the customers and the servers to which they were scheduled
respectively. The set o, the identities of customers that were removed from the system
due to buffer overflow along with the times at which the removals ocurred. In addition,
a, is an ordered set of the service times for customers completed prior to time t.

2.1 Scheduling Policies

We now introduce the scheduling policies of interest to us in this paper. Let t; denote

the time of the k** scheduling decision since time ¢ = 0.

Definition 1 Policy  is the shortest time to eztinction policy (STE) if at time t},(1 <
k), it always schedules the eligible customer with the smallest deadline on any one of the
available servers. In addition, the server is always busy as long as eligible customers

are available which have not yet been served, i.e po(m,t) = 0 whenever the server 18

available and C(t) # ¢.

An example of how STE schedules a given set of arrivals is shown in Fig. 1(a) for a
single server system when deadlines are to the beginning of service.

Definition 2 Policy w is a shortest time to eztinction with inserted idle times (STEI)
policy if, at time ), it schedules the eligible customer with the smallest deadline on
any one of the available servers. In other words, po(w,t}) > 0,pi(m,t;) 2 0 if 7 =
arg Min; ,.¢. c;€Cx(t)) E.(t,) and pj(7,t,) =0 otherwise.

STE is an example of a STEI policy. Fig.1(b) shows how an STEI policy might schedule
the same set of arrivals as shown in Fig. 1(a). Note that the STEI policy schedules
all the arrivals while the STE policy leads to the loss of one arrival in this particular
case. Fig. 1(c) illustrates how a FCFS (first-come, first-served) policy schedules the

arrivals.

Last, we define the longest time to extinction policy (LTE).

Definition 3 Policy 7 is the longest time to eztinction policy (LTE) if at time t}, (1 <

k), it always schedules the eligible customer with the largest deadline on any one of the
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available servers. In addition, the server is always busy as long as eligible customers
are available which have not yet been served, i.e po(w,t) = 0 whenever the server is

available and C.(t) # ¢.

2.2 Buffer Overflow Policies

We are concerned with the class of buffer overflow policies that can remove any cus-
tomer, whether in service or not. Let a customer arrive at time ¢ to find B customers
in the system.

" Definition 4 Policy 7 is the shortest time to eztinction (STE) buffer overflow policy
if at time t it always removes the customer with the smallest deadline from the system.

Definition 5 Policy 7 is the longest time to eztinction (LTE) buffer overflow policy
if at time t it always removes the customer with the largest deadline from the system.

When talking about policies for finite capacity systems, it is necessary to specify both
a scheduling policy, 7, and a buffer overflow policy, 7,. However, in the remainder of
the paper, 7 will refer to the combination of two such policies, STE will refer to the
combination of the STE scheduling policy and the STE buffer overflow policy, LTE
will refer to the combination of the LTE scheduling policy and the LTE buffer overflow
policy, and STEI will refer to the STEI scheduling policies coupled with the STE buffer

overflow policy.

3 Preemptive Systems with Deadlines to the End
of Service

In this section we show that STE is the best service time independent policy for the
preemptive continuous time and discrete time G/M/c+G queue when deadlines are
to the end of service. We also show that LTE is the worst non-idling service time
independent policy for the G/M/c+G queue. Both of these results are shown to apply
to queues where servers take vacations. We conclude the section with a proof that the
best policies are non-idling policies for any preemptive system and that STE is the
best STEI policy for any preemptive multiple server queue. The basis of our proofs



of most of these results and the results for nonpreemptive policies is the comparison
of sets of extinction times. We will show that the set of extinction times for eligible
customers under STE dominates the set of extinction times under any other policy
and that these, in the case of non-idling policies, dominate the set of extinction times
under LTE. Consequently, we turn our attention to the definition of dominance and
the derivation of properties that it satisfies.

Consider two sets of nonnegative real numbers R = {z1,22," ", 2.} and S = {y1, %2, Ym}
each ordered so that z; > z;y1,1 =1, -1 and % 2 ¥it1, 1=1,---m.

Definition 8 We say that R dominates S (R > §)ifn 2m andz; > y;, 1 =1,2,---m.
We define the following three operations

o Large(R,k) = {z1,22,---,2&}, 0 <k <m.
o Small(R,k) = {Zn-k+1,""*»En}, 0S kS

o Shift(R,z) = {z;i —z | z;: > z}.

