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Abstract

Multistage interconnection networks (MINs), an important class of networks arising in parallel
computer architectures, are excellent candidates for parallel time-driven simulation on shared
memory computers because they are large, inherently parallel, regularly structured, discrete
time systems. In this paper we report results from a continuing study on the performance of such
simulations on a Sequent Symmetry. Our focus is the class of buffered delta networks consisting
of 2 x 2 switches. We report results for simulations of MINs containing 4-9 stages and report
on the effects that different synchronization techniques, different processor to switch allocation
strategies, and non-uniform traffic patterns in the workload have on simulation speedup. Briefly,
we observe that a two-phase synchronization technique requiring only two barriers during each
clock cycle provides the best speedup. We examine two processor to switch allocation strategies,
a contiguous allocation that allocates contiguous rows of switches to each processor, and an
interleaved allocation that allocates every P-th row to each of the P processors. While the
contiguous allocation exhibits better locality of reference, for uniform traffic there is little
difference in performance between the two strategies. For non-uniform traffic, whereas the
speedup using contiguous allocation degrades, the speedup using the interleaved allocation

remains nearly constant. Using these techniques, speedups of over 14 on a 16 processor system
have been obtained.
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1 Introduction'

Simulations of large scale queueing networks are often computationally expensive and the par-
allelization of such simulations is currently an active area of research (see, e.g., [10,11] and
the references therein). A variety of different algorithms have been proposed to parallelize
the simulation, most notably Jefferson and Sowizral’s “Time Warp” algorithm which is a so-
called optimistic mechanism (3] and a so-called conservative algorithm proposed by Chandy
and Misra [1]. Performance of these algorithms for queueing network simulations is reported in
[2,4,9,10,11] . These algorithms show promise when applied to special classes of networks (see,

e.g., [2,4]).

The above mentioned algorithms are event-driven in the sense that a processor advances its
simulation clock to the time of the next event scheduled at the queues managed by that proces-
sor. We have been exploring time-driven simulation as an alternative approach (see Peacock,
Wong and Manning {7]) in which there is a fixed, constant time increment. In this approach,
processors simulate only those events scheduled at the current time step and then synchronize
before advancing to the next time step. In an earlier paper [12] we presented some preliminary
results from a study of parallel time-driven simulation of Multistage Interconnection Networks
(MINSs) on a Sequent Symmetry. MINs are an important class of networks arising in a number
of highly parallel shared memory computer architectures. In [12], we argued why MINs are
ideal for time-driven parallel simulation: they have a highly regular structure and are naturally
discrete time systems with many events occurring at each time step. We considered three syn-
chronization methods for synchronizing the processors during each time step and observed that
a multibarrier method performed the best. The multibarrier method requires the processors to
perform a barrier after simulating its allocated switches at each stage (except the first). All of
the results were for eight processors and uniform traffic patterns.

In this paper we present additional results from our continuing study of parallel time-driven
simulation of buffered Delta MINs, focusing on improved processor allocation and synchroniza-
tion algorithms which take advantage of the network’s topological structure. This structure can
be exploited to improve locality of reference, reduce the number of synchronization barriers,
and to equalize the processor workload under non-uniform traffic conditions. For example, an
improved multibarrier method can be devised which reduces the number of barriers per cycle
from (n — 1) to log P, where n is the number of stages in the network and P is the number
of processors. At little additional computational cost, the number of barriers can further be
reduced to two per cycle using a two-phase method. In this approach, processors simulate the
odd numbered stages in one phase, perform a barrier, then simulate the even numbered stages
and perform a second barrier. We have achieved speedups of over 14 on a 16 processor system
using the two-phase approach.



We also consider the effect that non-uniform traffic in the form of “hot spots” have on speedup.
As described in [8], the hot spot model is important architecturally and the performance of
buffered MINs degrades severely in the presence of hot spots. We observe that there is a
noticeable decrease in speedup as the traffic becomes non-uniform. In these and previous
simulations we assign contiguous rows of switches to each processor. However, when the traffic
load exhibits hot spots, this places an unequal computational load on some processors. Hence,
we also examine the performance of a second assignment rule, an interleaved assignment, where
rows are assigned to processors mod P. This assignment rule tends to even out non-uniformities
in processor workloads. Similar types of assignment rules have been used in parallel computation
for different problem domains (see, e.g., [5]). While the contiguous allocation exhibits better
locality of reference than the interleaved allocation, there is little difference in the speedups using
these allocations for uniform traffic. However, in the case of hot spots, the speedup decreases
much more using the contiguous allocation. In fact, the speedup using the interleaved allocation
remains nearly constant over the range of interest.

