Poisson Arrivals See Time Averages: A Generalization

Walter A. Rosenkrantz and Rahul Simha COINS Technical Report 89-75 July 1989

Poisson Arrivals See Time Averages: A Generalization¹

WALTER A.ROSENKRANTZ

Department of Mathematics and Statistics
University of Massachusetts
Amherst, MA 01003, U.S.A.

RAHUL SIMHA

Computer and Information Sciences Department
University of Massachusetts
Amherst, MA 01003, U.S.A.

Abstract

In this note, the result that "Poisson arrivals see time averages" is proved under more general conditions. The limit theorems here require less restrictive assumptions and are shown for a wider class of arrival processes. Applications are presented for a particular cases of discrete-time geometric arrivals and continuous-time Markov-modulated Poisson processes.

¹The research of the second author was supported by the Office of Naval Research under contract N00014-87-K-0304.

1 Introduction

The purpose of this note is modify Wolff's proof of "Poisson arrivals see time averages", as given in [12], so that it can be applied to a more general class of arrival processes such as the so called 'Markov-modulated Poisson processes'

Let $N(t,\omega)$ denote the cumulative number of arrivals in the time interval [0,t] to some queueing system the state of which is denoted by $Z(t,\omega)$. We shall occasionally suppress the explicit dependence of a stochastic process on ω and write, say, N(t) instead of $N(t,\omega)$. N(t) is a "counting process" and therefore according to the general theory of such processes see, e.g., [1],[6] there exists an increasing process $\Lambda(t,\omega)$, satisfying certain technical conditions, with the property:

$$M(t,\omega) = N(t,\omega) - \Lambda(t,\omega)$$
 is a martingale (1)

Examples:

- 1. The Poisson Process; here $\Lambda(t) = \lambda t = \int_0^t \lambda \, ds$.
- 2. The doubly stochastic Poisson process ([1] p.21); here

$$\Lambda(t,\omega) = \int_0^t \lambda(s,\omega) \, ds$$

Remark 1 $\Lambda(t,\omega) = \langle M \rangle (t,\omega)$ is also called the "compensator" - see [6], Definition 2, p.239, vol.II.

Here is a simple example of a doubly stochastic Poisson process. Let $Y(t, \omega)$ denote a continuous time Markov chain with two states denoted by 1, 2. The infinitesimal generator matrix Q has the following form [3,8]:

$$Q = \left(\begin{array}{cc} -\alpha & \alpha \\ \beta & -\beta \end{array}\right)$$

Define the function $f(s_i), s_i \in S$ (the state space of the Markov chain) as follows: $f(1) = \lambda_1, f(2) = \lambda_2$ and $\lambda(t, \omega) = f(Y(t, \omega))$. Note that this is an example of a 'Markov-modulated Poisson process' [3,8,9]. More generally, one can consider functions of the form: $\lambda(t, \omega) = f(t, Y(t, \omega))$. Thus, the class of arrival processes to which our methods apply includes the particular cases studied by Wolff - who assumed that $\Lambda(t)$ is a deterministic function.

We want to compare the proportion of time that the process $Z(t) \in B$ with the corresponding proportion of customers who, upon arrival, see $Z(t) \in B$. The key observation is that the difference between these two quantities can be expressed as a stochastic integral with respect to the square integrable martingale M(t) defined in equation (1). More precisely, let $U(t) = I_B(Z(t-))$, where $I_B(x) = 1$, $x \in B$, $I_B(x) = 0$, otherwise. Thus,

$$W(t) = \int_0^t U(s) \, d\Lambda(s)$$

is a random weighted average of the amount of time during [0,t] that $Z(t) \in B$. In the special case of the Poisson process $W(t) = \lambda \times$ the amount of time during [0,t] that $Z(t) \in B$. Similarly,

$$S(t) = \int_0^t U(s) \, dN(s)$$

counts the number of times that an arrival sees $Z(t) \in B$ during the interval of time [0,t]. Next observe that R(t) = S(t) - W(t) can be written as a stochastic integral with respect to the square integrable martingale M(t). More precisely, it is easy to verify that:

$$R(t) = \int_0^t U(s) dM(s)$$

$$= \int_0^t U(s) dN(s) - \int_0^t U(s) d\Lambda(s)$$

$$= S(t) - W(t)$$
(2)

Notice that the random function U(t) is left continuous and is therefore predictable with respect to the σ -field $\mathcal{F}(t)$ where $\mathcal{F}(t) = \sigma(Y(s), N(s), Z(s), 0 \le s \le t)$ - see [1,6] for unexplained terminology.