The following lemma gives conditions under which dominance is preserved when set
operations, the Large operation, and the Shift operation are performed on R and S.

Lemma 1 IfR > S, then:

1. R+ {z} > S+ {z}, forz >0,

2. R—{z.} > S, when n > m,

3. R> S —{y}, wherey €S,

4. R—{z} > S —{y}, wherez € R,y € S, and z < ,

5. Assume that R = {21, --,zn} where &; > 2i1, 1 21 <7 end S ={y1, " sYm}
where y; > yis1, 1 <i<m. Then R — {zx} > S — {y;} for k>3,

6. Shift(R,z) > Shift(S,z).
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7. Large(R,|S|) > S.

8. Assume that R and S can be ezpressed as R = Ry + Ry and § = 51 + S, such
that By = Si, |Rs| = n, |S2] = n' with n > n'. Let Ry = (1,T2y "3 Zn)
and So = (Y1,Y2," ", Yn) where T; > ziy1 and Yi 2 Yin, i=1,---n' —1, then
R—{z;} = S —{y} fori=1,---,n".

Proof: The proof of 1, 2, 3, and 6 may be found in [18]. Properties 4, 5 and 7 follow
from the operations performed on R and § and the definition of “>". The proof of 8
is more intricate and is given below.

The proof of 8 is by induction on n, the cardinality of R,. We first observe that the
case n > n' can be reduced to the case n = n' by simply inserting n — n' zero elements
into R, S, Ry, and S,. Thus we assume that n = n'.

Basis Step. When n = 1 and S, = 0, the Lemma is trivially true. When S, = {y:1},
then R—{a1} =R > 51 =5~— {w:}.

Inductive step. Assume that the Lemma is true for |Rs| < n. We now establish it
for |Ry| = n + 1.There are three subcases according to the number of elements z;
in R, such that z; > vy; € S,. If the number is zero, then according to property 4,
R—{z:} = § — {y:} for 1 <1 < n'. Consider the case that the number is two or more.
Let z; and y; be elements such that @; > y;. Define R, =Ry +{z:}, §51 = 51 + {v:},
R, = R, — {z:}, and Sy = S» — {x:}. We have R = R, + Ry, § = 8§ + S;. Since
z; > v;, we also have R} = §]. Thus we can apply the inductive hypothesis to show
that R — {z;} = S — {y;} for j # 1. Since there are two elements for which z; > i, we

can extend it to 7 = 1.

We now consider the case where there is only one element in R, such that z; > vi.
Let 71,72, ,7m denote the elements in R in non-increasing order and s1,82," ", Sm!
denote the elements in S also in non-increasing order. Here m = |R| and m' = |S]. Let
{ky,kq, -, kn} and {j1, 72, -,Jn} be sets of integers such that 7, = z; and s; = u,

=1,---n. Note that z; > y; implies that k;_, +1 < ji <m'—(n—1). If ; > k;, then
property 5 can be applied to yield R — {z:} = S — {y:}. Let us now consider the case
kii+1 < j; < ki. The sets R— {z;} and § — {y:} can be expressed as Tl s ool o)

and {s!,sh, - sh,_,} where

1 Tl 1 S [ < kia
T =
Tie1, ki Sl <m,
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s = Sy, 1<l< j.',
! Si41, Ji < I<m.

Since R > S, it follows that 7} > s} when 1 <1 < j; — 1 and when k; < I<m'—-1In
addition 7} > s} when k; + 1 < I < j; because R; = §; and j; > k;-, + 1. Therefore, we
have shown that R — {z;} = § — {v:} for this case. The relation R — {z;} » § — {y;},
j # i follows from z; < y; and property 5. O

In order to proceed with our treatment of preemptive systems, we introduce the no-
tation X .(t) = (n.(t), Ex(t)) where n,(t) is the number of customers that have made
their deadlines by time t. We refer to this as the state of the system at time ¢ under
policy 7. We introduce the following notion of dominance between states.

