A NOTE ON SOME LANGUAGES
IN UNIFORM ACC

David A. Mix Barrington
James Corbett

Coniputer and Information Science Department
~ University of Massachusetts

COINS Technical Report 89-74

A note on some languages in uniform ACC

David A. Mix Barrington®
James Corbett?2
COINS Dept., U. of Massachusetts
Ambherst, MA 01003, U.S.A.
July 25, 1989

1. Abstract

ACC is the class of languages recognized by circuit families with polynomial size,
constant depth, and unbounded fan-in, where gates may calculate the AND, OR, or
MOD c function for constant ¢. Robust uniformity definitions for 4 CC and related
classes were given by Barrington, Immerman, and Straubing [3]. Here we show
that uniform A CC contains all semi-linear or rational sets- of integer vectors, using
binary notation (sharpening a result of Ibarra, Jiang, Ravikumar, and Chang [10)).

2. Introduction

Recent work of Barrington, Immerman, and Straubing has given robust definitions
of uniformity for various circuit complexity classes within N C'(languages recog-
nizable by circuit families of fan-in two and depth O(log n)— see Cook (6] for
an overview of circuit complexity theory). These classes are defined as those lan-
guages recognizable by circuit families with polynomial size, constant depth, and
unbounded fan-in, with a variety of possible functions computed by individual gates.
If these functions are the usual AND and OR functions (where inputs to the circuit
are input variables or their negations), we have the class AC?. If gates are allowed
which add their input modulo some constant (i.e. a gate outputs a 1 if and only if
the number of its inputs which are one is divisible by ¢), we have the class 4 CC.
The constant must be fixed for the entire circuit family. It is known that 4AC° is
different from A CC [1,8] and limits are known in the subcase where the constant ¢

!Former name David A. Barrington. Supported by NSF Computer and Computation Theory
grant CCR-8714714.

2Supported by NSF grant CCR-8812567. |

is prime [15,17]. If the gates can compute threshold functions, we get the class TC®
[5,9,13]. With certain gate functions defined in terms of any non-solvable group, we

get all of NC* [2].

The uniformity notion we will use is log-time uniformity, originally defined by
Buss [4]. This requires that a deterministic Turing machine can answer simple
questions about the n'* circuit in the family in O(log n) time. More precisely, let
the direct connection language of a circuit family be the set of all tuples < ¢, a,b,0™ >
where a and b are numbers of nodes in the n** circuit, b is a child of a, and node a
is of type t (e.g. AND, OR). Then we say that a circuit family is log-time uniform
if and only if its direct connection language can be recognized in deterministic log
time. We will use the characterization of log-time uniform 4C%nd 4 CC from (3]
as those languages for which membership can be ezpressed by first-order formulas
(see [11] for an overview of logical expressibility as a complexity measure).

In such formulas, variables range over positions in the input (from 1 to n) which
is read with the special predicate m,(i) =“the 7** input character is an a”. Variables
can also be compared. For example, the regular language 0~1* can be expressed as

Fzvy[((y < z) = mo(y)) A ((y = z) — m(y))]

We can optionally add the special predicate BIT(i,7) =“the it* bit of the binary
representation of j is a 1”. We can also add special modular counting quantifiers
@m,a for any positiﬁe integer m and any integer a such that 0 < a < m. If ¥(z)
is a sentence with one free variable, then the formula @ma : P(z) is defined to
be true if and only if the number of z’s for which Y(z) is true is congruent to a
mod m. For example, the language of binary strings with an odd number of ones
can be expressed as Q1 : m;(z). It has been shown [3] that the class FO + BIT
(languages expressible by first-order formulas using the BIT predicate) is exactly
log-time uniform AC°, and that the class FOC + BIT (languages expressible by
first-order formulas with modular counting quantifiers and BIT) is exactly log-time
uniform A CC. Without BIT, the classes FO and FOC are interesting subclasses of
the regular languages, with FO being the star-free regular languages (12,18].

ACCis a very limited complexity class, but we do not know how to separate it
from NC', or even from a much larger class like VP. It is useful to have examples
of languages known to be in these various complexity classes, to get a better idea of
how to place limits on their power. In this note, we examine one class of languages,
binary encodings of semi-linear sets, showing them to be within A CC.