Lemma 1 Let U(t) be a predictable process satisfying the condition:

$$E\left(\int_0^T |U(s,\omega)| \, d|\Lambda(s,\omega)|\right) < \infty, \ for \ every \ T > 0.$$

Then the process $\{R(t), \mathcal{F}(t), t \geq 0\}$, defined by the stochastic integral above, is a martingale.

Proof: This is an immediate consequence of the general theory of stochastic integration with respect to:(i) square integrable martingales [6], chap.5, section 5.4, or with respect to (ii) martingales of bounded integrable variation - see [1], Theorem T6, p.10.

Our main result is that Wolff's lemma 2 is still valid for the much larger class of arrival processes considered here. More precisely, we have the following result:

Theorem 1 Assume N(t) is a doubly stochastic Poisson process with bounded intensity function $\lambda(t,\omega)$. Then

$$\lim_{t \to \infty} \frac{R(t)}{t} = 0, \text{ with probability one.}$$
 (3)

2 Proof of Theorem

Theorem 1 is a special case of the following strong law of large numbers for martingales of the form:

$$R(t) = \int_0^t v(s) dM(s),$$

where M(t) is a right continuous square integrable martingale whose "compensator", denoted by < M > (t), has the representation

$$< M > (t) = A(t) = \int_0^t a(s) ds \text{ with } a(t) \ge 0.$$

In addition we assume that v(t) and a(t) are both bounded i.e., $||v|| = \sup_{t \ge 0, \omega} |v(t, \omega)| < \infty$ and $||a|| = \sup_{t \ge 0, \omega} |a(t, \omega)| < \infty$.

Theorem 2 Suppose M(t) is a right continuous square integrable martingale with compensator of the form

$$< M > (t) = A(t) = \int_0^t a(s) ds \text{ with } a(t) \ge 0, ||a(t)|| \text{ bounded.}$$

Let v(s) be a bounded predictable process. Then R(t) defined above is a square integrable martingale and

$$\lim_{t\to\infty}\frac{R(t)}{t}=0, \text{ with probability one.}$$

Proof: It is well known, see e.g. [6], vol.I, p.175, equation (5.72) and 5.4.6 on p.181, that R(t) is a martingale such that:

$$ER(t)^{2} = E\left(\int_{0}^{t} v(s) dM(s)\right)^{2}$$

$$= E\int_{0}^{t} v(s)^{2} a(s) ds \leq ||v||^{2} \times ||a|| \times t$$
(4)

This proves that R(t) is a square integrable martingale. Next observe that

$$E(R(t+h)-R(t))^{2}=E\int_{t}^{t+h}v(s)^{2}a(s)\,ds\leq ||v||^{2}\times ||a||\times h \qquad (5)$$

Note that the inequalities 4 and 5 sharpen and generalize inequalities (7) and (8) in [12]. From here on the proof proceeds in the same manner as outlined in [12]. Pick h > 0 and set $X_k = R(kh) - R((k-1)h), k = 1, 2, \ldots$ and put R(0) = 0, thus $R(nh) = \sum_{k=0}^{n} X_k$. In addition inequality 5 implies that $EX_k^2 \leq Ch$, where C is independent of h. Now let $b_k, k = 1, 2, \ldots$ denote any sequence of constants satisfying the conditions:

- $\begin{array}{ll} \text{(i)} & 0 < b_1 < b_2 < \ldots < b_k, \\ \text{(ii)} & \lim_{k \to \infty} b_k = \infty \text{ and} \\ \text{(iii)} & \sum_{k=1}^{\infty} b_k^{-2} < \infty. \end{array}$

Then

$$Y_n = \sum_{k=1}^n \frac{X_k}{b_k^2}$$

is an L_2 bounded martingale with

$$EY_n^2 = \sum_{k=1}^n \frac{EX_k^2}{b_k^2} \le \sum_{k=1}^\infty \frac{Ch}{b_k^2} < \infty$$

Consequently, $\lim_{n\to\infty} Y_n = Y_\infty$ exists and is finite with probability one. This implies, see e.g. Neveu [10], Prop. IV-6-1, p.138, that

$$\lim_{n \to \infty} b_n^{-1} \sum_{k=1}^n X_k = \lim_{n \to \infty} b_n^{-1} R(nh) = 0.$$