This paper is organized as follows. We briefly describe delta networks in the next section.
Section 3 contains descriptions of the different approaches to synchronizing the processors and
to assigning switches to processors during the simulations. Section 4 provides details of the
simulator. The experiments and their results are reported in Section 5. Section 6 summarizes
the results of our study.

2 Delta Networks

We are interested in a class of MINs called buffered delta networks composed of 2 input, 2
output switches. An n stage delta network contains 9n~1 switches at each stage and can be
used to connect 2" inputs to 2» outputs. The interconnection pattern of links between output
ports in one stage and the input ports of the next stage is such that there is exactly one path
between any one of the input ports at the first stage and any one of the output ports at the last
stage. Buffers for storing packets are present at each input port at each switch. We consider
two classes of delta networks, single buffer delta networks where each input port can store at
most one packet and infinite buffer delta networks where any number of packets can be stored
at an input port. Figure 1 shows a delta network with 4 stages.

We consider the subclass of synchronous delta networks. By synchronous, we mean that time is
divided into fixed length intervals and that the actions taken by a switch to select a packet and
transmit that packet to the next stage occur in one of these time intervals. We assume that each
of these time intervals is exactly one unit of time long (the time unit is called a cycle). If two
packets arrive at a switch simultaneously, both of them can be transmitted provided they are
directed to different output ports. Otherwise one packet is selected randomly and transmitted;
the other remains in its buffer. We have studied two different single buffer implementations:



A Four Stage Delta Network
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Figure 1: A Four Stage Delta Network.

TypeI:In this implementation a message may transfer from one stage to another provided
that there is space in the buffer by the end of the clock cycle. Hence, transfers may take
Place even though the buffer may be full at the beginning. Transfers between two stages,
under this scheme, may depend on the buffer occupancies of stages far downstream.

Type I : In the second implementation, a message may transfer from one stage to another
only if there is space in the buffer at the beginning of the clock cycle. The hardware for
this type of single buffer switch is easier to build. It also has the property that a transfer
between two stages is determined only by the buffer occupancy of the next downstream
stage. Hence, it is easier to simulate under different synchronization methods.

Our earlier paper [12], reported results on Type I single buffer MIN’s. This paper reports results
on Type II single buffer MIN’s.

Our studies assume that arrivals to each input are described by a Bernoulli process and that
the processes are independent and statistically identical from input to input. We consider two
scenarios. In the first scenario, each packet is destined for each output with equal probability;
we refer to this as the uniform traffic model. We also consider a non-uniform traffic pattern
where each packet chooses the output with address 0 with probability p, and each of the other
outputs with equal probability (1 - pn)/(N - 1), where N is the total number of outputs. In
order to parameterize ps, we define a parameter f, such that p, = f/N. In our simulations,
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f takes values 1,3,5 and 10 (f=1 corresponds to the uniform traffic model). This is the so
called “hot spot” model, with output number 0 representing a heavily utilized, or hot, memory
module in a model of a shared memory multiprocessor. Last, we are interested in determining
the average packet delay and the average buffer occupancies. The parameter A denotes the
packet arrival rate at each input port, i.e., on each cycle a new packet is generated at each
input with probability ).

We conclude this section with some additional notation to be used later. A switch in the
network is denoted as an element in a matrix. i ; represents the switch on row i at stage 7,
0<i<2™1 0<j<n-1. Stage 0 is the one with the inputs to the MIN and stage n — 1 is
the one with outputs from the MIN. They are sometimes referred to as the first stage and the
last stage.

3 The Sequent Symmetry System

The Sequent Symmetry system at the University of Massachusetts has 16 Intel 80386 processors
running at 16 MHz and 128 Mbytes of fully interleaved physical memory. Each processor
contains 64 Kbytes, 2-way set associative cache and a floating-point coprocessor. These cache
memories optimize system performance both by limiting traffic on the system bus and by
improving individual processor performance.

