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Abstract

In the general area of optimization under uncertainty, there are a large number of applications
which require finding the ‘best’ values for a set of control variables or parameters and for which
the only data available consist of measurements prone to random errors. Stochastic approximation,
which provides a method of handling such noise or randomness in data, has been widely studied in
the literature and is used in several applications. In this paper, we examine a new class of stochas-
tic approximation procedures that are based on carefully controlling the number of observations
or measurements taken before each computational iteration. This method, which we refer to as
Sampling-controlled Stochastic Approximation, has advantages over standard stochastic approxi-
mation such as requiring less computation and the ability to handle bias in estimation. We explore
the minimum growth rate required of the number of samples and prove a general convergence
theorem for this new stochastic approximation method. In addition, we present applications to
optimization and also derive a sampling-controlled version of the classic Robbins-Munro algorithm.

1This research has been supported by the Office of Naval Research under contract N00014-87-K-0304 and partially
supported by the National Science Foundation under grant DMS-8902333.



1. Introduction

Stochastic approximation refers to a general technique for augmenting deterministic iterative
algorithms in order to handle noise in the inputs. In the case of optimization, for example, there are
several algorithms [29,35] that cause a collection of control variables to iteratively move towards an
optimum value using values of some function (inputs) at each step. When these values cannot be
analytically computed and, instead, must be estimated, stochastic approximation presents a viable
method of using measurements (subject to random errors) in order to reach the optimum.

Ever since the introduction of the now classic Robbins-Munro algorithm [33], the stochastic
approximation technique has found several applications [12,23,30] from bio-assay [45] to theories of
learning [25] and has received wide attention in the literature [2,3,8,10,13,19,23,24,28,45]. An im-
portant theoretical concern in several research efforts is the convergence of the resulting algorithms
to ‘desired’ values. This is accomplished, in the usual manner of stochastic approximation, by pre-
scribing a sequence of decreasing stepsizes (23], one for each computational step of the algorithm.
In this case, it can be shown that, for a wide class of algorithms, convergence to the desired value
is obtained with probability one [3,8,23,28]. We refer to this method of augmenting an algorithm
as stepsize-controlled iteration.

In this paper, we examine a new class of stochastic approximation procedures that achieve
algorithmic convergence through repeated sampling of inputs while using a fized stepsize. This
procedure of adapting an algorithm in order to deal with noise in the inputs, has advantages over
the standard method method of decreasing stepsizes such as requiring less computation [36] and
handling inherent bias in measurements. In addition, it allows convergence results under somewhat
different and, in several cases, weaker assumptions than those required for decreasing stepsize
algorithms. '

The ability of a stochastic approximation scheme to handle bias is particularly important in
queueing systems and simulation methodology [10,12,13,27,30] since several estimators associated
with queues are biased [15,21,41]. The stochastic approximation technique studied in this paper,
referred to as sampling-controlled iteration was introduced by [36] in the context of load balancing
for computer systems. The convergence result in [36] required several strong conditions and an
unnecessarily high rate of sampling. A similar approach has been independently proposed in [44],
although in [44], both repeated sampling and decreasing stepsizes are used and, in addition to

stronger assumptions, a convergence result is shown using a nonstandard definition of convergence.

Similar ideas that weigh the number of samples of inputs against decreasing stepsizes have been
introduced by other research efforts in stochastic approximation [5,19] as well as in other areas [1].
In [1], a fixed number of samples was used for an algorithm in the context of learning theory and
experimental results were shown to demonstrate superiority over related algorithms using single

samples. In [5], a fixed number of iterations was considereAd and the optimal selection of stepsizes



was studied in order to minimize the mea.n-squaréd-error for the particular case of the Robhins-
Munro algorithm {33]. These results, together with other examples of algorithmic speedup, are

summarized in [19].

Our main contribution is a general convergence result. We explore the boundaries of the space of
assumptions needed for convergence. One consequence is a convergence theorem with much weaker
conditions than the one in [36]. In particular, the number of samples used at each iteration grows .
much more slowly. We demonstrate the utility of our method with applications to gradient-based
optimization algorithms as well as an illustrative derivation of a sampling-controlled version of the
classic Robbins-Munro algorithm. Our proofs, which are based on elementary upper bound results
from Large Deviation Theory [43], are simpler than corresponding proofs for standard stochastic
approximation.

