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1. Abstract

Two important measures of the computational complexity of a regular language are
the type of finite automaton needed to recognize it and the type of logical expression
needed to describe it. Important connections between these measures were studied
by Biichi and McNaughton as early as 1960. In this survey we describe the logical
formalism used, outline these early results, and describe modern extensions of this
work. In particular, we show how the formalism is extended by the use of new quan-
tifiers and atomic predicates to express many of the fundamental classes of boolean
circuit complexity.

2. Introduction

A formal language may be thought of as either a subset of the set of all strings or as
a property which some strings have and some do not. A natural question about the
latter notion is how easy or hard it is to ezpress a given property in the language of
logic. By placing a metric of some sort on this expressibility, we create a complexity
theory, which we can then compare to the conventional theory, which measures how
easy or hard it is for various abstract computational devices to decide whether a given
string has the property.

Let A be any finite alphabet and A* the set of all finite strings on A. Qur basic
logical language will have variables which range over positionsin an input string. Qur
atomic predicates will be equality and order on positions (“z = y” and “z < y”) and,
for each a € 4, a predicate “ma(z)” denoting “the input letter in position  is a”. We
can combine these formulas by the boolean connectives “A,V,~" and bind variables
by the first-order quantifiers “3,v” by the usual rules of logic. A formula with no
free variables (a sentence) is either true or false of any particular string, and thus
any sentence expresses the characteristic property of some language. For example,
consider the language aA*. We must say “the first character is a”, or equivalently



“there is a position which is before all other positions and which contains an a’,i.e.,
3oVy(mala) A (2 = 9) V (2 < ).

This formalism was introduced in the late 1950’s by Biichi, who considered the sys-
tem we have described with the addition of monadic second-order quantifiers. These
bind variables of a new type which range over sets of positions in the input. A new
atomic formula ¢ € Y, where z is a position variable and ¥ a set variable, is added
to denote “z is a member of y”. For example, we can use this new power to express
the property of having an odd number of occurrences of the letter “a”. We assert the
existence of two sets — one the odd-numbered occurrences of a and one the even-
numbered occurrences. The reader may easily verify that the following properties
of sets Y and Z are first-order expressible, and that such a ¥ and Z exist iff our
property holds:

® Y and Z are disjoint

o my(z)iffz€ Y orze 2

between every two elements of ¥ is an element of Z

between every two elements of Z is an element of ¥

there is an element of ¥ less than every element of Z

there is an element of ¥ greater than every element of Z

Biichi showed [Bu60a] that the languages expressible with these quantifiers are ex-
actly the regular languages, and that any expressible property could be expressed by
a single block of existential second-order quantifiers followed by a first-order formula.
He also considered using the same logical formalism to express properties of infinite
sequences of letters or “w-languages”. In this case the variables range over the nat-
ural numbers, and the expressible languages are an analogous class, the “w-regular”
languages. This work included an automata-theoretic proof of the decidability of a
weak form of arithmetic — for a survey see [Mc89a].

McNaughton, at about the same time [Mc60], developed a similar formalism to
describe the behavior of finite-state machines with output. Given Biichi’s theorem,
the languages expressible in our original formalism (with only first-order quantifiers)
must be a subclass of the regular languages. It appears to be a proper subclass,
as there is certainly no obvious way to express the “odd number of a’s” property
with first-order quantifiers alone. About 1965 McNaughton posed this question to



Schutzenberger, who proved that this class of languages was equal to the star-free
regular langauges, perhaps the most natural proper subclass of the regular languages
[Mc89b). In Section 3 we outline the proof of this important theorem, which first
appeared in print only in 1971 [MP71]. We describe the proof due to Ladner [La77],
using the important technique of Ehrenfeucht-Fraissé games.

A second and independent line of inquiry into expressibility as a complexity mea-
sure began with Fagin’s Ph.D. thesis in 1974 [Fa74]. He considered essentially the
same formalism as did Biichi and McNaughton, with a different, more general class of
second-order quantifiers along with the ordinary first-order quantifiers. These range
over functions from positions to positions, but can only be existential. He discovered
that the class of languages definable with such formulas was one already well-known
to complexity theorists — the class NP of languages accepted by nondeterministic
polynomial-time Turing machines (see, e.g., (HU79] for background on Turing ma-
chine complexity).

In using his formulas to simulate Turing machines, Fagin actually used his second-
order quantifiers in a very restricted way. He defined a predicate BIT(i,7) on integers,
meaning that the i’th bit of the binary expansion of J is one, and showed that BIT
could be defined with an existential second-order function quantifier (the predicate
f = BIT is first-order definable, so one can say 3f : f = BIT A...). The other
uses of second-order quantifiers in his proof can all be replaced with monadic second-
order quantifiers as used by Biichi. His result can be rephrased, then, in terms of
a system with BIT as an additional atomic predicate. Existential monadic second-
order quantifiers with give VP, and arbitrary monadic second-order quantifiers with
BIT give the polynomial-time hierarchy of Meyer and Stockmeyer (again, see (HU79)
for background).