The Symmetry cache memory uses an ownership-based copy-back caching policy to maintain
consistency between copies of data in main memory and the local processor caches while limiting
traffic on the system bus. When a processor modifies a piece of data in its cache, it does not
write the new value back to the system memory or to other processors caches until another
processor needs that data or until it needs the cache space occupied by that data. The processor
caches enforce the caching policy by communicating with each other through a set of signals
and through a set of status tags associated with each piece of data. The reader is referred to
[6] for further details. The results reported in in this paper are from a Sequent Symmetry that
has been upgraded since the time that the experiments reported in [12] were run. Hence the
two sets of results are not directly comparable.

Sequent computers run the DYNIX system, a version of UNIXbsd with extensions for processor
scheduling and other multiprocessing support. Higher level synchronization primitives such as
barriers are provided and are used in our simulations. Barrier is a synchronization point for a
group of processes. A process must wait at the barrier until all the processes in the group are
present at the barrier.



4 Processor to Switch Assignment and Processor Synchro-
nization

An n stage MIN has 2"~! rows of switches. Let the number of processors, P, be expressible as
a power of 2, P = 2™ where m < n. The simulation is time-driven. During each time unit, a
processor simulates the 2"~™~1 switches assigned to it at stage n. In order for the simulation
to be correct, it must handle the following constraints:

mutual exclusion - During a parallel simulation of a MIN ; a buffer may be accessed by two
different processors, one simulating the switch that feeds packets into the buffer and the
other simulating the switch to which the buffer belongs. Only one of these processors can
access the buffer at a time.

single passage - It is our assumption that selecting and passing a packet takes one time unit
(cycle). In the simulation, a packet can be passed at most once during one cycle. That is,
if switch s; ; passes a packet to switch 8i1,j+1, this packet should not be passed by si, j+1
to a switch at stage 7 + 2 until the next cycle (at the earliest).

We allocate switches to processors in two different ways. If welabel the processors 0,1, ... 2m-1,
then, in the first allocation we assign the switches in rows (j2m-n-141 o (F4+1)2m-7-1) are
assigned to the j-th processor. This assignment is called contiguous allocation. In the second
scheme, called the interleaved allocation scheme, row ¢ is assigned to the processor labeled
¢ mod P, where P is the number of Processors.

In order to ensure that the clocks are synchronized at the processors, we require the processors
to execute at least one barrier during each unit of time. However, a single barrier is not sufficient
to ensure that the above constraints are satisfied.

We describe two different approaches to handle synchronization.

Multibarrier: Multiple barriers are used to synchronize the processors. Two schemes are
considered which differ only in the number of barriers required. In the first scheme (n — 1)
barriers are used for simulating a network with n stages. All the processors execute a barrier
between simulating switches at two adjacent stages. Since the switches in the first and last
stages never communicate directly with one another, one barrier suffices for both the first and
the last stage. With such a strict synchronization method it is impossible for two processors to
simulate switches at different intermediate stages simultaneously. Hence, mutual exclusion is
preserved. Single passage is guaranteed by simulating switches from the last stage to the first
stage. Both interleaved and contiguous allocation can be used with this approach.

In the second scheme, log P barriers are used for simulating a network with = stages and using
P processors. Here we exploit the topology of the delta networks. Delta networks have blocks



of (n — m) x 2"~™~1 switches that do not share any links with other similar sized blocks in
the last (n — m) stages, where m = log P. The switches in a block are assigned to a single
processor. No synchronization is required within the block since the whole block is assigned
to a single processor. Only the contiguous allocation scheme can be used here. To see this,
consider Figure 1 with P = 4. The contiguous allocation assigns processor 0 to ports 0 through

3, processor 1 to ports 4 through 7, etc. Clearly, processors can simulate the last two stages
independently.

Two-Phase: All of the processors divide up the simulation of one clock cycle into two phases.
In the first phase, referred to as the odd-phase, the switches in the odd numbered stages (1,3,...)
are simulated. The processors synchronize and then execute a second phase, the even-phase,
where they simulate the switches in the even numbered stages (0,2, .. .). The processes synchro-
nize again and the cycle is repeated. Thus, only two barriers are required. This scheme ensures
mutual exclusion because two processors at a time cannot be simulating adjacent stages. To en-
sure single passage, a timestamp is passed with each packet. The timestamp indicates the cycle
in which the packet has arrived at a particular stage. Each processor checks the timestamp on
the packet when simulating a switch. If the timestamp is less than the current cycle, the packet
is eligible to be passed on to the next stage. If the timestamp is equal to the current cycle, the
packet is not processed in the current cycle. Both contiguous and interleaved allocation can be
used with this method of synchronization.