Definition 7 We say that X ., (t) dominates X ,(t) (Xx,(t) = Xn(t)) iff

1. ng(2) 2 1y (2),

8. Euy(t) = Small( B, (), | Bny(1)] + 1 (1) — o, (1)).

Before we prove the main result of this section we describe some guidelines used to
assign customers to servers and service times to customers. Without loss of generality
we restrict ourselves to policies that satisfy the following rules.

o If the number of customers being served at some point in time is 7 < ¢, then the
first 1 servers are busy.

o If servers ¢ and j are occupied where i < j, then the deadlines of the customers
assigned to these servers must be in non-decreasing order.

If policy m does not satisfy the above rules, we can always construct a policy 7~ that
satisfies these rules so that Vy(r) = Vy(7") for all N and V(x) = V(=*). There also
exists an STE policy that satisfies the above rules.

We now discuss the method by which we assign service times to jobs. Divide B into
¢ + 1 sequences, BU) = {B;;}i=1,.., j = 1,2,---,c¢+ 1. Consider the i-th customer. Let
m! denote the number of times it is scheduled. Let s;1,8i2,",Sim! be the times at

which it is scheduled, ¢; 1,42, ,gim:-1 be the times at which it is preempted, k; the

12



identity of the server at which it completes, and m; = min{j|>7_, > Sim:}. If the i-th

customer misses its deadline, then k; = 0. The service time, X; of the i-th customer is

X, = { iy (gig = 8ig) + T Bk — Sigmt, ki # 0, (1)

o ngl(qz',t — 8i1) + Biet1, . k;=0.

We claim that the service times received by customers according to this assignment
~ rule are i.i.d. exponential r.v.’s with parameter px.

Theorem 1 STE mazimizes the fraction of customers that complete service before
theri deadlines out of the class of service time independent policies for the G/M/c/K+G

queue when the deadlines are to the end of service, i.e., VN(STE) > Vy(x), N > 0,
V(STE) > V(=) where  is any service time independent policy.

Proof: The proof by forward induction on the times that the following events can
occur,

o & - arrival to both systems,

e & - completion of a job in either or both systems,

e &, - job missing deadline under one or both policies,

Let (t0,00),(1,01),- - - be the sequence of times and events that occur at those times,

i.e., event o; occurs at time ¢; where o; € {&, &1, &2}

We will demonstrate that X srg(t) = X «(t) for every sample § = s and ¢ > 0 provided
that XSTE(tO) > X (o).

According to property 6 of Lemma 1, if Xsrg(t;) = X.(t:), and t; < 41, then
XSTE(t) - X,r(t) for t; <t < t;41.

We proceed with our inductive argument.
Basis Step: The hypothesis is trivially true for ¢t = ,.

Inductive step: Assume that Xgre(t) > X () for I < 7. We now show that it also
holds for z + 1. There are three cases according to the type of event.

13



Case 1 (0i41 = &): There are four subcases according to whether there is overflow in
neither, either, or both systems. In all four subcases, neither n, nor ngrg are affected.
In the case of no overflow in either system, property 1 of Lemma 1 guarantees that
X sre(tiv1) > Xx(tiv1). In the case of an overflow under =, property 3 of Lemma 1
guarantees that X srp(tiy1) > X #(ti41). If overflow occurs under STE, then it must be
the case that |Esrg(t,)| > |Small(Ex(t5,), |[Ex(t1)|+nx(tiv1)—nsrE(tit1))|. Hence
property 2 of Lemma 1 is applicable and the result follows. The last case corresponding
to overflow under = and STE is handled by property 5 from the Lemma.

Case 2 (0i41 = &1): There are three subcases according to whether the completion is
under 7, STE, or both policies. If the completion is under 7 only, then it occurs on
server j where j > |Esrg(t;,,)|. This implies that |E.(t,)| > |Esre(t;,,)| which
further implies that nsrg(t;,) > n.(t7,). Consequently nsre(tiy1) = nsre(ty,) =
na(tig) = na(ty) + 1 and Esrp(tivi) = Esre(tig) = Small(Ex(ti,), [Ex(t,) +
nx(tin) — nste(tin)) = Small(Ex(tin), |Bx(tis1) + na(tisn) — nsre(tiva)). Hence
Xsre(tiv1) = Xa(tiz1).