Inspired by this work, Immerman began to investigate other expressibility classes
defined with respect to the system using this BIT predicate. The class P (lan-
guages recognized by polynomial-time Turing machines) corresponds exactly to those
predicates expressible in first-order logic together with a special “least fixed point”
operator which formalizes the power of defining new relations by induction [Im86]
(this was also independently discovered by Vardi [Va82]). Immerman then found a
similar characterization of those languages recognizable by Turing machines in log-
arithmic space [Im87). Nondeterministic log-space machines recognize the class of
properties expressible using first-order logic and a “transitive closure” operator (this
is the class NL). A restricted form of the transitive closure operator yields the class
L of languages recognized by deterministic log-space Turing machines. These char-
acterizations helped Immerman to find his proof that nondeterministic space classes
(including N'L) are closed under complement (Im88] (a result also due independently

. to Szelepcsényi [Sz87)).



By augmenting the first-order system with BIT in a different way, Immerman
also found expressibility classes corresponding to various parallel complexity classes
[Im89]. So far all the classes described have used the same formula for inputs of any
size. But one can define a family of formulas by having a block of first-order quantifiers
which is iterated some number f(n) of times at the beginning of the formula to be
used on inputs of size n. Immerman showed that the languages definable in this way
are exactly those recognizable by a certain type of parallel random access machine in

time O(f(n)).

It was already known (e.g., [SV84]) that these parallel time classes were equal
to certain combinatorial complexity classes defined in terms of boolean circuits. In
Section 4 we give an overview of combinatorial complexity theory, and describe the
important notion of uniformity. Circuit complexity classes involve infinite familjes
of circuits to handle inputs of arbitrary length. A uniformity condition forces these
circuits to be defined by some finite amount of information, such a a description of a
single Turing machine which can output a description of them. Immerman’s express-
ibility classes with iterated quantifier blocks also correspond to circuit complexity
classes with very restrictive uniformity conditions.

A special case of this correspondence is a characterization of the class of languages
expressible with ordinary first-order logic and the BIT predicate — the most natural
expressibility class once BIT is admitted. This class FO + BIT is a subclass of
the very limited combinatorial complexity class AC°, which we will define below
in terms of boolean circuits. Researchers in circuit complexity were at the same
time searching for a natural uniform subclass of AC? (e-g., [Bu87]), and Immerman
proposed FO + BIT as a candidate.

Barrington, Immerman and Straubing [BIS88] then showed that a wide variety of
possible definitions of “uniform AC?”, including FO + BIT, coincide. They extended
the first-order framework to describe a variety of other circuit complexity classes in
two ways. New atomic predicates in the formalism (such as BIT) correspond to
relaxing the uniformity condition on circuit families, while new types of quantifiers
correspond to new types of gates in the circuit. From this point of view, the classes
of star-free, solvable, and arbitrary regular languages are naturally viewed as very
uniform versions of the circuit complexity classes AC°, ACC, and N C?, further
explaining the surprising connections between finite automata and circuit complexity
[Ba89, BT88]. It is also possible to describe more languages (all those in uniform
NC?) by single formulas without the use of Immerman’s iterated quantifier blocks.

In section 5 we describe how the addition of new atomic predicates allows non-
uniform computation. In section 6 we-describe some of the new quantifiers which can
be added to the system. Finally, in section 7 we look at what this approach might



offer in the future to the study of these complexity classes.

3. First-Order and Star-Free

The regular languages are the class of languages built up from the empty language
and the one-letter languages by boolean operations, concatenation, and the Kleene
star operation. It is natural to consider those languages which can be built up using
only the first two of these, the star-free languages. Formally, S is the least class of
languages L C A* such that:

e 0eS,{a}eSforallac 4
o if L,MeS, then LUM,LNM,Le S
eif L,AM/€Sandac€ 4, then LaM € S

The last condition is slightly different from the usual definition in terms of ordinary
concatenation of languages and is slightly more convenient from the standpoint of the
algebraic theory of automata. It is not hard to show that the two conditions each
give the same class of star-free languages. One shows by induction that if L € S and
a € A, then the language a~!'L = {z : az ¢ L} isalsoin S.

The fundamental construction of algebraic automata theory is that of the syntactic
monoid of a regular language. Given a language L C A*, define an equivalence
relation =, on strings in A* by ¢ =p y iff for all u,v € 4*, uzv € L iff uyv € L.
The language L is clearly a unjon of equivalence classes of =;. The equivalence
classes of this relation form a monoid under the operation of concatenation, i.e., for
z,y € A%, [z]ly] = [zy] where [z] is the equivalence class of the word z under =r.
One can verify that this operation is well-defined and that the resulting monoid Af
is finite iff L is regular. The function taking z to [z] is a homomorphism from the
monoid A* onto the monoid M, (a function which preserves multiplication), called
the syntactic homomorphism of L.