5 Simulator Details

In an infinite buffer network, for multibarrier simulations, a packet is composed of three fields:
arrivaltime, destination.address, and pointer_to_nezt packet. The arrivaltime is used for cal-
culating the response time, the destination_address is used for determining the packet routing,
and the pointer_to_neztpacket is used to maintain the queues in the buffers. In the case of
two-phase synchronization scheme, a fourth field, timestamp is added to the packet to indicate
the cycle in which a packet has arrived at a particular stage. For single-buffer networks, the
pointer_to_nezt packet field is not required.

A packet is created and introduced into the network at stage 0. It is then routed through the
network of switches and is finally removed from the network at the last stage. FCFS queueing
discipline is used at each switch. Both the serial and parallel simulators are written in C.
The parallel simulator is essentially the same as the serial simulator except for the additional
parallel program primitives for forking and synchronizing the processes. A packet is declared to
be shared so as to allow access to it by all the processors. In the Sequent Symmetry, a shared
data item remains in a processor’s local cache and is not written into the system memory until
the processor needs the cache space occupied by that data or until another processor needs
that data. Additional time is spent if a processor needs to access a data item that is present in



another processor’s local cache or in the system memory.

Two switches in adjacent stages are said to be adjacent if there is a link connecting them. A
packet is routed from input to output through switches that are adjacent. A link is said to be
shared if it connects two adjacent switches that are simulated by two different processors. A
packet remains in a processor’s local cache as long as it is routed through adjacent switches
that are simulated by the same processor, i.e., through non-shared links. When a packet is
routed over a shared link, the packet is moved from one processor’s local cache to another
processor’s local cache. Tables 1(a) and 1(b) list the number of shared links at input and
output per stage per processor for a 9 stage MIN simulated using 8 processors for contiguous
and interleaved allocations, respectively. The contiguous allocation has many fewer shared links
than the interleaved allocation. Thus, we expect simulations using the contiguous allocation
to have higher cache hit ratios, although the Sequent is not instrumented to measure this
quantity. Table 1(a) also helps explain the log P multibarrier synchronization method: there
are no shared links in stages 4 through 8.

Simulation of a switch by a processor involves removing the packets from the two input ports of
the switch, computing the output port address, and placing the packets into the input buffers
of the switches in the next stage. When the packets at both the inputs are contending for the
same output port, one of them is selected randomly.

6 Results

Execution times of the time-driven parallel simulation on 8 and 16 processors are compared
with the execution times of the serial simulation. The execution times we used in the speedup
calculations include model initialization, process forking, and process termination.

6.1 Uniform Traffic

Simulations were conducted on the infinite buffer delta network. The number of stages varies
from 4 to 9 and the arrival rate, ), takes values 1 /4,1/2, and 3/4. We ran each simulation for
10,000 time units.

Figure 2 compares the speedups obtained with 8 processors and multibarrier synchronization,
with (n — 1) barriers, log P barriers and the two-phase mechanism. The contiguous allocation
scheme is used in all the schemes. The speedup obtained due to the log P barrier approach
is higher than the speedup obtained for the (n — 1) barrier approach. When the number of
stages is equal to 4 and with 8 processors, the number of barriers used in both cases is the
same. The speedup obtained with the two-phase mechanism is higher than the multibarrier
in all cases. This is due to the reduced number of barriers (two) in the two-phase scheme.
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Table 1: Shared Links for: (a) Contiguous Allocation, (b) for Interleaved Allocation
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the 8 processor aimuation, the 16 processor simulation spends a large fraction of its time in the
first and the last stages. In these stages, a packet is created and destroyed by allocating and
deallocating memory using a C routine. We conjectured that the poor performance is due to

freelist. Figure 4 compares the speedups obtained for 16 processor simulations using the two-
phase mechanism with and without local freelists. Clearly, the two-phase mechanism which
maintains the freelist js superior. We point out that the absolute time for the serial simulation



Two-Phase vs Multibarrier Infinite Buffer
Without Local Freslists

16
1

_—_ Two-Phase A=025
...... Muttibarrier (log P) P=16
. Multibarrier (n - 1)