If the completion is under STE only, then a similar calculation yields X srg(tit1) >
X(tiy1). '

If the completion is under both policies, then property 5 of Lemma 1 ensures that
X ste(tiv1) > Xx(tiy1).

Case 3 (0;41 = &;): Again there are three subcases according to whether the customer
misses his deadline under 7, STE, or both policies. If under w, property 3 of Lemma 1
is applicable. If under STE, property 2 of Lemma 1 is applicable. Last, property 4 of
Lemma 1 is applicable when the losses occur under both policies.

It follows that E[Vn(STE)|S = s] > E[Vn()|S = s] and Vn(STE) > Vy(x) for
N =1,2,--- and V(STE) > V(=). O

Similar arguments can be used to show the following result at the other extreme.

Theorem 2 LTE minimizes the fraction of customers that complete by their deadlines
out of the class of non-idling service time independent policies for the G/M/c/K+G
queue when the deadlines are to the end of service, i.e., VN(LTE) < Vy(w), N > 0,

V(LTE) < V(=) where 7 is any non-idling service time independent policy.
Remark. Similar results can also be proven for the discrete time bulk arrival G/M/c/K+G
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queue. Here the service time consists of an integer number of time units that is given
by a geometric r.v. This model is of particular use in data communications in the case
that the service time is always a single time unit. It forms the basis of many models of
statistical multiplexers. In the case that customers require a single time unit of service,
there is no distinction between preemptive and non-preemptive systems. Furthermore,
there is no distinction between systems in which customers must meet their deadlines

either by the time service begins or by the time service completes.

Theorem 1 can be generalized to include systems in which servers take vacations. This
is of interest for at least two reasons. First, processors in any multiprocessor system
are prone to failures. Second, systems in which servers take vacations can be used to
model real-time systems with two classes of customers. For example, one class of tasks
may be unable to tolerate missed deadlines. The second class of jobs may be able to
tolerate some missed deadlines. If the tasks in the first class are well understood (i.e.,
known service times, arrival times), they can be given higher priority than the second
class of tasks and scheduled independently of the second class. The second class of
tasks are like the customers that we have considered in our model for which the object
is to develop policies that will minimize the fraction of tasks that miss their deadlines.
Thus tasks in the second class see a system where servers take vacations.

Let {U;;, W;;}i=1,.., 3 = 1,2,++-,c be families of r.v.’s such that U;; is the length of
the i-th time interval during which the j-th server is available for service and W; ; is the
length of the i-th time interval during which the j-th server is on vacation (unavailable
for service). We allow these sequences of r.v.’s to have arbitrary statistics so long as
they are independent of A, B, D. In this case we state the following result.

Theorem 3 STE mazimizes the fraction of customers that make their deadlines in the

preemptive continuous and discrete time G/M/c/K+G queue with vacations when the
deadlines are to the end of service, i.e., Vy(STE) > Vy(m), N >0, V(STE) > V(~)

for any service time independent policy .

Proof. The proof is similar to that given for Theorem 1 and is omitted here. O
Remark. Theorem 2 can be generalized in a similar way.

We conclude this section with the statement of properties of the best policies for the
preemptive system. These are
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Theorem 4 STE is the STEI policy that mazimizes the fraction of customers that
complete by their deadlines for the precemptive G/G/c/K+G queue. In other words,

Vn(STE) > Vi(w) (1 < N) and V(STE) > V(x) for any w in STEL

Proof. This theorem is more easily proven using an interchange argument rather than
forward induction. We sketch the proof. Consider an input sample S. Consider some
STEI policy v # STE. Consider the first time o that 7 deviates from STE. Let ¢ denote
the customer with the shortest time to extinction at time to. It is possible to construct
a new policy 7= that schedules c at time 2o and behaves like 7 elsewhere except that
whenever 7 schedules ¢ and ¢ has completed under #~, 7" lets the server remain idle.
It is easy to convince oneself that =~ will have the same or better performance as 7
on the input sample S and that successive interchanges will produce STE with the

best performance. As this is true for any sample path, it follows that V~n(STE) >
Vn(r) (1 < N) and V(STE) > V(r). O

A similar argument can be used to prove the following result.