Schiitzenberger proved in 1965 [ScB5) that the star-free languages could be char-
acterized by a particular property of their syntactic monoids. Any finite monoid has
the property that for some minimal ¢ and g, every element z satisfies the property
a'*? = a'. A monoid is aperiodic if t = 1, or equivalently if no subset of it forms
a nontrivial group under the monoid operation. (Incidently, a monoid is a group iff
q=0.) A language is star-free iff its syntactic monoid is aperiodic. The proof of this
fact [Sc65, Me69] goes deeper into the algebraic theory than is possible for us in this



brief survey. It allows us, however, to prove the equivalence of three properties of lan-
guages: being star-free, being first-order definable, and having an aperiodic syntactic
monoid.

To begin, it is fairly easy to show that all star-free languages are first-order defin-
able, by induction of the definition of the class S The property w € 0 is expressed by,
say, 3z[~(z = «)], and w € {a} is expressed by [(3z(7a(z))]A[Vz(z = z)]. The boolean
combination of properties is clearly expressed by the matching boolean combination
of their formulas. It remains to show how to express w € MaN , given formulas ¢,
and @n expressing the characteristic properties of languages Af and .

To do this we define formulas ¢[z,] and @[, z] for every formula ¢, where z is a
new free variable, not occurring in ¢ itself. Given a word w and values for z and any
other free variables in ¢, ¢[z,] will hold iff ¢ holds for the string obtained by taking
all letters of w after position z. Similarly #[, =] will hold iff ¢ holds for the string of
letters of w before position z. Once we show how to construct these two formulas,
we will be able to express the property w € AfaNV by Jz(darl, z] A Ta(z) A on(z,]).
The construction is by induction on the structure of the formula ¢, and is left to the
reader (or see, e.g., [STT88)).

We now turn to the next step, that any first-order definable language has an
aperiodic syntactic monoid, outlining a proof due to Ladner [La77]. We will define
an equivalence relation =; on words in A4* such that whenever z = y, we will be
assured that = and y satisfy ezactly the same set of sentences in prenex form with at
most k quantifiers in our first-order formalism. Clearly, a language defined by such
a formula must be a union of equivalence classes of this relation. We will be able to
show that there are a large but finite number of equivalence classes of =, for each k.

The key part of the argument is to show that these equivalence classes also form a.
finite monoid under the concatenation operation, and that this monoid is aperiodic.

The result then follows by two fundamental facts of algebraic automata theory (see,
e.g, [La79,Pi86]):

o If L is the inverse image of a subset of the finite monoid M under a monoid
homomorphism ¢ : A* — M, then there is another monoid homomorphism
¥ : M — My, such that the composition ¥ o ¢ : A* — M is the syntactic
homomorphism of L. Note that % must be onto My, for this to happen.

o If there is a monoid homomorphism from M onto N and Af is aperiodic, then
N is aperiodic.

The relation =, is defined in terms of Ehrenfeucht-Fraissé games. These were
originally defined by Ehrenfeucht [Eh61], who introduced the game methodology to



explicate and extend a method due to Frajssé (Fr54, Fr56) for showing two structures
indistinguishable by first-order formulas. Given two words v and w in A*, we define
a game between two players E and F, who will each make k& moves before a winner
is decided. In any finite deterministic zero-sum game of perfect information, each
player has an optimal strategy (the game is determined) — this is easily shown by
induction on the number of moves. We define v =k w to be true iff F wins the game
when both play optimally.

E moves first by naming either a position z; in v or a position y; in w. F responds
by naming a position in the other word, to complete the first round. E then names 2
or ¥z, F' names the other of these two positions, and so on until positions z,, ... , Tk
and ¥1,...,yx have all been chosen. At this point, F wins the game iff

o for each 1, the letter in position z; of v and the letter in position y; of w are the
same, and

e for each 7 and j, z; < giiffyi<yjand z; =z iff y; = Yj-

It should be clear that =, is an equivalence relation. Player F' wins if v = w by
employing a simple identity strategy, always playing z; equal to y; or vice versa. The
game is symmetric between v and w by definition. If F knows winning strategies
for the games defined by the pairs {u,v} and {v,w}, it is easy to combine them to
produce a strategy. for the pair {u,w}. If E moves in word u, for example, F finds
the correct move in word v by the {u,v} strategy, imagines that move as E’s move
in the {v,w} game, and makes the move in w provided by the {v,w} strategy.

The important property of =, is now a special case of the following result. If
Z1,...,Zy are positions in a word v, and ¢(zy, .. ., z;) is a formula with free variables
21, .., 2, then the tuple (v,z,,...,z,) (called a “marked word” by Perrin and Pin
[PP86]) can be said to satisfy or not to satisfy ¢, with each z; substituted for the
corresponding z;. We will omit the detailed definition of the semantics here.

