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Abstract

This paper is about the current state of knowledge systems research and how I think it can
be improved. It is a personal view, but not an uncommon one. Indeed, one purpose of the
paper is to clarify what I perceive to be general dissatisfaction. The second purpose is to
introduce some work that I believe addresses some of these concerns.
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1 Introduction

I was recently reminded of Allen Newell’s paper You Can’t Play 20 Questions With Nature
and Win. Newell wrote it in his role as discussant at a Carnegie Symposium, and addressed it to
the cognitive psychology community. The following paragraph appears early in his comments:

I was going to draw a line on the blackboard and, picking one of the speakers of
the day at random, note on the line when he got his PhD and the current time (in
mid-career). Then, taking his total production of papers like those in the present
symposium, I was going to compute a rate of productivity of such excellent work.
Moving, finally, to the date of my chosen target’s retirement, I was going to compute
the total future addition of such papers to the (putative) end of this man’s scientific
career. Then I was going to pose, in my role as a discussant, a question: Suppose
you had all these additional papers ... where will psychology then be? Will we have
achieved a science of man adequate in power and commensurate with his complexity.
And if so, how will this have happened via these papers I have just granted you?
Or will we be asking for yet another quota of papers in the next dollop of time.

- Allen Newell, You Can’t Play 20 Questions With Nature and Win. In W.G.
Chase (Ed.) Visual Information Processing.

When I read Newell’s paper for the first time, I was an interdisciplinary graduate student
in psychology and Al. The attitude toward psychology in the Stanford Heuristic Programming
Project convinced me that a truly interdisciplinary thesis wasn’t possible, and Newell’s paper
was an important reason that I chose to work in AI and not psychology. I have always been
strongly influenced by the questions Newell asks in the quote above, and lately I have started
to think they apply to AI as well; and if not to Al in general, certainly to expert systems.
Add up all the papers on expert systems in IJCAI, AAAI, and AI Magazine over the last
five years, and what have we got? What can we expect in 19957 When Newell asks whether
psychology will ever add up to a “science of man,” he assumes a common purpose among
psychologists. Whether or not this is realistic in psychology, it certainly doesn’t characterize
expert systems research. I can’t see any common scientific purpose there, which is one reason
I think expert systems research isn’t adding up to a science of anything. Newell asks whether
individual papers, each excellent and methologically sound, add up to a science. I don’t think
we have more than a handful of excellent and methodologically sound papers, period. These

two issues—scientific purpose and methodology—are at the heart of my dissatisfaction with
expert systems. '

The following two subsections are about these issues. Let me preface them by characterizing
my biases. First, when I talk about research in expert systems or knowledge systems, I am
referring to a range of component technologies, including knowledge representation, learning,
ontology, case-based reasoning, generic tasks, and control. It is easy to criticize hack work in
expert systems, and my comments can certainly be interpreted this way (i.e., as criticisms of the
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other guys), but I direct them primarily to my colleagues in the research community. Second,
I view expert systems as a vehicle for Artificial Intelligence research, not as an engineering
subdiscipline. Irrespective of the value of expert systems in the marketplace, they are worthless
to me unless they tell me something about intelligence. Third, I think of intelligence primarily
in terms of behavior—what an agent thinks or does—and secondarily in terms of structures—
what the agent knows, or how it is represented. With these biases, which [ think are pretty
common, let me now say why expert systems research has become intellectually unsatisfying.

1.1 Learning about Intelligence

I am not learning much about intelligence, artificial or otherwise, from the knowledge sys-
tems literature. One reason is that we have come to equate intelligence with knowledge, which
is static, instead of with dynamic behavior. This is seen most clearly in the disregard for control
in the knowledge systems community, although the consequences aren’t felt until someone tries
to acquire and reason with knowledge about how experts (and expert systems) should behave.
For example, when Clancey tried to represent diagnostic strategies for the purpose of tutoring,
he discovered (as we did later in our MUM project [7]) that the only ways to specify the behavior
of knowledge systems were brutish chaining, meta-rules, bizarre hacks, or lisp programming [4].
If you are looking for tools to describe behavior, the knowledge system literature offers little
besides reassurance that simple control strategies are sufficient. Sufficient for what? Certainly
not for modelling the complex behavior that Barbara Hayes-Roth observed in human errand
planning [12]; or that Ed Durfee requires for simple cooperative, distributed problem solving
[10]; or for the simple meta-planning we require to prune the search space in mechanical design
[19]; or for real-time planning against simulated forest fires (see below).