In the next section, we consider a simple general recursion on a single variable in order to
motivate and discuss our ideas. In Section 3 we present our convergence results for a general class
of iterative algorithms on a multidimensional control variable. Finally, we present some applications
in Section 4 before making our concluding remarks in Section 5.

2. Sampling-controlled Stochastic Approximation

For motivational purposes, we first examine the following simplified iteration on a single control
variable:

z(nt1) — p(n) 4 a,,h(:c(“)) (1)
where n denotes the iteration number, k is a real-valued function and a,, is a real-valued stepsize
for each n. We refer to the above iteration as the deterministic version of the algorithm h. This
framework, we note, is representative of several root-finding iterative algorithms over a single
variable (such as Newton’s Method [35]) and, in these cases,  is computed analytically. Next, let

z" be some desired point of convergence such that lim, o z{™ = z* with 2(® defined above in
equation (1).

Let {Y"(z), z€ R} be a family of random variables and define

1 L(n)
}'rL(n)(z) = A }"rt'(z)
L(n) :/:1‘
to be a point estimate [34] of Y (z) based on L(n) independent, identically distributed random
samples, Y(z), ..., YX(?)(z). Typically, Y (z) represents a system quantity that is relatively easy to
estimate whereas h(z) is a more complex system property that is expressed as a function of simpler
quantities such as Y (z). Then, in order to estimate h, it becomes necessary to use an estimate,

g (f”'(")(z)), constructed from an estimate of Y'(z), where g is a function on the range of Y(z). We



will first consider the simple case in which g is the identity function (i.e., E [g (?L(r))] = h(z)).

and later, allow g to be a more complicated, nonlinear function.

Let the stepsizes satisfy the standard conditions [23,33): an > 0,a, — 0 and Y28 = oo.
Then, it is possible to show that [3,8,23,28), under very general conditions, when Vn : L(n) = L > 0,
the recursion defined by:

z(n+1) = z(n) + ang (}.’L(x(n))) (2)

converges to ¥, i.e., limp_,o z(™ = z* a.s. (the notation a.s. is used to denote almost surely or
convergence with probability one [34]). We refer to an iteration (related to k) involving random
variables, such as ?L(:c(")), as the stochastic version of algorithm h and to the particular form
of the stochastic version in (2) as the stepsize-controlled version of h. This is the approach taken
in standard stochastic approximation [23] and we distinguish this from our method of stochastic
approximation.

We focus on a particular subclass of deterministic recursions of the type in equation (1) with

Vn : a, = a and where 3a > 0 such that lim,_,co z(™ = z~ with z(™) defined by equation (1). Thus,
we are concerned with the subclass of deterministic recursions,

2™ = (") 4 ap(z(™), (3)

in which algorithmic convergence to the desired value is obtained with a fized stepsize. We note
that there is large class of useful numerical and optimization algorithms [29,35) in several recent
applications [4,11,39,46] which satisfy the above property. A stochastic version is easily obtained
by augmenting (3) with decreasing stepsizes that satisfy the usual conditions on stepsizes [23]:
an > 0,a, —» 0 and }_ 2, a; = oo:

(") = (") 4 4.4 (}-’L(x(“))) (4)

Once again, we obtain a stepsize-controlled stochastic algorithm for which it may by shown that
limn—,c0 (™ = z* a.s. [8,23]. We note that equation (4) is obtained from equation (3) with the fixed
stepsize, a, replaced by decreasing stepsizes, a,, and it is for this reason that we refer to standard
stochastic approximation as stepsize-controlled iteration. Although equations (2) and equations(4)
are identical, we repeat (4) in order to emphasize the difference between the derivations of the two
equations. In particular, we observe that since convergence is obtained with a fixed stepsize in the
deterministic case, the latter recursion uses decreasing stepsizes only for the purpose of removing
noise. This observation is central to our method of stochastic approximation: we replace noise

removal through decreasing stepsizes with noise removal via increasing sampling.
In several applications, for example the load balancing problem in [36], the estimator g (Y’L (a:))

may be biased, i.e., for any fixed L, E [g (?L(:c))] # h(z) [34]. It is known, also, that most



estimators associated with queueing systems suffer from this small-sample bias [15,21,41]. This bias
is usually due to the nonlinearity of the function g and the correlation present in a regenerative cycle
of a queue. In these cases, although z(™ defined by equation (4) converges, limn_.co (™ =z £z~
More seriously, in the case of optimization problems such as load balanéing [36], the limit &' may
not even be a feasible solution [36], i.e., may not satisfy given constraints on z'. Most often,

g (?L(z(“))) represents a measurement taken from a system after z("~!) has been changed to z(™).
In several situations [42], h is a desired steady-state expectation and when L is too small, the system
is not given enough ‘settling’ time [42], thereby causing the estimator g (?L(:c("))) to record effects
of transient behavior. In this case, which is also representative of many queueing systems, we have

E [g (}-’L(m(")))] # h(z(™).