Proposition 1: If the moves z,,. .. yZryY1,.-.,Y» have already been made in the
first r rounds of the (k + r)-round Ehrenfeucht-Frajssé game on words v and w, and
player F' has a winning strategy for the remainder of the game, then the marked
words (v,z,,...,z,) and (w,y,... ,Yr) satisfy exactly the same formulas with r free
variables and k quantifiers.

Proof: We prove this by induction on k, simultaneously for all ». If k = 0, a
quantifier-free formula can only make assertions about the content and order of the
positions designated by the free variables. It is clear from the definition of the game
that F* wins iff the two marked words satisfy the same formulas of this type. Assume



then that k > 0 and that the theorem holds in the case of k — 1 quantifiers. We
describe a strategy for player £ which is guaranteed to win if the desired condition
is not true. '

If the two marked words satisfy different formulas, we can pick out a formula
of the type 3z¢(x) which one satisfies and the other does not. Here ¢ has k-1
quantifiers and r free variables in addition to z. Without loss of generality, assume
that (v,zy,...,2,) satisfies Iz¢(z). Player E will choose a position z,,, such that
¢(zr+1) holds for the marked word (v, z1,...,z,,,). Player F cannot choose a position
Yr+1 0 w to make @(yr41) true for the marked word (w,y;, ... ¥+ r+ 1), since no
such y,4; exists. So after this round, the two marked words will not satisfy the same
formulas with r+1 free variables and k—1 quantifiers, since ¢ is one of these formulas.
By the inductive hypothesis, then, player E wins the remaining game. |

Next we must show that the equivalence classes form a monoid. The monoid
operation will be the operation on equivalence classes induced by concatenation, with
the class of the empty word as identity. We need only show that the operation is
well-defined:

Proposition 2: If t =, u and v =, w for words t,u,v,win 4* then tv =, vw.

Proof: We must give a winning strategy for player F in the game for {tv, vw},
given strategies for the games for {t,u} and {v,w}. Each of E’s moves in the large
game may be interpreted as a move in one of the two smaller games. F will simply
make the move in the large game corresponding to the move given by the winning
strategy in the small game. For example, if £ names a position z in the part of tv
given by ¢, F uses the {¢,u} strategy to get a position y in %, and names the position
in uw corresponding to position y. It is straighforward to verify that this is a winning
strategy. N

The aperiodicity (as well as the finiteness) of this monoid follows from one more
fact:

Proposition 3: Every element 2 of the monoid satisfies the equation 2¢-1 =, ;¢ .
for every t > 2k ‘

Proof: Let w be a representative of the equivalence class z. For k = 1, it is east
to see that v =; w iff v and w contain the same set of letters, so that w!-! =, w! for
every t > 2. We will describe F’s winning strategy by induction on k. Consider E’s
first move in the game for {w!~!, w'} for ¢ as given. E names a position in some copy
of w — let r be the number of full copies of w before the one picked. That is, we
view either w' or w'*! as wrww?, with r + s + 1 equal either to t or to ¢t + 1. F will
move in the identical position in some copy of w in the other word. We let r' be the



number of copies before the one picked, so that this word looks like w”ww?'. F can
win the remainder of the game if w* =,_; w* and w" =, w", by playing separately
in the three subgames as in the proof of the last proposition. If r+s+1 =¢ —1 one
of 7 or s (say r), is at least 25~1 — 1. So w" =,_, w'+! by the inductive hypothesis,
and wecanset ' =r+1land s’ =s. If r+ 5+ 1 = ¢ then one of r or s (again, say
7) is at least 2¥~! and we canset ' =7 — 1 and s’ = s, |

The final step in the three-way equivalence is to show that all regular languages
with aperiodic syntactic monoids are star-free, as first proved by Schiitzenberger
[Sc65]. His argument (also in [Pi86]) is by induction on the number of elements of
the syntactic monoid, and would take us too far into the realm of algebraic automata
theory. Another proof of this result by Meyer [Me69] exploits the structure theo-
rem for finite monoids due to Krohn and Rhodes (KRT68, Ei76]. By this theorem,
all aperiodic monoids can be obtained from a single primitive component using the
wreath product operation, taking of submonoids, and taking of images under monoid
homomorphisms. This allows a much simpler proof by induction on the number of
copies of this component which are used.

4. Combinatorial Complexity

One important way to formalize the intuitive notion of the difficulty of a problem
is to look at combinatorial structures, made up of simple computing elements which
solve it. We expect that more difficult problems would require more simple elements
and would require them to be combined in more complicated ways. This is the
point of view of combinatorial complexity. We define particular basic elements, rules
for combining them, and combinatorial cost measures on the structures required to
recognize a given formal language. We often also Place a uniformity condition on the
structures — a restriction on the computational power which may be used in defining
how the elements combine. The class of languages which may be recognized by a
structure meeting particular cost constraints and a particular uniformity condition is
a combinatorial complezity class.

