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Abstract

In this note, the result that “Poisson arrivals see time averages” is proved under more general
conditions. The limit theorems here require less restrictive assumptions and are shown for a wider
class of arrival processes. Applications are presented for a particular cases of discrete-time geometric
arrivals and continuous-time Markov-modulated Poisson processes.
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1 Introduction

The purpose of this note is modify Wolff’s proof of “Poisson arrivals see
time averages”, as given in [12], so that it can be applied to a more general

class of arrival processes such as the so called ‘Markov-modulated Poisson
processes’

Let N(t,w) denote the cumulative number of arrivals in the time interval
[0, %] to some queueing system the state of which is denoted by Z(t,w). We
shall occasionally suppress the explicit dependence of a stochastic process
on w and write, say, N(t) instead of N(¢,w). N(t)is a “counting process”
and therefore according to the general theory of such processes see, eg.,
[1],[6} there exists an increasing process A(t,w),satisfying certain technical
conditions, with the property:

M(t,w) = N(t,w) — A(t,w) is a martingale (1)
Examples:
1. The Poisson Process; here A(t) = At = f; Ads.

2. The doubly stochastic Poisson process ([1] p.21); here
¢
At,w) =/ A(s,w)ds
0

Remark 1 A(t,w) =< M > (t,w) is also called the “compensator” - see
[6], Definition 2, p.239, vol.Il.

Here is a simple example of a doubly stochastic Poisson process. Let Y (t,w)
denote a continuous time Markov chain with two states denoted by 1,2. The
infinitesimal geherator matrix @ has the following form [3,8):

—a «a
@=(75 3)
Define the function f(s;),s; € S (the state space of the Markov chain) as
follows: f(1) = Ay, f(2) = A2 and A(t,w) = f(Y(¢,w)). Note that this is an
example of a ‘Markov-modulated Poisson process’ [3,8,9]. More generally,
one can consider functions of the form: A(t,w) = f(¢,Y(¢,w)). Thus, the

class of arrival processes to which our methods apply includes the particular
cases studied by Wolff - who assumed that A(t) is a deterministic function.



We want to compare the proportion of time that the process Z(t) €
B with the corresponding proportion of customers who, upon arrival, see
Z(t) € B. The key observation is that the difference between these two
quantities can be expressed as a stochastic integral with respect to the
square integrable martingale M (t) defined in equation (1). More precisely,
let U(t) = Ig(Z(t—)), where Ig(z) = 1,z € B,Ip(z) = 0, otherwise. Thus,

W(t) = /0 “U(s) dA(s)

is a random weighted average of the amount of time during [0, t] that Z(t) €
B. In the special case of the Poisson process W(t) = Ax the amount of time
during [0,¢] that Z(t) € B. Similarly ,

S(t) = /0 “U(s)dN(s)

counts the number of times that an arrival sees Z(t) € B during the interval
of time [0,¢]. Next observe that R(t) = S(t) — W(t) can be written as a
stochastic integral with respect to the square integrable martingale M(t).
More precisely, it is easy to verify that:

R(t)

[ v ames) (2
= fo " U(s)dN(s) - /o " U(s) dA(s)
= S(t) - W(t)

Notice that the random function U (t) is left continuous and is therefore
predictable with respect to the o-field F(t) where F(t) = ¢ (Y(s), N(s), Z(s),
0 < s <t) - see [1,6] for unexplained terminology.

Lemma 1 Let U(t) be a predictable process satisfying the condition:

T
E (/ IU(s,w)ldlA(s,w)l) < o0, for every T > 0.
0

Then the process { R(t), F(t),t > 0}, defined by the stochastic integral above,
s a martingale.



Proof: This is an immediate consequence of the general theory of stochastic
integration with respect to:(i) square integrable martingales [6], chap.5, sec-
tion 5.4, or with respect to (ii) martingales of bounded integrable variation
- see (1}, Theorem T6, p.10.

Our main result is that Wolff’s lemma 2 is still valid for the much larger

class of arrival processes considered here. More precisely, we have the fol-
lowing result:

Theorem 1 Assume N(t) is a doubly stochastic Poisson process with bounded
intensity function A(t,w). Then

th'm @ = 0, with probability one. (3)

2 Proof of Theorem

Theorem 1 is a special case of the following strong law of large numbers for
martingales of the form :

R(t) = /0 " o(s) dM(s),

where M(t) is a right continuous square integrable martingale whose “com-
pensator”, denoted by < M > (t), has the representation

<M>(t)=A(t) = /ot a(s) ds with a(t) > 0.

In addition we assume that v(t) and a(t) are both bounded i.e., ||v| =
SUP;30, | ¥(t,w) < 00 and ||af| = supizo,, | alt,w) [< co.

Theorem 2 Suppose M(t) is a right continuous square integrable martin-
gale with compensator of the form

<M > (t)=A(t) = /ot a(s) ds with a(t) > 0, ||a(t)|| bounded.

Let v(s) be a bounded predictable process. Then R(t) defined above is a square
integrable martingale and

limﬂ(El

t—oo

= 0, with probability one.