With this motivation, we consider an alternate form of stochastic approximation, in which the
stepsize, a, remains fixed and, instead, the number of samples, L(n), increases to infinity. We define
the following stochastic iteration:

24 = o) 4 g (FE) () 5)

where L(n) is a sequence of positive integers such that L(n) — oco. Intuitively, as L(n) — oo, we
would expect that for large n, the procedure tends to behave like its deterministic counterpart,

equation (3). Now, if g (f’L_(“)(m)) is a strongly consistent estimator [34] of h(z), i.e.,

fim g (f’L(")(z)) = h(z) a.s.

n—oo

(but not necessarily unbiased), then, as n gets larger, the effects of bias are slowly removed. In this

manner, we might obtain the desired convergence, lim,,_, 2™ =z~ a.s..

In the next section, we prove a general convergence theorem for a multidimensional recursion on

X = (zg"), ey :cg?)). We derive sufficient conditions on the growth of L(n) based on assumptions
made about the estimators and the algorithm that guarantee convergence to a desired point, X*,
almost surely. '

3. Convergence

In order to prove our convergence result we use the following notation:

e Foric {1,..,p} and fixed X € D C RX, define



where Y;'(X), Y2(X), ...,f’ij (X), ... are independent and identically distributed random vari-

ables with mean Y;(X). Then, under weak conditions on the distributions of Y’,-j (X), the
Strong Law of Large Numbers [34] implies

mh:_{rgo ¥™(X) = Yi(X) as.

e Forie {1,..., K} let gi(y1, ..., yp) be continuous functions on RP and define
hi(X) = gi: (Y1(X), ..., Yp(X))

Then, since each g; is continuous,

lim g; (fq'"(X),...,?;"(X)) = hi(X) a.s.

m—oo

e Finally, consider the following fized-stepsize deterministic algorithm, defining X("+1) =
(z(1n+l)’ ‘__,,,g",‘“)) in terms of X("). For each i € {1, ..., K}:

z£n+l) _ Z'En) + aH; (hl(x’(n)),,hK(X(ﬂ)),X("’)) (6)

where each H;,i € {1,..., K} may or may not be continuous. We will henceforth also use g
and h to denote the vectors (g, ...,gx) and (hy, ..., hx).

We focus on deterministic recursions such that 3a > 0 for which it is true that ¥.X():

lim X = x~ (7)

n—oo

where X ™ is the desired point of convergence. We will show that the sampling-controlled stochastic

version of equation (6),
zgn-}-l) - z'(:ﬂ) + aHi (g (}'/IL(TI)(}((H))’ _”’?pL(n)(X(ﬂ))) ’X(n)) (8)

converges to X*. In comparing equations (6) and (8), we observe that the functions h;(X(™)
in equation (6) have been replaced by the corresponding estimators g; (}-’L(")(X("))) based on

L(n) samples at iteration n. We will assume throughout the paper that the procedure remains

in a compact set D C RX. This may have to be accomplished through some type of constraint
mechanism [11,35,37], which we will assume to be incorporated into the functions H;.

Assumptions:




A1l. Existence of moment generating functions. We assume that
P i |
sup E {exp (; o (Y7(X) - Yi(X)))] |
is finite in some open neighbourhood of a = (ay,...,ap) = 0 with a derivative at a = 0.

A2. Continuity of g. We assume that the functions gi(y1,...,¥p), ¢ € {1, ..., K}, are continuous in

the domain of interest, i.e., in the range of ¥{*(X), ..., f’:‘ X).

A3. Stability of convergence under perturbations. We assume that the deterministic version given
by equation (6) satisfies the following stability property. Given § > 0 there exists N < oo
and € > 0 such that if

:BE"H) = zsn) + aH; (hl(X(")) + €7, ey hK(X(")) + e}‘(,X(")) (9)
and if supgcncpy [€F] < € for all i € {1,..., K’} then for all X(®) ¢ D and all N < n < 2N,

|xt) - x-

<4

Intuitively, this last assumption characterizes the convergence behavior of the deterministic version
under infinitesimally small perturbations by requiring the trajectory of the perturbed version,
equation (9), to behave nearly as well as the unperturbed version, equation (6), for a certain fixed
number of iterations (N to 2V), for small enough perturbations (smaller than ¢).