For example, the basic element of the boolean circuit model is a gate, which inputs
some number of boolean values (which might be inputs to the problem or outputs
from other gates) and outputs a boolean value (to other gates or as the output of the
problem). To describe a structure of such gates (a circuit) we must give the function
computed by each gate (typically AND, OR, or NOT) and tell which gates output
to which others. Our cost measures are size (number of gates), depth (the length of

the longest path of gates between an input and an output) and fan-in (the largest



-

number of inputs to a single gate).

A fixed circuit has a fixed number of inputs and thus can only process input strings
of a fixed length. To recognize a language we need a circuit family — a sequence of
circuits with one for each possible input length. (We can use the alphabet {0,1}
or use a binary encoding of the letters in an arbitrary finite alphabet.) Uniformity
conditions on circuit families typically restrict the computational power needed to
describe each circuit, or the power needed to answer certain questions about it. For
example, a circuit family is defined to be P-uniform if there is a polynomial-time
Turing machine which can produce a description of the n’th circuit given input n in
unary. A circuit family is log-time uniform if there is a Turing machine running in time
O(logn) can answer questions of the form “what is the i’th bit of the description of
the n’th circuit”? (A log-time Turing machine is defined to have a read-only, random-
access input tape, i.e., it can put a number i on a special work tape and then obtain
the i’th bit of the input in one step.)

When one takes a particular combinatorial restriction (say, that the number of
gates in the circuit must be bounded by a polynomial in the input size) and varies
the uniformity condition, an interesting phenomenon emerges. There appears to be a
range of “natural” uniformity conditions which all give the same complexity class. For
example, uniform polynomial-size circuit families recognize exactly those languages in
the class P, whether the uniformity condition is “P-uniform” or “log-time uniform”.
If we make the condition less restrictive (for example, if we remove it entirely and
allow arbitrary polynomial-size families) then new languages become recognizable
which are not “feasibly computable” in the usual sense. For example, any unary
language, even {1" : the n’th Turing machine halts on blank input }, is recognized
by a non-uniform family of small circuits. Similarly, if one makes the uniformity
condition too restrictive (as, for example, by demanding that questions about the
circuits be answerable by a finite automaton), one gets a smaller complexity class
which does not capture the informal notion of what can be computed by circuits of
that type.

One of the prime motivations for studying circuit complexity is its connection
with parallel computation. Uniform polynomial-size families can recognize P, which
is, roughly, the class of problems which are feasibly solvable by sequential algorithms.
Some problems in P can be solved much more quickly by parallel algorithms, while
others appear to be “inherently sequential”. The complexity class NC [Pi79, Co85) is
the subclass of P consisting of those languages recognizable by uniform polynomial-
size circuit families with depth bounded by a polynomial in logn for inputs of size
n. Again, a variety of uniformity conditions, including log-time uniformity give the
same complexity class here (though P-uniform NC is probably different — see [A189]).
The class NC is held by many to be a good formalization of the notion of “effectively
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computable in parallel”, in part because it can be defined in a wide variety of models of
parallel computation. Although the utility of NC for the study of practical parallel
algorithms is hotly debated [IBMS88], it offers a good formal setting in which to
study the difference between parallelizable and inherently sequential problems. NC
is believed to be strictly contained in P, and a number of P-complete problems have

been found, which are outside of NC if P # NC.

No techniques are currently known which could prove a language in P to be
outside of NC. This has led researchers in parallel complexity to study the internal
structure of NC, which has proved to be very rich (see, for example, [Co85]). The
class NC? for each i consists of those languages recognized by circuit families of
polynomial size, fan-in two, and depth O(log’ n). The class AC* for each i consists of
those languages recognized by circuit families of polynomial size, unbounded fan-in,
and depth O(log' n). In each case, to define a specific class we must also provide a
uniformity condition, so that we speak of, for example, non-uniform AC? or log-time
uniform NC'. It is easy to see that NC' C AC' C NC*! for each t, and that the
union of the NC* and the union of the AC? are each the entire class NC.

A large body of recent work has centered on the internal structnre of NC', the
smallest class in this hierarchy not known to be different from P. The languages in
non-uniform NC? are easily characterized as those for which membership depends on
a specific constant number of inputs for each input size. AC? is a more interesting
class, but we still know how to prove natural languages to be outside of it. The simple
language {z € {0,1}" : z has an odd number of ones } is not in non-uniform ACY as
shown by Furst, Saxe, and Sipser [FSS84], and independently Ajtai [Aj83]. Curiously,
although most interesting languages in non-uniform AC® are known to be in log-time
uniform AC°, we do not know how to prove a language outside the latter without
proving it outside the former.