3. Semi-linear sets in 4ACC

A linear set is the nonegative span of a finite set of vectors offset by a single vector.
More formally, the linear set corresponding to the vectors a, by, b,, ..., b, € Nk is

{ulu = a+r1b1 +1‘2b2+...+1‘mbm,7'; c N}

A semi-linear set is a finite union of linear sets. In addition, a simple set is a linear
set in which the vectors b; are linearly independent. A semi-simple set is a finite
union of simple sets.

The binary encodings of vectors in a fixed semi-linear set forms a language.
Ibarra, Jiang, Ravikumar, and Chang assert that these langauges are in NC! [10).
We improve this result by showing:

Theorem 1 Binary encodings of semi-linear sets are in log-time uniform ACC.

Proof: Since a semi-linear set is the finite union of linear sets, we can simply test
the input vector for membership in all these linear sets in parallel and then take
the disjunction of the results. Thus we can restrict our attention to determining
membership in linear sets. Given u, the binary encoding of a k£ dimensional vector,
we want to determine if there exist nonegative integers 7y,...,7, such that u =
a+rb;+rby+...+ rmbm. Using linear algebra, we can state this as the problem
of finding a nonegative integer solution to the system Br = u — a where B is a
matrix whose i** column is b;. There are two cases. If the linear set is simple, then
there is a unique solution over the rationals given by Cramer’s rule:

[| B; ||

VT
where B; is the matrix obtained by replacing the i** column of B with u — a, and
| A]| is the determinant of matrix A. We must only check to make sure the rational
solution is both nonegative and integer.

Note that since a and B are constants, [Bil| is a linear expression in the input
u. Since we can add integers and multiply them by constants in FO + BIT [11],
we can compute the numerator in Cramer’s rule and from it determine the sign
of the solution. To verify that the solution is an integer vector, we must test this
numerator for divisibility by the constant ¢ = || BJ|.

This can be done by a simple automaton which scans across the binary digits
of the number from left to right and keeps track of the remainder, as in short

division. Let w € (0+1)",b € {0,1} and #(w) be the remainder when the binary
number w is divided by c¢. Then ¢(wb) = (2¢(w) + b)mod c. Since the transition
function implements a linear map, it is easy to verify that the syntactic monoid of
the automaton is solvable (a monoid is solvable if and only if any group contained
in the monoid is solvable) and hence its output is computable in FOC by [18].

Since all this can be done in FOC + BIT, we are in log-time uniform 4 CC by
the results of [3].

The second case is when the linear set is not simple. This case reduces to the
first by a result of Eilenberg and Schiitzenberger (7). They showed that all linear
sets are semi-simple, and hence that a nonsimple linear set can be decomposed into
a finite union of simple sets. O

This result is optimal in the sense that there are semi-linear sets known not
to be in AC°. For example, consider the simple set Ly of all binary encodings of
integers divisible by 3. We will show L3 is not even in non-uniform .4C°. By well
known circuit complexity results [1,8] we know that computing the MOD-p function,
l.e. determining whether the number of ones in a binary string is congruent to
zero modulo a prime p, is not in non-uniform AC°. If L3 were in 4C°, then we
could compute MOD-p in AC® as follows. Observe that if z = 3 2,;2! then since
2" =1 (mod 3) for even i and 2! = 2 (mod 3) for odd 1,

r = Z$3k+22$2k+1 (rnod 3)
k k

Thus given a binary string y, we could construct in constant depth the binary
string z by inserting 0’s between every two bits of y: z,; = Yiy 22i+1 = 0. Since z
(interpreted as a binary number) is divisible by 3 if and only if the number of 1’s in
y is congruent to zero mod 3, we could compute the MOD-3 function in AC? using
a hypothetical AC® circuit for Lz. This being impossible, we can conclude that no
family of AC® circuits exists for L.