THEOREM 1: There exists a lower semi-continuous convex function Ly(8) : RP — [0, 00| with
the properties

(i) Ly(B) = 0if and only if 8 = (Y(X), ..., ¥,(X)).

(ii) The sets {8 : Ly(B) < s} are compact for all s € [0, o).

(iii) Given § > 0 and s > 0 there exists M < oo such that uniformly in X € D
and A satisfying infge 4 Ly (8) > s,

P [(F™(X), .. T"(X)) € 4] < exp ((s - 6)m)

forallm > M.

PROOF: (see Appendix).

THEOREM 2: There exists a lower semi-continuous convex function Ly(v): R 5 [0, 00]
with the properties



(i)  Lg(y) = 0if and only if y = A(X).

(i) The sets {y : Ly(y) < s} are compact for all s € (0, 00).

(iii) Given § > 0 and s > 0 there exists M < oo such that uniformly in X € D
and A satisfying inf,e 4 Lo(7y) > s,

P [g (I_’l'"(X), ...,f’;"(X)) € A] < exp(—(s - §)m)

forallm > M.
(iv) The function Lg(7) can be expressed in terms of Ly (8):

Lg(v) = inf{Ly(B):9(B) =17}, ifg(B) =1 has a solution

+00, otherwise

PROOF: (See Appendix).

THEOREM 3: Under assumptions A1 — A3, the stochastic version, equation (8), converges to
X* ie.,

lim X™ = X~ q.s.

n—oo

if L(n) = cplogn where ¢, — 00 as n — co.

PROOF: (See Appendix).

3.1 Discussion

The proof of our convergence result may be interpreted by some simple intuitive arguments.
First, we recall a few facts from large deviation theory. For fixed X, the estimator ¥/*(X) converges
to the mean Y;(X) via the Strong Law of Large Numbers. In this case elementary Large Deviation
Theory (Cramer’s Theorem in [43]) provides a simple upper bound on the probability that Y™ (X)
is found in any closed set A not containing Y;(X) after m samples:

P[7™ € A] < exp(~c(A)m) (10)

where ¢(A) > 0 is a number derived from A (the large deviation rate [43]). Conversely, the Borel-
Cantelli lemma [34] may be used to show that if an estimator satisfies equation (10), i.e., possesses a
large deviation property, then it is converges. Also, large deviation properties extend to continuous

functions of ¥/*(X), as in Theorem 2. '

Next we observe that the recursion given by equation (8) may be viewed as an estimator for X~

and hence if a large deviation property could be derived for X (™), the Borel-Cantelli lemma could



be used in proving convergence. This would in fact be quite simple to achieve if the functions H;
were also continuous. However, many of the deterministic algorithms considered in the literature
do not have this property. Hence we take a slightly different approach, which requires our use of
the stability of convergence assumption. We have explicitly separated our study of the behavior of
the estimator, g, from that of the algorithm, H, which may be discontinuous.

In deriving our results we have made use of assumption Al for Theorem 1, A2 for Theorem 2 .
and A3 for Theorem 3 and we now discuss some of the implications of our assumptions. Assumption
Al is a statement on the behavior of the moments of f’,-'“ and is stronger than assuming simply the
existence of the moments. However, we note that stronger assumptions have oftgn been made in
the case of stepsize-controlled iteration [8,33]. In the case of gradient estimators for queues, such
as the one described in section 4.1 of this paper, we believe that if the queue is recurrent and if
the moments of the length and number in a busy period satisfy the assumption, then the moments
of the gradient estimator, being polynomially-bounded functions of the busy period variables, will
also satisfy the assumption.