We get further interesting subclasses of NC! by looking at circuit families with
polynomial size, constant depth, and unbounded fan-in and allowing the gate func-
tions to vary. If we take the ordinary AND and OR functions we get the class ACO.
If we gates which calculate the exclusive OR function we get a larger class (by the
result quoted above) which we may call AC°[2]. Razborov [Ra87] has shown that
AC°(2] does not contain the language {z € {0,1}* : = has more ones than zeroes
}. Smolensky [Sm87] has considered the classes AC°[p], defined similarly to AC°[2]
but with gates which test whether the number of inputs which are one is divisible
by some number p. He showed that the classes AC°[p] for p prime are independent,
in the sense that none of them is contained in another. Again, all the techniques for
proving languages outside of classes work Just as well for the non-uniform classes.

If we include gates which calculate threshold functions (test whether the number

11



of inputs which are one exceeds some number defined for the gate) we get a class called
TC® [CSV84, PS86]. This is a subclass of NC! which contains most of the languages
known to be in NC!, with two principal exceptions. These are the word problem
for a non-solvable group [Ba89] and the boolean sentence value problem [Bu87], each
of which is known to be outside of TC® unless TC® = NC'. NC! itself can also
be characterized as a constant-depth polynomial-size unbounded fan-in circuit class,
where the gates perform multiplication in a fixed non-solvable group [Ba89).

It is a major open question whether TC? is equal to NC"? in different uniformity
settings. One reason to believe that they are not is that no one has any idea how
to do either of the main NC !-complete problems (evaluating boolean expressions or
multiplying sequences of elements of a non-solvable group) in TC°. A more technical
reason is that TC® = NC! would imply that for some fixed k, all of TC® can be
recognized by threshold circuits of depth k and polynomial size. This is known not
to happen in the case of monotone threshold circuits [Ya89].

At the TC® level the uniformity condition appears to affect significantly the nat-
ural problems that can be solved within the class. While a variety of problems,
such as integer multiplication, can be solved in log-time uniform TC" (the method of
[CSV84] can be made log-time uniform following [BIS88]), there are several which are
only known to be in P-uniform TC°. These include integer division and related prob-
lems [BCH86], and various operations in large finite fields [Re87]. There seems to be
a sort of “orthogonality” in these classes, where new computing power can be added
either by allowing more powerful gates or by weakening the uniformity condition.

5. New Atomic Predicates

The atomic predicates in our first-order system fall into two categories. The predicates
Ta(z) depend on the input word, while the equality, order, and BIT predicates do
not. We call this latter class numerical predicates, since for each n they define a
k-ary predicate (for some finite k) on the set of numbers {1,...,n}. We will now
consider augmenting the first-order system by adding more predicates, as we have
already done once with BJT.

What languages are definable if any numerical predicate is allowed? The answer
is very simple in terms of the circuit complexity classes defined above. This result
has been proved in the literature several times, apparently first by Immerman in the
conference version of [Im87) (but see also [GL84, BCST88, Mo88]). We give a proof

here to show the explicit relationship between first-order formulas and constant-depth
circuits.
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Theorem 4: A language is definable by a first order formula using arbitrary
numerical predicates iff it is in non-uniform AC?.

Proof: To prove that we can evaluate a formula on a particular input using a
circuit of the required type, we use induction on the number of quantifiers. If there
are no quantifiers, the formula is a boolean combination of input predicates (which
become input gates) and numerical predicates (which can be evaluated and become
constants). Suppose that the formula is 3z : ¢(z). By induction, for each value
a of z there is a circuit of constant depth, polynomial size, and unbounded fan-in
evaluating ¢(a). Our desired circuit is simply the OR of these n circuits. If the
formula is Vz : ¢(z), we take the AND of n circuits on a similar fashion. Increasing
the number of quantifiers by one increases the depth by one and multiplies the size
by n, so for a single formula the resulting circuits will be of constant depth and size
polynomial in n.

If (Cr : n > 0) is a circuit family satisfying the given restrictions, we can define
a series of numerical predicates as follows. We index the gates of C', by k-tuples of
values in {1,...,n}, for some k such that no circuit has more than n* gates. Then
we define:

o AND(zy,...,zs) to represent “gate number (z;, .. ., Tk) is an AND gate”,
e OR(z,,...,z) similarly,

o CHILD(zy,...,Tk,y1,--.,Ys) to represent “gate number (zy,...,z:) is a child
of gate number (y;,...,y:)",

¢ INPUT(z1,...,Tx, z) to represent “gate number (z, .. ., Tk) is an input gate
for input variable number 2”, and finally

o NEGATED-INPUT(z,...,zy, z) for “gate number (z1,...,Tk) is an input gate
for the negation of input variable number 2.

Given these numerical predicates, and a constant bound on the depth of the
circuit, we can proceed to define predicates for “gate number (z1,...,z;) is at depth
d” using first-order quantifiers and induction on d. It is then easy to define “gate
number (z,,...,z;) is at depth d and outputs one” by induction on d. For d = 0 this
is

3z [((INPUT(zy,. .., 2k, 2) A my(2)) V (NEGATED-INPUT(z,,. .., 2k, z) A mo(z2))]

and for larger d we need to say essentially “this is a depth-d OR gate with a child
outputting one or this is a depth-d AND gate with no child outputting zero”, which
is clearly expressible within our system given the inductive hypothesis. |
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Does a similar result hold in the presence of uniformity? If so, how strong a
uniformity condition can be imposed? These questions are answered by Barrington,
Immerman, and Straubing, in a result which unifies the various definitions of “uniform

ACo:

Theorem 5:[BIS88] A language is definable using first-order formulas with BIT
iff it is in log-time uniform AC°.