Research on reasoning under uncertainty is another, personally frustrating, manifestation of
the emphasis on knowledge and structure over behavior and dynamics. It offers more and more
refined ways to calculate degrees of belief, but relatively little work on how problem solvers
plan, decide, and act in uncertain environments (6,5]. Once again, intelligence is equated with
what you know (more precisely, with maintaining degrees of belief in propositions), not with
how you behave. '

The uncertainty community evidently feels it is subcontracting to the knowledge systems
community. They are the folks who provide the calculus. Judging by the preambles of papers I
have recently reviewed, a lot of people think this way. “Knowledge systems need my innovation
in ....” You can fill in the dots with uncertainty calculus, explanation mechanism, learning
mechanism, reason maintenance system, and so on. The knowledge systems literature, and
Al in general, is busily producing component technologies. But it is difficult to learn much
about intelligence from a bunch of component technologies. They don’t add up to a theory
of anything, any more than the unremitting tide of psychology papers add up to “a science of
man.” (There are also mundane, pragmatic reasons to worry about the component technology
approach to knowledge systems, as I'll discuss later.)
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Another reason that knowledge systems tell me little about intelligence is that they have
trivial environments. In the days before knowledge systems, we believed that intelligent behav-
ior emerges from the interaction between the structure of an agent and its environment. That’s
what Simon’s Ant was all about. This view has a simple but important implication: Any study
of intelligence that ignores the environment is underconstrained. This gives rise to the queasy
feeling that I expect you have, from time to time, when you review papers: Why did the author
do things this apparently arbitrary way? Here’s an example, drawn almost at random, from a
batch of IJCAI papers I just reviewed:

The Strategic planner is goal-oriented, the tactical planner is resource oriented,
and the reflexive planner is event (signal-) oriented. A mobile agent must incorporate
all three types of planners. ...There are two principal techniques to implement (the
tactical] planner: opportunistic and least-commitment planning. In our approach,
we prefer the opportunistic planning technique.

Note the imperative—a mobile agent must incorporate all three types of planners—and
the arbitrary preference for opportunistic planning. What aspects of the task environment
‘engender the imperative and justify the preference? If you design a knowledge system without
first considering how its environment constrains the design, your design will be arbitrary.

Unfortunately, most knowledge systems are intentionally isolated from their environments,
and thus have underconstrained and arbitrary designs. Environments are typically a couple of
dozen categorical propositions: the patient has a temperature, the organism is aerobic, a blip
was reported at latitude x and longitude y. Few knowledge systems are designed for dynamic,
uncertain, or multi-actor environments; and fewer still can manage real-time constraints. Rick
Hayes-Roth went so far as to advise British companies, in a Pergamon report, to “Seek problems
that experts can solve via telephone communication.” [13]. That is, build knowledge systems
that don’t need to know much about the external environment. This attitude ruined planning
research, where for years the best systems were built for environments that simply don’t exist:
environments in which the planner is the only agent, in which actions are instantaneous, and
their effects persist indefinitely; environments in which the state of the world and the effects
of all actions are known or accurately predictable. NOAH’s environment was quasi-static, and
contained three unambiguously-labelled blocks and a table top. Why did we regard NOAH as
the apex of planning research for so many years?

Many of these arguments are summarized in Figure 1, which is a crude history of how AI has
characterized intelligence. Initially, intelligence was viewed as the behavior that emerged from
the interaction between autonomous agents and their environments. But knowledge systems
later became isolated from their environments, behavior was de-emphasized, and research on
complete, autonomous agents was replaced by work on component technologies. Answers mat-
tered; the process of deriving them did not. The majority of tasks were “one-shot,” meaning
that we would solve the problem now, once and for all, and not monitor or revise the solution
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in future. One-shot problems denied us the opportunity to study behavior in ongoing envi-
ronments; for example, instead of building expert systems to “wait and see” how a patient’s
condition develops, we built systems to give the best possible recommendation now, even if the
data were poor.! Again, this is seen clearly in the uncertainty literature, where virtually all the
research concerns what to do with the evidence you already have, and none concerns how to
get evidence, corroborate it, hedge against future outcomes, or other strategies for coping with
ongoing, uncertain environments.

More recently, there has been a renaissance of old ideas about intelligence. A few projects
are beginning to acknowledge the role of the environment. The planning literature has been
reinvigorated by ideas about situated action {11]. Major DARPA-sponsored efforts, such as
Pilot’s Associate and the Autonomous Land Vehicle, are forcing us to contend with dynamism,
real time, and multiple actors. But in the following section, I will ask whether we have the
methodology to capitalize on this positive change in emphasis, or whether we will end up doing
the same kind of inconclusive, “look ma, no hands” research in yet another set of task domains.