If we choose $b_n = n$ then we see at once that

$$\lim_{n \to \infty} \frac{R(nh)}{n} = 0 \tag{6}$$

In order to prove that $\lim_{t\to\infty}\frac{R(t)}{t}=0$ it suffices to establish this for the special case $v(t)\geq 0$. If not, one can write $R(t)=R^+(t)-R^-(t)$ where $R^\pm(t)=\int_0^t v^\pm(s)\,dM(s)$ and $v^+(t)=\max(v(t),0),v^-(t)=\max(-v(t),0)$.

Lemma 2 There exists a constant C, independent of h, such that

$$R(nh) - Ch \le R(t) \le R((n+1)h) + Ch, \text{ for } nh \le t \le (n+1)h$$
 (7)

Observe that

$$R(t) - R(nh) = \int_{nh}^{t} v(s) dN(s) - \int_{nh}^{t} v(s)a(s) ds$$

$$\geq - \int_{nh}^{t} v(s)a(s) ds$$

$$\geq - ||v|| ||a||h = Ch$$
(8)

And reasoning in exactly the same way as above one can also show that

$$R(t) - R((n+1)h) \leq Ch$$

This completes the derivation of 7. The condition $nh \le t \le (n+1)h$ implies that $\frac{n}{t} \le h^{-1}$ and $\frac{n+1}{t}$ are both bounded for h held fixed. Thus

$$\lim_{t\to\infty}\frac{R((n+1)h)}{t}=\lim_{n\to\infty}\frac{R((n+1)h)}{n+1}\frac{n+1}{t}=0$$

and similarly one can show that

$$\lim_{t\to\infty}\frac{R(nh)}{t}=0.$$

Using these two results, dividing both sides of 7 by t and letting $t \to \infty$ yields the proof of Theorem 1.

3 Examples

3.1 Geometric Arrivals

We may apply Theorem 2 very easily to show that, in the case of a discrete-time system, geometric arrivals (i.e., the interarrival times are geometric random variables [4]) see time averages. Without loss of generality, let arrivals occur with probability p (the parameter of the geometric distribution) and define the step function [t] as $[t] = n, n \le t < n + 1$. Next, for $t \in R$,

let B(t) denote the number of arrivals in [0,t]. Then, it is easily shown that M(t) = B(t) - p[t] is a right-continuous martingale. Now,

$$E\left[\left(R(t+h)-R(t)\right)^{2}\right] \leq \sup_{s\in[t,t+h]}U^{2}(s)E\left[\left(\int_{t}^{t+h}dM(s)\right)^{2}\right]$$

$$\leq p(1-p)\lceil h\rceil$$

where the last inequality arises from the variance of the Binomial distribution. Hence, we have proved inequality (5) for geometric arrivals. The rest of the proof of Theorem 2 is actually simplified in the case of discrete-time, but is applicable in its present form and therefore, we obtain our result that geometric arrivals see time averages.

3.2 Markov-modulated Poisson Processes

As an application of Theorem 1, we compute the probability of a system state as seen by arrivals from a K-state Markov Modulated Poisson Process (MMPP) [3,9]. This has important consequences for performance metrics such as blocking probabilities in several queueing applications [3,5,7,8,11].

Let $Y(t), 1 \leq Y(t) \leq K$ denote the state of a K-state MMPP and $Z(t) \in \{0, 1, 2, ...\}$ the system state at time t respectively. We assume that $\{Y(t), Z(t)\}$ is an ergodic Markov process; this is the case, for example, when a stable queue is driven by an MMPP in which the service times are exponentially distributed. The arrival rate when the MMPP is in state Y(t) is, as mentioned earlier, $f(Y(t)) = \lambda_{Y(t)}$. Let $\pi(i,j), 1 \leq i \leq K, j \geq 0$, be the limiting distribution of the Markov process $\{Y(t), Z(t)\}$ and for $1 \leq i \leq K$ define

$$I_i(t) = 1$$
, if $Y(t) = i$
0, otherwise

Next, define the following indicator functions for the states, $j \geq 0$, of the system

$$U_j(t) = 1$$
, if $Z(t) = j$
0, otherwise

We may now calculate the long term probability of an arrival seeing the event B as

$$P [\text{arrival sees } B] = \lim_{t \to \infty} \frac{1}{N(t)} \int_0^t \sum_{j \in B} U_j(s) dN(s)$$
$$= \lim_{t \to \infty} \frac{t}{N(t)} \lim_{t \to \infty} \frac{1}{t} \int_0^t \sum_{j \in B} U_j(s) dN(s)$$