Proof Outline: The structure of the proof is Just like that of the previous theo-
rem. To simulate a formula by a log-time uniform circuit family, we must show that
the circuits defined above can be numbered in such a way that a log-time Turing
machine can find the i’'th bit of the n’th circuit given ¢ and n. There are several
possible coding schemes, and the details will depend on which is chosen (note that
in this survey we have mostly ignored exactly how a circuit is to be denoted by a
string).

To express a log-time uniform AC® language by a formula, we can proceed as above
once we know that the predicates AND, OR, CHILD, INPUT, and NEGATED-
INPUT used above are first-order expressible. The uniformity condition tells us that
they are log-time computable, and in fact all log-time predicates are expressible, by a
key lemma proved in [BIS88). This lemma depends in turn on a sublemma interesting
in its own right, that within the first-order system it is possible to add up O(log n)
bits with a single formula. |

Gurevich and Lewis [GL84] observed that the equivalence between AC° and first-
order formulas holds at virtually any uniformity level, as long as there is enough
computational power available to carry out the proof of equivalence. They showed
that the power of log-space Turing machines is enough, but we can refine this some-
what using their proof and the previous result:

Corollary 6: Let C be any class of functions containing the log-time computable
functions and closed under composition. Then a language is in C-uniform ACY iff it
can be expressed by a first-order formula using numerical predicates in C. | |

6. New Quantifiers

We have seen how the action of ordinary existential and universal quantifiers corre-
sponds to the function of AND and OR, gates in a circuit. Given a formula with a free
variable, we get a sequence of n boolean values upon which an AND or OR is per-
formed to get a boolean answer. We now consider how this notion can be generalized
to get new kinds of quantifiers in our logical system.
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The AND and OR operations each make {0,1} into a monoid, and there is only one
other operation on bits which does this — the exclusive-OR function, or addition mod
2. We can easily define a quantifier “3%!” such that for a formula &(z) with one free
variable , “I*'z : $(z)” means “¢(z) is true for an odd number of z in {1,...,n}".
This certainly increases our class of expressible languages, as 3*'z : m)(z) is the parity
function. But we can just as easily define “IJmey . ¢(z)” to mean “@(z) is true for a
number of z equal to @ mod m”. Here we are adding up the boolean truth values of
¢(z) viewed as elements of a larger monoid, the integers mod m under addition. We
convert the result of the addition to a boolean value by testing it for equality with a.

In the same way, we can work with a monoid which is not even fixed with respect
to n, such as the integers mod n. We can define “AMz #(z)" to be true iff ¢(z) is
true for a majority of z in {0,1}, or define “Tyz : ¢(z)”, a formula with free variable
Yy, to be true iff the number of = for which @(z) is true is at least y. Both these
quantifiers operate by adding the truth values as integers and applying a boolean test
to the result.

The modular counting quantifiers were investigated, in the absence of the BIT
predicate, by Straubing, Thérien, and Thomas [STT88). First, since a modular count-
ing quantifier can be simulated by a monadic second-order quantifier, adding these
new quantifiers to the ordinary ones still allows us to express only regular languages.
But Straubing, Thérien, and Thomas were able to characterize the subclass of the
regular languages that can be expressed, as exactly those regular languages which
have solvable syntactic monoids. These are the monoids for which any subset which
forms a group forms a solvable group. In the Krohn-Rhodes structure theory men-
tioned in section 3, the solvable monoids are exactly those which can be built up
from components which are aperiodic monoids or cyclic groups. This is a very natu-
ral generalization of the relationship between first-order expressibility (with ordinary
quantifiers) and aperiodic monoids, since the latter are Just those which can be built
up from the components corresponding here to the former.

In the presence of the BIT predicate, the power of the new quantifiers can be
determined exactly as in the previous section. The proof of the equivalence of log-
time uniform AC° and the ordinary first-order expressible languages only assumes
that the available gate types include AND and OR. The same argument shows that
with the modular counting quantifiers and BIT we get exactly log-time uniform ACC
[BIS88]. Similarly, when we add other numerical predicates we still get .4C'C but with
a weakened uniformity condition, so that with arbitrary numerical predicates we
get non-uniform ACC [BCSTSS, Mo88]. This characterization allows one to prove
languages to be in log-time uniform ACC by exhibiting formulas rather than first
exhibiting circuit families and then giving an explicit proof of uniformity. Such a
technique is used by Barrington and Corbett in the case of the semi-linear languages
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[BC89b).