Assumption A2 is a simple continuity assumption on the construction of more complicated
estimators, g;, from the more fundamental estimators 17:-"‘. This assumption is easily verified for
the gradient estimators of interest here [16,32], as well those used in other recursions [33], and
appears not to be a restrictive assumption. Finally, assumption A3, which is a condition on the
convergence behavior of the deterministic version, equation (6), reduces to a characterization of the
functions H;. Consider what would happen if this condition were not satisfied for some deterministic
algorithm. Let X M, ...,X() be a sequence generated by the algorithm starting at X(°) and let
Y, ...,Y(™ be the sequence generated when infinitesimally small perturbations are added to each
Y (). In this case, violation of assumption A3 implies that arbitrarily small perturbations can cause
X and Y™ to be radically different in the sense that, while X (") generates ‘good’ values of the
objective function, ¥ (™) results in poor performance. We argue that such algorithms are likely to
be rejected in practice since their convergence behavior can be very different for arbitrarily small
measurement errors. In the case of algorithms used in practice, we note that if the functions H;
are continuous then A3 is automatically satisfied and this includes several numerical procedures
(29,35). Furthermore, when H; is not continuous [11], proofs of deterministic convergence usually
consist of showing a strict improvement of the objective function and, in these cases, the individual
proof would have to be modified to show that assumption A3 is satisfied. We also mention that,
when multiple optima are present, assumption A3 should be rephrased to imply that the perturbed
version satisfies the property of producing arbitrarily close values of the ob jective function.

Finally, some comments about the growth rate L(n). Conditions on L(n) arise naturally from
our method of proof and the growth rate needed here is far slower than L(n) > L(n — 1), the
rate required in [36]. Furthermore, in [44], decreasing stepsizes were used in addition to increased
sampling and convergence was shown according to a nonstandard definition of convergence. We



have demanstrated that a fixed stepsize is sufficient for strong convergence in the usual sense. We
believe that L(n) = cnlogn is the slowest growth rate possible since with a slower growth rate such
as L(n) = logn the Borel-Cantelli lemma cannot to be applied.

4. Applications

In this section we present two applications of our sampling-controlled methods to established
algorithms. The first application is to a well-known routing algorithm [11] and the second, solely

for illustrative purposes, is a sampling-controlled version of the classic Robbins-Munro algorithm
[33].

4.1 A Gradient-based Routing Algorithm

We examine the application of our sampling-control technique to a well-known gradient-based
hill-climbing algorithm, Gallager’s algorithm [11], that has found applications in routing in com-
puter networks [4,6,7,11], load balancing [26,31,37] as well as in the area of learning automata [38].
We focus on augmenting this algorithm into a stochastic approximation procedure using samplin.g-
control. We note that the algorithm is gradient-based and thus, the deterministic version uses
analytic formulas for the gradient at each iterative step. Furthermore, we observe that several
methods for direct gradient estimation in queueing systems have recently received a great deal of
attention in the literature [16,17,32] and therefore, a stochastic version of Gallager’s algorithm,

using these gradient estimates, is of general interest in the above application areas.

We concern ourselves with applications in which direct gradient estimation is possible and has
already been used. These examples include the optimization of parameters in a queueing network
[18], load balancing [31,36] and routing [6,7], some of which, we note, have considered the use
of stepsize-control [18,22,23]. In order to demonstrate the use of sampling-control, we examine
a particular application - the optimization of arrival rates in a queueing network - and develop
a sampling-controlled extension of Gallager’s algorithm that uses estimates of the derivatives of
queueing delays (with respect to these arrival rates) in order to minimize the overall mean delay.
We will employ the likelthood-ratio estimation method in [32] and describe how derivative estimates
may be obtained and used in Gallager’s gradient-based optimization algorithm.

Let us define the following notation associated with a single queue in a queueing network [32]:

N; = the number of customers in the 7t busy period [20].
W;; = the waiting time of the ith customer in the j** busy period.

W; = Tty Wi

=1



A = the arrival rate to the quene. It is assumed that the arrival process is Poisson [20}.
T; = the duration of the j* busy period.

D = the expected steady-state waiting time for the queue.

For a fixed arrival rate, A, we describe the estimation scheme of [32] and formally define the following

likelihood-ratio estimators:

L(n)

VI = ﬁj;wj
FEI() = ﬁ%{) (5i-m)w;
7H0) = f(lne)uz) ({—f—:r,-) N;
l',41:(71)(>\) = —L_(ln_)?:’il)Nj

Note that each one of the the series of L(n) samples in the above estimators is obtained from a
busy period of the queue and hence are independent [21]). Then, from this regenerative property
and the strong law [32], we have, for 1 <14 < 4, '

Jim 700 = B [ ()

Next, let

HO0) B0
> L(n ~ L(n 2
U0 (7))

§ (), ., 7)) = (1)

In [32], it is shown that §, as defined above, is a strongly consistent estimator of the derivative of

the mean delay of the queue with respect to the arrival rate, i.e.,

Tim § (FHR), . TEO) = 22 as.