Theorem 5 Consider the preemptive G/G/c/K+G queue with deadlines until the end
of service. For any policy w that idles servers when there are waiting customers, there

ezists a non-idling policy 7 such that Vn(7") 2 Vn(r), N >0, and V(7*) > V().

4 Non-Preemptive‘ Systems with Deadline to End
of Service

In this section we show that STE is the best policy and that LTE is the worst policy
from the class of non-idling policies for the non-preemptive G/M/c/K+G queue when
deadlines are to the end of service. Furthermore, we show that there exists a STEI

policy that provides performance better than or equal to that of any service time
independent non- STEI policy for the G /M/c/K+G queue.

Consider a policy 7 that is allowed to preempt a customer solely to move him to another
server. We refer to this as a limited preemption policy and claim that the performance
of this policy does not differ from a policy that uses the same scheduling rules except
that it does not allow preemptions. We will find it easier to work with these limited
preemption policies. Specifically, we consider limited preemption policies that enforce
the following rules:
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o If the number of customers in service, n is less than the number of servers, then

they are placed on the first n servers.

o Customers are placed on servers such that the deadline associated with the cus-
tomer on the i-th server is greater than or equal to that associated with the
customer on the (i + 1)-th server.

Customers are assigned service times according to the same rule used in analyzing the

system that allows preemptions (see section 3).

Theorem 6 STE provides the best performance of all non-idling service time indepen-
dent policies for the non-preemptive G/M/c/K +G queue when the deadlines are to the
end of service, i.e., Vny(STE) > Vy(r), N >0, V(STE) > V(x) for any non-idling

service time independent policy .

Proof: Though similar to the proof of Theorem 1, the proof of this theorem is more

intricate because of the fact that the set of deadlines of the customers in service under
STE may not dominate the set of deadlines of the customers under an arbitrary policy

7. We show instead that both Espg(t) = E«(t) and Rsrp(t) > R, (t) for every sample
path § = s using a forward induction argument on the times of events. These events are
the same as defined in Theorem 1. Let (to,00), (t1,01),- - - be the sequence of times and

events that occur at those times, i.e., event o; occurs at time ¢; where o; € {50,51,52}.

We note as in Theorem 1 that if Esrgp(t;) = Ex(t;) and Rsrp(t:) =~ R.(t;) and t; < i1,
then Esrg(t) - E(t) and Rsrp(t) = R(t) for t; <1 <{liy1.

We proceed with our inductive argument.
Basis Step: The hypothesis is trivially true for ¢ = to.

Inductive step: Assume that Esrp(t) = Ex(t) and Rsrp(t) = Rx(4;) for I <i. We

now show that it also holds for 7 + 1. There are three cases according to the type of
event.

Case 1 (0i41 = &): This case is similar to case 1 in Theorem 1 and the details are
omitted.

Case 2 (01 = &1): There are two subcases according to whether the completion s
under STE or both policies. (Note: according to the inductive hypothesis and the
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server assignment rule, a completion under 7 implies a completion under STE.) If the
completion is under STE only, then E,(tiy1) = 0 which implies that E srE(tis1) >
E,(ti+1). Because of the way that customers are assigned to servers, the deadline
of the completed customer cannot reside in Large(Rsre(t), [ R«(t7)])- Consequently
Rsrp(tis1) = Rx(tisa). 1f the completion is under both policies, then property 8
of Lemma 1 and the inductive hypothesis ensure that Rsrp(tiz1) > R, (tix1). The
inductive hypothesis and the fact that STE will schedule the customer with the smallest
deadline from Cgrg(i;) ensures that property 5 of Lemma 1 can be applied to show
that Esre(tiva) = En(ti+1)-

Case § (0i+1 = &) Again there are three subcases according to whether the customer
misses his deadline under 7, STE, or both policies. If under 7, property 3 of Lemma 1 is
applicable. If under STE, property 2 of Lemma 1 is applicable. If under both STE and
7, then we have further subcases according to whether the customers were in service
or in the queue. In all of these cases, the result is obtained by using property 4 from

Lemma 1.
It follows that V xy(STE) = Vn(r) for N =1,2,--- and V(STE) > V(7). O

Similar arguments can be used to prove the following theorem.