In the same way, the languages expressible with majority or threshold quantifiers,
using the BIT predicate, are exactly those in log-time uniform T'C®. In the absence
of the BIT predicate, with the ordinary majority quantifier, it is not known whether
all of log-time uniform TC® can be expressed. However, as shown in [BIS88], one can
simulate BIT, and thus express this entire class, with a particular “majority of pairs”
quantifier. If ¢(z,y) is a formula with two free variables, then M3 (z,y) : ¢(z,y)
is defined to be true iff §(z,y) is true for a majority of the n? pairs (z,y) with
z,y € {1,...,n}. Once again, adding numerical predicates of a certain complexity
gives the version of TC® with the corresponding uniformity condition, following the
argument of [GL84|. Also, one can show languages to be in log-time uniform T'C®
by exhibiting formulas, as done by Barrington and Corbett for certain context-free
languages [BC89a].

Can we use quantifiers to encode other kinds of multiplication? For example,
what about the operations of the finite monoids which are not solvable — those
which contain non-abelian simple groups? Here we encounter the problem that our
values to be multiplied are bits, and so if each of the two values is assigned a value
we cannot in general use those two values to generate any element of the monojd. We
get around this by essentially introducing a new variable type to the formal system,
that of vectors of truth values. For example, fix any group G and an encoding of the
elements of G (alternatively, an encoding of a subset of the elements that generates

G) as vectors in {0,1}* for some k. Now a vector of k formulas, (¢,...,#:), has
a truth value which can be interpreted as an element of G. If the formulas have a
common free variable z, then for eachi € {1,...,n} the vector (61(3), ..., ¢x(3)) can

be interpreted as some g; € G. We may define a set of new “group quantifiers”, QG

for each g € G, so that Q%9z : (¢y(),...,dk(z)) is true iff the product gig;. .. g,
computed in G, is equal to g.

Barrington, Immerman, and Straubing [BIS88] give an exact characterization of
the languages which can be expressed with these new group quantifiers (along with
the ordinary first-order ones). First, consider the situation in the absence of BIT.
Since the group quantifiers can be simulated using Biichi’s monadic second-order
quantifiers, only regular languages can be defined. If quantifiers for all finite simple
groups are available, any regular language can be expressed. If only some groups
are available, only those languages whose syntactic monoids can be constructed from
those groups (in the Krohn-Rhodes sense [KRT68, Ei76]) can be expressed. Just
as with the modular counting quantifiers, the expressibility theory of the regular

languages corresponds exactly with the complexity theory given by the algebraic
study of automata. '
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With BIT, our earlier result tells us that group quantifiers are going to model
constant-depth, poly-size, log-time uniform circuits which have “group gates” — gates
which interpret their inputs as a sequence of elements of the given group and multiply
them. A slight reformulation [BIS88] of the result of [Ba89] shows that such circuits
can recognize exactly those languages in log-time uniform NC!. This shows that
the relative power of gate types depends crucially on the uniformity setting. With
log-time uniformity, group gates are at least as powerful as threshold gates. In the
more uniform setting given by formulas without BJ T, we know that threshold gates
are more powerful. Similarly, with BIT one non-abelian simple group can simulate
another, while this is provably not the case without BJT.

The idea of quantifiers for general operations can be extended even further. In
[BIS88] it is shown that quantifiers can be defined for any function on bit vectors
which is derived from an associative operation with an identity. Some recent work by
Reif [Re87] and by Boyar, Frandsen, and Sturtevant (BFS88] has considered variants
of the circuit model where the wires of the circuit contain values in some finite field
which depends on the input size. It should be possible to adapt the logical formalism
used here, by the addition of new variable types, to model these circuits. This should
clarify the effect of the uniformity setting on the simulation arguments given in these
papers. Finally, the iterated quantifier blocks of Immerman [Im89] can be thought of
as a new type of quantifier, whose effect also depends on the input size.

7. Conclusion

'So far, the primary importance of this logical formalism has been the new view of
complexity which it provides. It has contributed to new results on nondeterministic
space [Im88] and on the connection between automata theory and circuit complexity
[BT88], but these results have been proved in a manner largely independent of the
logical formalism. There are proof techniques, such as the Ehrenfeucht-Frajssé games,
which are intrinsically logical. The next step in the development of this theory will
be to apply the power of these techniques to prove essentially new results. A first
step could be to provide intrinsically logical proofs of known results which are simply
stated in the logical setting. For example, consider the fact that the parity predicate
cannot be expressed with a first-order formula. Work with circuits tells us that even
arbitrary numerical predicates will not help us do so [FSS84]. Without the BIT
predicate, it is easy to show it impossible by an Ehrenfeucht-Fraissé game argument.
What about with BIT alone? Of course it is still impossible, but it is unsatisfying
not to have a logical proof of this logical fact. The right proof might extend to
other types of quantifiers, which we have seen would given us entirely new results
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(potentially separating NC* from higher classes). We need to see whether such proofs
are possible, as we continue to develop the expressive power of the formalism.
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