Now, from Theorem 1,

$$\lim_{t \to \infty} \frac{1}{t} \int_0^t \sum_{j \in B} U_j(s) dN(s) = \lim_{t \to \infty} \frac{1}{t} \int_0^t \sum_{j \in B} U_j(s) d\Lambda(s)$$

$$= \lim_{t \to \infty} \frac{1}{t} \int_0^t \sum_{j \in B} U_j(s) \left(\sum_{i=1}^K \lambda_i I_i(s) \right) ds$$

$$= \sum_{j \in B} \sum_{i=1}^K \lim_{t \to \infty} \frac{1}{t} \int_0^t U_j(s) I_i(s) \lambda_i ds$$

$$= \sum_{j \in B} \sum_{i=1}^K \lambda_i \pi(i, j)$$

The last step follows from ergodic theorems for Markov processes (see Doob [2], Theorem 2.1, page 515). Thus the above limit and $\lim_{t\to\infty} \frac{N(t)}{t}$ may be combined to obtain the result. This is illustrated through an example.

Example: Consider a single first-come-first-served queue driven by a 2-state MMPP arrival process in which the service times are exponentially distributed with rate μ . The states of the MMPP are labeled 1 and 2 respectively; the transition rate between state 1 and state 2 is denoted by α whereas the corresponding rate between state 2 state 1 is denoted by β . The arrivals to the queue when the MMPP is in state i, i = 1, 2, is Poisson with rate λ_i .

Let us compute the fraction of arrivals that see the system in state j. We get [3]

$$\lim_{t\to\infty}\frac{N(t)}{t}=\frac{\lambda_1\beta+\lambda_2\alpha}{\alpha+\beta}$$

Hence,

$$P\left[\text{Arrival sees state } j\right] = \frac{(\alpha + \beta)(\lambda_1 \pi(1, j) + \lambda_2 \pi(2, j))}{\lambda_1 \beta + \lambda_2 \alpha}$$

which agrees with the corresponding expression stated in [8].

References

- [1] P.Brémaud, Point Processes and Queues: Martingale Dynamics, Springer-Verlag, New York, 1981
- [2] J.L.Doob, Stochastic Processes, John Wiley & Sons, New York, 1953.
- [3] H.Heffes and D.Lucantoni, "A Markov Modulated Characterization of Packetized Voice and Data Traffic and Related Statistical Multiplexer Performance", IEEE J. Sel. Areas in Comm., Vol. SAC-4, No. 2, Sept 1986.
- [4] J.J.Hunt, Mathematical Techniques of Applied Probability, Vol. 2, Discrete Time Models: Techniques and Applications, Academic Press, New York, 1983, Chapter 9.
- [5] A.Kuczura, "The Interrupted Poisson Process as an Overflow Process", Bell System Technical Journal, Vol. 52, pp. 437-448, 1973.
- [6] R.S.Liptser and A.N.Shiryaev, Statistics of Random Processes, Vols.I,II, Springer-Verlag, New York, 1978.
- [7] B.Maglaris, D.Anastassiou, P.Sen, G.Karlsson and J.Robbins, "Performance Models of Statistical Multiplexing in Packet Video Communications", *IEEE Trans. on Comm.*, June 1988, pp. 834-844.
- [8] K.S.Meier-Hellstern, "The Analysis of a Queue Arising in Overflow Models", IEEE Trans. on Comm., Vol. 37, No. 4, April 1989, pp. 367-372.
- [9] M.F.Neuts, "A Versatile Markovian Point Process", J. Appl. Prob, Vol. 16, pp. 764-779, 1979.
- [10] J.Neveu, Bases Mathématiques du Calcul des Probabilités, Masson et C^{ie}, Paris, 1964.
- [11] P.Sen, N.Rikli and B.Maglaris, "Queueing Analysis for Packet Switched Video", Proc. of the Int. Soc. for Optical Engineering, 1987.
- [12] R.W.Wolff, "Poisson Arrivals See Time Averages", Operations Research, Vol.30, No.2, March-April 1982, pp. 223-231.