Proof: It is well known, see e.g. (6], vol.I, p.175, equation (5.72) and 5.4.6
on p.181, that R(t) is a martingale such that:

ER(t} = E ( fo * ols) dM(s))2
= E/ot v(s)?a(s)ds < ||v||* x ||a]| x ¢ (4)

This proves that R(t) is a square integrable martingale. Next observe that

t+h
E(R(t+h) - RO =E [ v(s)'a(s)ds < ol* x llal x b (5)

Note that the inequalities 4 and 5 sharpen and generalize inequalities (7)
and (8) in [12]. From here on the proof proceeds in the same manner as
outlined in [12]. Pick h > 0 and set X = R(kh) — R((k - 1)h),k=1,2,...
and put R(0) =0, thus R(nh) = Y p_; Xi. In addition inequality 5 implies
that EX? < Ch,where C is independent of h.Now let be,k =1,2,.. .denote
any sequence of constants satisfying the conditions:

(I) 0<bl<bz<...<bk,

(i)  limg_,o b = o0 and

(i) T2, b2 < 0.
Then

is an L; bounded martingale with

— Ch

~. EX? '
2 _ k
EY; = Z %) < o < 00
k=1 k k=1 'k
Consequently, limp_,o Y, = Yo exists and is finite with probability one.

This implies,see e.g. Neveu {10}, Prop.IV-6-1, p.138, that
lim b;lkz,\:,, = lim b7'R(nk) = 0.
=1
If we choose b, = n then we see at once that

lim R(nh)

n—oo n

=0 (6)



.

In order to prove that lim,_ o QEQ = 0 it suffices to establish this for the
special case v(t) > 0. If not, one can write R(t) = R*(t) — R~(t) where
R(t) = [§ v¥(s)dM(s) and v*(t) = max(v(t),0),v™(t) = max(—v(t),0).

Lemma 2 There ezists a constant C, independent of h, such that
R(nh) — Ch < R(t) < R((n+ 1)k) + Ch, fornh <t < (n+1)h (7)
Observe that

R(t) - R(nh) = /n: o(s) dN(s) — /n ; v(s)a(s) ds

- /n: v(s)a(s) ds
—livllllallh = Ch (8)

(A%

A%

And reasoning in exactly the same way as above one can also show that
R(t)— R((n+1)h) < Ch

This completes the derivation of 7. The condition nh < t < (n + 1)h implies
that 2 < h~! and 24! are both bounded for A held fixed. Thus

lim R((n+1)h)n+1 _

lim R((n + 1)h) _ 0
t—oo t n—o0 n+1 t
and similarly one can show that
lim __R(nh) =0.
t—o0 t

Using these two results, dividing both sides of 7 by ¢ and.letting t — oo
yields the proof of Theorem 1.

3 Examples

3.1 Geometric Arrivals

We may apply Theorem 2 very easily to show that, in the case of a discrete-
time system, geometric arrivals (i.e., the interarrival times are geometric
random variables [4]) see time averages. Without loss of generality, let ar-
rivals occur with probability p (the parameter of the geometric distribution)
and define the step function [t] as [t] = n,n <t < n 4+ 1. Next, for t € R,



let B(t) denote the number of arrivals in [0,t]. Then, it is easily shown that
M(t) = B(t) — p[t] is a right-continuous martingale. Now,

A

t+h 2
E [(R(t + h) - R(t)Y] < e U%(s)E [( /t dM(s)) ]
p(1 - p)[h]

where the last inequality arises from the variance of the Binomial distribu-
tion. Hence, we have proved inequality (5) for geometric arrivals. The rest
of the proof of Theorem 2 is actually simplified in the case of discrete-time,
but is applicable in its present form and therefore, we obtain our result that
geometric arrivals see time averages.

IN

3.2 Markov-modulated Poisson Processes

As an application of Theorem 1, we compute the probability of a system
state as seen by arrivals from a K-state Markov Modulated Poisson Process
(MMPP) [3,9). This has important consequences for performance metrics
such as blocking probabilities in several queueing applications [3,5,7,8,11].

Let Y(t),1 < Y(t) < K denote the state of a K-state MMPP and
Z(t) € {0,1,2,...} the system state at time ¢ respectively. We assume that
{Y(t), Z(t)} is an ergodic Markov process; this is the case, for example,
when a stable queue is driven by an M M PP in which the service times are
exponentially distributed. The arrival rate when the MM PP is in state
Y (t)'is, as mentioned earlier, f(Y (t)) = Ay(e)- Let m(4,7),1<i< K,j >0,
be the limiting distribution of the Markov process {Y'(t), Z(¢)} and for 1 <
i < K define

i Y(t) =i

1,
0, otherwise

I(t) =

Next, define the following indicator functions for the states, 7 > 0, of the
system

Ui(t) = 1, ifZ(t)=j

0, otherwise

We may now calculate the long term probability of an arrival seeing the
event B as



P [arrival sees B] = Jim ﬁt) /t EZB U;(s)dN(s)

= mye :ll’&t/ ZU(s)dN(s)

Now, from Theorem 1,

lim - / 3 Uj(s)dN(s) = Jim - / 3 Us(s)dA(s)

JjEB jeB

= i [ T (S )

i=1

= Zth /U_,-(s)I;(s)A;ds

jEBi=1

= Z Z /\i”(i’j )
jeBi=1
The last step follows from ergodic theorems for Markov processes (see Doob
[2], Theorem 2.1, page 515). Thus the above limit and lim,_, —Ait(ﬁ may be
combined to obtain the result. This is illustrated through an example.

Example: Consider a single first-come-first-served queue driven by a 2-
state M M PP arrival process in which the service times are exponen-
tially distributed with rate p. The states of the MM PP are labeled
1 and 2 respectively; the transition rate between state 1 and state 2
is denoted by a whereas the corresponding rate between state 2 state
1 is denoted by 8. The arrivals to the queue when the MM PP is in
state ¢, 7 = 1,2, is Poisson with rate A;.

Let us compute the fraction of arrivals that see the system in state j.
We get [3]
li N (t) Alﬂ + Aza
im =
t—oo a+ 8

Hence,
(@ +B)(Aim(L,7) + Aam(2, 7))
AB 4+ A

which agrees with the corresponding expression stated in (8].

P [Arrival sees state j] =
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