Theorem 7 LTE provides the worst performance of all non-idling service time inde-
pendent policies for the non-preemptive G/M/c/K+G queue when the deadlines are

to the end of service, ti.e., VN(LTE) < Vy(x), N >0, V(LTE) £ V(x) for any

non-idling service time independent policy .

Let us consider now policies that may permit idle processors. We state and prove the
following result.

Theorem 8 For any arbitrary policy w, there exists a STEI policy =~ such that Va(r) 2
V(r), N >0, V(x*) = V() for the G/M/c/K+G queue with no preemptions when
the deadline is to end of service.

Proof: Consider any policy 7 not in the class of STEI policies. We construct an STEI
policy 7 that exhibits the same behavior as . Policy 7~ is given below.

1. 7= maintains ordered lists of customers, A(t), R(t), corresponding to customers
that would be in the queue and to all of the customers that would be in the
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system respectively at time ¢ under 7 when provided the same input sample, i.e.,

A(t) = Ca(2).

2. 7" maintains a history H] identical to the history produced by m when given the

same input sample, i.e., H] = H,.
3. 7 makes scheduling decisions according to the following rules

(a) If at time t |R(t)|—|A(t)| = |Rx-(t)|—|Cx-(1)| then 7" schedules the customer
closest to its deadline with probability 1 — po(m,t, H/). Otherwise, 7~ does

not schedule a customer.

(b) At time t, 7" schedules no customer with probability po(m,?, H}).

4. 7 modifies A(%) as follows,
(a) customer ¢; is removed from A(t) either 1) when its deadline expires, or 2)
with probability p;(m,t, H]) at a time ¢ when 7~ schedules a customer,

(b) customer c; is added to A(t) when it arrives to the system.
5. 7 modifies R(t) as follows,
(a) customer c is removed from R(t) either when its deadline expires or it cor-

responds to a customer in R.(t) that completes service.

(b) customer c is added to R(t) when it arrives to the system.
6. = modifies H| as follows,

(a) at the time of an arrival the arrival time and relative deadline the customer
are added to a; and d;.

(b) at the time of a departure, the service time of the customer is added to d,.

(c) at the time that 7~ assigns a customer to service, the identity of the customer
removed from A(t) (see 4.(a) above) and the time of the assignment are
added to 7; and e;, respectively.

7. 7 removes the customer closest to extinction whenever the system is full at the
time of a customer arrival.
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These rules allow us to couple sample paths under each policy in such a way that we
can show that E,.(t) > E.(t) and R..(t) > Rg(t) for 0 < using a forward induction
argument as before. The details of this argument are omitted as they differ very little
from the arguments given in the last two theorems. It follows that Vy(7) > Vn(x)
for N >0 and V(7") > V().

O

Remark. Similar results can be proven for discrete time queues.

5 The Nonpreemptive Queue with Deadlines to Be-
ginning of Service

In this section we show that there is no class of policies better than the STEI policies for
the non-preemptive G/G/c+G queue when the deadline is to the beginning of service.
We also show that STE is the best policy and LTE is the worst policy out of the class of
non-idling policies for these queues when service times are restricted to be independent
and identically distributed exponential random variables.

We first show that any non-STEI policy 7 can be emulated by some STEI policy 7 in
the sense that V y(m) = Vn(n) for all N and Vi(r) = Vi(n~) for all ¢t. As the proof of
this theorem is similar to that of Theorem 1 and of Theorem 1 in [18] we will merely
provide a sketch of the proof.

Theorem 9 For any policy =, there ezists an STEI policy =~ such that Vy(7~) =
Vy(x), 0 < N, V(") = V(m) for the non-preemptive G/G/c/K + G queue with
deadlines to the beginning of service.