Essentially, the proof of Theorem 1 shows that it js possible to detérmine in
ACC whether or not an integer solution r exists to the linear system Br = x
where z is input and B is a constant matrix. This allows us to solve a limited case
of the integer linear programming problem where the number of constraints and
the coefficients of the variables in those constraints are restricted to be constant.
The inequality constraints of a linear programming problem can be transformed

into equality constraints by standard methods and a nonegative solution found as
above.

As a final note, we observe that this technique also shows that all rational
subse.ts of Z* are in uniform A CC. The rational subsets of Z* are the smallest class

of subsets containing the finite sets and closed under finite union, sum, and star
[14] where sum and star are defined as follows

X+Y = {z+ylzeX, ye Y}
X" = subspace of Z* generated by X

By [7], every rational set is semi-simple, and hence in uniform A CC by the techniques
presented here.

References

[1] M. Ajtai, “S} formulae on finite structures,” Annals of Pure and Applied Logic
24 (1983), 1-48.

[2] D. A. Barrington, “Bounded-width polynomial-size branching programs rec-
ognize exactly those languages in NC!.” J. Comp. Syst. Sci. 38:1 (1989),
150-164.

(3] D. A. M. Barrington, N. Immerman, and H. Straubing, “On uniformity
within NC'” Structure in Complezity Theory: Third Annual Confer-
ence(Washington: IEEE Computer Society Press, 1988), 47-59. Revised ver-

sion J.- Comp. Syst. Sci., to appear. Available as University of Massachusetts
COINS Technical Report 88-60.

[4] S. R. Buss, ‘The Boolean formula value problem is in ALOGTIME,” 18th ACM
STOC Symp. (1987), 123-131.

(5) A. K. Chandra, L. J. Stockmeyer, and U. Vishkin, “Constant depth reducibil-
ity,” SIAM J. Comp. 13:2 (1984), 423-439.

[6] S. A. Cook, “A taxonomy of problems with fast parallel algorithms,” Informa-
tion and Control 64 (1985), 2-22.

[7] S. Eilenberg and M. P. Schiitzenberger, “Rational sets in commutative
monoids,” Journal of Algebra 13 (1969), 173-191.

(8] M. Furst, J. B. Saxe, and M. Sipser, “Parity, circuits, and the polynomial-time
hierarchy,” Math. Syst. Theory 17 (1984), 13-27.

[9] A. Hajnal, W. Maass, P. Pudla'.k, M. Szegedy, and G. Turdn, “Threshold cir-
cuits of bounded depth,” 28th IEEE FOCS Symp. (1987), 99-110.

(20]

[11]

[12]

[13]

(14]

[15]

[16]

(17]

18]

O. H. Ibarra, T. Jiang, B. Ravikumar, and J. H. Chang, ‘On some languages
in NC',” VLSI Algorithms and Architectures: Proc. of Jrd Aegean Workshop
on Computing, 1988.

N. Immerman, “Expressibility and parallel complexity,” STAM J. Comp. 18:3
(1989), 625-638.

R. McNaughton and S. Papert, Counter-Free Automata (Cambridge, Mass.:
MIT Press, 1971).

L. Parberry and G. Schnitger, “Parallel computation with threshold functions,”
J. Comp. Syst. Sci. 36:3 (1988), 278-302.

P. Péladeau, “Logically defined subsets of Nk Proc. 14th annual Symp. Math-

metical Foundations of Comp. $ci., Porabka Kozubnik, Poland (1989), to ap-
pear.

A. A. Razborov, “Lower bounds for the size of circuits of bounded depth with
basis {&,®},” Mathematicheskie Zametki 41:4 (April 1987), 598-607 (in Rus-
sian). English translation Math. Notes Acad. Sci. USSR 41:4 (Sept. 1987),
333-338.

W. L. Ruzzo, “On uniform circuit complexity,” J. Comp. Syst. Sci. 21:2 (1981),
365-383.

R. Smolensky, “Algebraic methods in the theory of lower bounds for Boolean
circuit complexity,” 19th ACM STOC Symp. (1987), 77-82.

H. Straubing, D. Thérien, and W. Thomas, “Regular languages defined with
generalized quantifiers,” Proc. 15th I CALP, Springer Lecture Notes in Com-
puter Science 317 (1988), 561-575.