12 14
1 [

Spoedup
10
1

No. of Stages

Figure 3: Comparison of Two-Phase and Multibarrier Infinite Buffer

Freelist vs Nofreselist

16
§

—_— Two-Phase(Freelist) A=025
...... Two-Phase(Nofreelist) P=16

12 14
1 i

10
1

Speedup

T T T T T !
4 5 6 7 8 9 10

No. of Stages
Figure 4: Comparison of Two-Phase With and Without Local Freelists

10



Two-Phase vs Multibarrier Infinite Buffer
With Local Freelists

——  Two-Phase h=025
...... Muttibarrier (log P) P=16
—= Muttibarrier (n - 1)

14
|

12
1

Speedup

No. of Stages

Figure 5: Comparison of Two-Phase and Multibarrier using Local Freelists

also decreased when a freelist was maintained. Similar improvements were observed for the
multibarrier mechanism for 8 and 16 processors. The two-phase mechanism and multibarrier
mechanism with (n - 1) and log P barriers using local freelists are compared in Figure 5.

6.2 Non-Uniform Traffic

We now consider the effect of non-uniform traffic on the speedups obtained from parallel sim-
ulations using different processor-switch assignments. We use the hot spot model described
earlier. As described in [8], since a port can output at most one packet per cycle, contention
due to the hot spot causes the interconnection network to saturate in tree-like regions. The hot
output port can process only one packet per cycle, so its predecessors become backed up. Since
the predecessors cannot output more than one packet per cycle, the predecessors of predecessor
saturate, and so on. This tree-like saturation behavior suggests that processors will not have a
balanced load under the contiguous allocation. This motivated us to consider a different alloca-
tion strategy which would better balance the load among the processors. Hence, we considered
the interleaved allocation scheme. Table 2 lists the number of switches that encounter hot spot
traffic per stage and the number of processors that simulate these switches using the contiguous
and interleaved allocation schemes for a 9 stage MIN simulated using 8 processors. From Ta-
ble 2, the interleaved allocation clearly provides better workload balancing, particularly in the
middle stages of the network. This will be true regardless of where a single hot spot is located,
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and this allocation will also tend to equalize the workload for more general non-uniform access
patterns, e.g., multiple hot spots.

Stage | No of Hot | Contiguous | Interleaved
Number | Switches | Allocation | Allocation
0 256 8 8
1 128 4 8
2 64 2 8
3 32 1 8
4 16 1 8
5 8 1 8
6 4 1 4
7 2 1 2
8 1 1 1

Table 2: Distribution of Hot Spot Traffic Load

The speedups obtained from the interleaved allocation are compared with the speedups ob-
tained from the contiguous allocation in Figure 6 for the single buffer delta network with Type
II switches. We plot the speedup for both the two-phase and log P multibarrier synchronization
methods in the case of the contiguous allocation. However, only the two-phase synchronization
method is implementable with the interleaved allocation. Results are plotted for 6 and 9 stages.
For uniform traffic, f = 1, the speedup using the two allocations is nearly the same. The inter-
leaved allocation performs better as the hot spot parameter f increases. Even though there are
greater number of shared links in the interleaved allocation, the performance is better because
of the better workload balancing. In the contiguous assignment approach, the computation load
is not evenly distributed and the less busy processors need to wait longer for synchronization
at the barrier. Notice that the speedup for the interleaved allocation remains almost constant

as the hot spot traffic increases, whereas the speedup for the contiguous allocation decreases as
the hot spot traffic is increased.

7 Summary

In this paper, we presented results from a continuing study of time-driven parallel simulation
of delta networks on a shared memory system. We examined several processor synchronization
and allocation rules. We found that a two-phase synchronization approach, requiring only two
barriers per cycle, provides the best speedup. Using an interleaved processor to switch allocation
scheme, the special structure of delta networks can further be exploited to provide balanced
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processor workloads under certain non-uniform traffic patterns of interest. Once a memory
allocation bottleneck was removed from our simulator, we were able to achieve nearly all of the
available parallelism on large problems, obtaining speedups of over 14 on a 16 processor system.

While we considered only buffered delta networks with 2 X 2 switches , these techniques extend
easily to other types of MINs operating in discrete time, e.g., multi-path, or unbuffered networks.
We expect that similar success can be obtained for such MIN's as well. The networks considered
here are of a special structure, yet they are extremely important both in computer architecture
and in communications systems. In addition, simulation of such networks is computationally
expensive. We have demonstrated that a simple time-driven parallel simulation approach is
highly effective and can be used today to study architectural issues. Since computer systems are
inherently discrete time systems, we believe that the parallel time-driven simulation approach
will also be applicable to other areas of computer architecture.
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