However, we note that this estimator is biased due to the nonlinearity of § [15]. Now, in queueing

network composed of K queues, an overall delay function can be defined as a continuous function,
C(D1, ..., Dk) of the delays in each of the K individual queues and thus, derivative estimators, g;,

10




for each derivative g—ﬁ, 1 < i< K, may be expressed in terms of functions §; such that for a fixed

arrival rate \; at each queue:

i o L(n rL(n oc
Jim g: (%700, ., 740 0) = 55
We now define the gradient algorithm in terms of A(®) = ( ,\gﬂ), - ,\E’?)) where /\sn) is the ith -

parameter or i*# component of the multidimensional control variable, A(™), and where, n denotes
the iteration number. In keeping with the notation defined in the previous section we let h;())

denote g—f'_. Then, the deterministic version of the algorithm will be completely specified by listing
expressions for H; (hl(/\g")), N ) K()\Er?))) in the recursion given in equation (6) with X (") replaced
by Al™). Let m = argmimgick hi(A™) i, (M) = minigicx hi(A™). Then define the

following functions, H;, which characterize the deterministic algorithm:

Hi (), hk(AD) = kD) = (W) Vit m

Ho (), beD) = T () — ki (AD) (12)

1<i< K,i#m

It can be shown that [4,11], under certain smoothness conditions on C, if A~ is the unique optimum
solution that minimizes the delay function C, then

lim A™ = A"

n—oo

when X(") is defined by the recursion, Vi : :cS"“) = zﬁ"’ + aH;.

For the applications in which such gradient-based optimization algorithms are employed, there
are usually contraints on the control variables, X("). In the routing [11] and load balancing [37)
problems, for example, thie control variables represent probabilities and hence X (™) is restricted to
the simplex defined by: X, :c,(") =landVi:0< zgn) < 1. The algorithm defined in equation
(12) satisfies the first (equality) constraint and is easily modified [11] in order to handle the latter
(inequality) constraint. Below, we directly present the stochastic version of the algorithm modified
to handle both these types of constraints. In order to simplify the notation needed we define

3™ = g (VEO M), .., TEH (Al
and obtain the stochastic version as:

A=A 4a (3 - M) vie AW

11



A = A0 4 g ( > odm- ',(,?)) (13)
icA(m)igm

where A(®) = {i|z\$") +a (gs,?) - g‘(")) > 0} U {m} and m = argmin; 3™

From equation (11), we observe that assumption A2 of section 3 is satisfied, i.e., g is a continuous
function. Therefore, if we assume the existence of the moment generating function for the estimators -
¥/™()) then Theorems 1 and 2 are easily proven. Assuming that A3 is also satisfied, we may easily
apply Theorem 3 to conclude that

lim A = A~

n—oo

Since the functions H; are discontinuous, the verification of A3 for this algorithm depends on the
application and, in particular, on the function C.

4.2 The Robbins-Munro Algorithm

In this section, for illustrative purposes, we examine a sampling-controlled stochastic analog of
the Robbins-Munro algorithm ([33] for cases in which the deterministic version converges with a
fixed stepsize. In particular, we consider the following deterministic recursion on a single variable
in a compact set:

21 = 2™ — o (f(2™) - 0) (14)

where f(z*) = 6 and z~ is the desired point of convegence, i.e., limp_,o z{™) = z*. In this case
if we define the operator Tz = z — a(f(z) — ), then in several instances [35] T can be shown to

be a contraction mapping (35] with a unique fixed point at z~ and, therefore, lim,_,o, (™ = z* in
equation (14).

Next, let §™(z(™) be an estimator based on m random samples, 171(2:(")), ..,l;'m(z(")), such
that

=m¢ (n 1 n
(=) = =3 Vi)

j=1
and
Jim g™(2™) = f(z)
Further, by letting §(™ = gL(")(z(")) we have the following sampling-controlled stochastic version:

g(n+l) = g(n) _ g (g(") - 0) (15)

Then, since A1 — A3 are satisfied, we have, by Theorem 3, lim,,_,, (™ = z~.