Proof: Consider any policy 7 not in the class of STEI policies. Using the methods
described in the proof of Theorem 1 in [18], it is possible to construct an STEI policy
1~ such that the sample paths are coupled under both =* and . We define n.(t) to
denote the number of customers that have satisfied their deadline under policy m and
T.(t) to be the set of remaining service times for all of the customers in service under
7. The proof that =* has the same performance as is based a forward induction
argument to show that En.(t) > Ex(t), nx(t) = nx (t) and Tx(t) = Tr-(t) at the time
of all events on a single sample path, i.e., arrivals, service completions, assignment
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of customers to processors, and times of extinction). These relations then hold for
the times between events as a consequence of property 7 of Lemma 1. Since this is

true for any sample path, it follows that Vy(7) = Vy(7) for N = 1,2,--- and that
V(r) = V(r). o

We complete the section on multiple server queues with deadlines until the beginning of
service by proving that STE is the best non-idling, service time independent policy for
the non-preemptive G/M/c/K+G system. Before proceeding with the proof, we discuss
the method for assigning service times to customers. Let BY) = {B;;}icy.. (1 <4 <
¢) be ¢ mutually independent sequences of i.i.d. exponential random variables with

parameter . Let these sequences be mutually independent. If a customer is assigned
to the kth server at time ¢, then it receives an amount of service equal to Y=, B — ¢

where m = min{i|}_, Bix > t}. We emphasize that, due to the assumptions on

B(j)(l < j < c), the service time received by this customer is exponentially distributed

and independent of other events in the system. We redefine S and s to be § =
(4,D,BW,... B©)and s = (a,d,b",...,b)

Theorem 10 STE s the best non-idling, service time independent policy for the non-
preemptive G/G/c/K+G system with deadlines until the beginning of service, i.e.,

VN(STE) > Vn(r), N > 0, V(STE) > V(r) for any non-idling, service time in-
dependent policy .

Proof: Define T,(t) = (t()(t),---,#{)(t)) where t)(#) = 1 if server j is busy under =
at time ¢ and 0 otherwise.

As before, the proof is by forward induction. Using the properties of the dominance re-
lation “>~” We show that Egrg(t) > EL(t) and Tsrg(t) > T(t) at each possible event
(i.e., arrival, departure, and deadline miss) for every sample path §. The arguments
are similar to those found in Theorems 1 and 6. It follows that V y(STE) > V y(7) for
N =1,2,--- and V(STE) > V(x). O

Similar arguments yield the following result.

Theorem 11 If 7 is any non-idling policy, then VN(LTE) > V() for N = 1,---,
V(LTE) > V(r) for the non-preemptive, G/M/c/K+G system with deadlines until the
beginning of service.
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Remark. Analogous results hold also for bulk arrival discrete time G/M/c/K+G queues.

The STEI result extends to the case where service times are i.i.d. positive integer valued
r.v.’s with an arbitrary distribution..

6 Extensions

If one is interested in the performance of a multiple server system during a finite period
of time [2], then there exist results analogous to those proven in the preceding sections,
provided that the arrival process is nonexplosive [3, p. 19]. Let Vi(w) denote the
number of customers that make their deadline within the interval (0,t], then we have
the following result for preemptive G/M/c/K+G queues with deadlines to the end of
service and non-preemptive G/M/c/K+G queues with deadlines to the beginning or
end of service,

V(STE) >, Vi(7) 2 Vi(LTE) (2)

for all non-idling policies 7. In the case of preemptive systems
Vi(STE) 2, Vi(r).

Here the “>,,” relation between two r.v.’s is defined as in Ross [21, p. 251]. Random
variable X is said to stochastically dominate random variable Y (X >, Y) iff Pr[X <
g] <PrlY <z}, —o0o <z < 0.

Let M,(r) denote the number of customers in the system at time ¢ under policy =, i.e.,
My(m) = |R«(t)], 0 < t. The following relations can be established provided the arrival
process is nonexplosive for the three G/M/c/K+G queues considered in this paper,

Mg(STE) Z&t Mt(ﬂ’) Z,g Mt(LTE)

for all non-idling policies 7. It should be apparent from earlier proofs that these results
are a consequence of our state definitions and forward induction arguments.

7 Summary

We have shown that STEI policies are among the best scheduling policies for maxi-
mizing the fraction of customers making a deadline in many finite or infinite capacity
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multiple server queues. Furthermore, out of the class of non-idling service time inde-
pendent policies, STE maximizes and LTE minimizes the fraction of customers that
complete by their deadlines for the nonpreemptive G/M/c/K+G queue. Last, if dead-
lines are to the end of service, then the best policy that does not use service time
information for the preemptive G/M/c/K+G queue is STE. The worst non-idling pol-
icy that does not use service time infoprmation for this system is LTE. These results
hold for systems in which servers take vacations.
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