12



5. Conclusions

In this paper, we have presented a new stochastic approximation scheme, sampling-controlled
iteration, that has the important capability of handling bias in estimators. Estimator bias is
found in several problem areas and, consequently, sampﬁng-coﬁtrolled stochastic approximation
finds application in related optimization, numerical and control algorithms. Since other research
efforts [36] have also experimentally determined the usefulness of this method, we conclude that
sampling-control offers an attractive alternative to the standard stochastic approximation method.

Our main contribution was a general convergence theorem which explored the bounds on growth
rates of sampling required for convergence. Our proof methods, which are simple and accessible,
use elementary large deviation bounds and easily determine the conditions on the rate of sampling.
In addition to the convergence result, we apply our methods to an optimization problem in a
queueing system. Furthermore, this being a relatively new procedure for stochastic approximation,
we illustrate our method by presenting sampling-controlled version of the classic Robbins-Munro
algorithm. For future work, it would be interesting to compare the adaptivity of modified stepsize-
and sampling-controlled algorithms. Finally, we observe that although our focus has been on
theoretical issues of convergence, much work needs to be done in terms of the application and
empirical study of stochastic approximation methods.
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Appendix:

PROOF OF THEOREM 1: Let

=1

J(a) = sup log B [exp (i o (P/(xX) - Y,-(X)))] :
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The function J is convex [9] and by assumption, &T_(g) exists at a = 0; this can he computed

and found to be 8_.(!9_(5_) = 0. Define L as the Legendre-Fenchel transform (9] of J:
L(B) = sup [< a, 8 > —-J(a))].

Now, J(0) = 0 and —J(El =0 1mply L(B) = 0iff 8 = 0. The fact that J is finite in a
nelghbourhood of a= 0 and that J is convex together imply L(8) — oo as |8] — oo [9]. We

have therefore shown

(i) L(p)=0iffg=0.
(ii’) The sets {8 : L(B) < s} are compact for all s € [0, 0).

By Theorem II.2 in [9], we obtain
(iii’) Given § > 0 and s > 0 there exists M < oo such that uniformly in X € D and
A satisfying infge 4 L(B) > s,

P[(#™(X), .. T"(X)) € A] < exp [~ (s - 8)m]

for all m > M. This implies Theorem 1 if we define Ly(8) = L (8 — (Y1(X), ..., Yo(X))).
a

PROOF OF THEOREM 2: Theorem 2 follows from Theorem 1 via the upper bound part of
the ‘contraction principle’ (see pages 5 and 6 in [43]). O

PROOF OF THEOREM 3: We will prove that P |
the notation ¢.0. refers to ‘infinitely often’ [34]). Fix § > 0. Define

X - X*| > §i.0] = 0forall 5 > 0 (here,

E; = {'X(“) - X"l > § for some n, iN <n< iN + N}
where N is from assumption A3 for our chosen value of §. Clearly,

(jeo-x

io}={Eiio} as. (16)

where the first event in equation (16) is i.0. in n whereas the second is 7.0. in i. Next, the
stability assumption, A3, implies that uniformly in X € D, with € from A3,

XiN-N _ z] < P L;:?K ’g ( rL(n)( \r(n)) ,)'-;L(n)(X(n))) — h(X(n))l > €

P [E,-

for some n, iN—NSngiN+N|‘\’iN"N=z]
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iN+N - Lin N .
< % p [ oup._|os (FE(X), ., TEOX)) - h(X)| >
n=iN-N41 L1SiSK

JY"N—N = 2]

But Theorem 2 provides an upper bound on each term in the summation that is uniform in
X. Hence

iN+N

P[E] < > exp(—c[L(n)])

n=iN-N+1
iN+N

D, exp (_c [;N_Ngiﬂi;iN_+N L(n)])

n=iN-N+1

< K(2N +1)exp (—c [iN—NéﬂgiN+N L(n)])

for i sufficiently large, where

IN

1
= = i L
€= 3 oAl yys, o) > 0

We have broken up the sequence of iterations into blocks of size N and placed a bound on the
probability of E; via the Large Deviation result, Theorem 2. Now, we return to equation (16)
in order to study the probability of E; occuring infinitely often. If "2, P [E;] < oo then, by
the Borel-Cantelli lemma [34], this implies that P [E; i.0.] = 0. Now,

i P (Ei] < i K(2N + 1)exp (‘c [,-N-Ngilv}.giN+N L(n)])

=0 i=0

K(2N +1) fj exp (—c[L(n)))

n=0

IN

= KN +1)) n-cll

n=0

which is a finite sum since the product c[c,] > 2 for large enough n and hence convergence
follows. a
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