1.2 Methodology

One methodological problem for knowledge systems research is that the ratio of science to
engineering is too low. Back in the old days, it took many years to build an expert system, but
one at least had the chance of discovering something. Today, knowledge systems are bigger, and
still take years to build, but they are rarely built to discover anything. One has to work very
hard to get a system that does . . . pretty much what one expects it to do. One can’t dismiss this

as applying only to hack applications; with few exceptions, none of us are discovering enough
to warrant the engineering effort of our projects.

Knowledge systems are built as demonstrations, not as experiments. Researchers rarely say
what they intend to learn by doing their work, or what they actually learned by doing it. More
often, proposals and papers assert that “We need X, and here’s how we expect to provide X,
and (later), here’s a demonstration of X.” Lenat and Feigenbaum put it this way:

If one builds programs that cannot possibly surprise him/her, then one is using
the computer either (a) as an engineering workhorse, or (b) as a fancy sort of word
processor (to help articulate one’s hypothesis), or, at worst, (c) as a (self-) deceptive
device masquerading as an experiment. [15]

Their alternative, the empirical inquiry hypothesis, says what we should be doing although
not how to do it:

'You might object that sometimes we can't afford to wait and see. I agree that we need to build systems that
reason about what they afford (e-g., following Lesser's idea of approximate processing [17]). This is precisely the
kind of reasoning that has been absent from knowledge systems until recently.
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The most profitable way to investigate Al is to embody our hypotheses in pro-
grams, and gather data by running the programs. ...Progress depends on the ex-
periments being able to falsify our hypotheses; i.e., these programs must be capable
of behavior not expected by the experimenter.

What hypotheses? The general form of a hypothesis in knowledge systems research is “X
is sufficient to produce Y”; for example, a rule-based representation of expert knowledge and a
backward chaining interpreter are sufficient to produce therapy recommendations at an expert
level. Given the emphasis on component technology, mentioned earlier, most hypotheses are
more specific; for example, the Dempster-Shafer method is sufficient to combine evidence in
MYCIN. But unlike hypothetico-deductive science, we never show the necessity of one hypoth-
esis by rejecting a mutually exclusive one. Our principle mode is to accept the null hypothesis,
to accrue demonstrations of sufficiency.

It doesn’t have to be this way, and the few counterexamples suggest our science would be
more productive if we tried more often to show that mechanisms don’t work. I think the best
results of Lenat’s work with EURISKO and AM emerged from his failed attempts to apply AM’s
techniques to heuristics themselves. The failure, and the ensuing enquiry, led to this remarkable
conclusion:

It was only because of the intimate relationship between Lisp and Mathematics
that the mutation operators (loop unwiding, recursion elimination, composition, ar-
gument elimination, function substitution, etc.) turned out to yield a high “hit rate”
of viable, useful new math concepts when applied to previously-known, useful math
concepts—concepts represented as Lisp functions. But no such deep relationship
existed between Lisp and Heuretics, and when the basic automatic programming
(mutations) operators were applied to viable, useful heuristics, they almost always
produced useless (often worse than useless) new heuristic rules. [16]

This is one of the few strong results of knowledge systems research, one of the few papers I
would cite if asked what we have learned by building all these systems.

There are really two, interrelated methodological issues here. One is how we select research
problems, the other is what we do with them. We are very good at selecting new research prob-
lems because we are very poor at studying them. Instead of trying to find out why something
works or doesn’t work, as Lenat and Brown did, we are content to show merely that something
works. Once we have demonstrated sufficiency, we move on to another problem. I call this the
strip mining heuristic: Once you have grabbed the gold near the surface, move on. The gold
nearest the surface is by convention demonstrations of sufficiency. Knowledge systems research
trashes the space of questions about intelligence in much the way that slash-and-burn cultures
trash the rain forest. Both make very inefficient use of resources and impress upon me a horror
of waste. Even when the resources are used well and we get all we can out of each project, as
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in Buchanan and Shortliffe’s superb collection of papers on MYCIN [3], most of our work is still
demonstrations of sufficiency.

With Adele Howe, I have started to outline methods for getting results out of knowledge
systems (8,9), and I know that other areas of Al are engaged in similar efforts [14]. All this
work is pretty preliminary, and it needs to be done whether one works with knowledge systems
or in some other area of Al I still spend a lot of time wondering how to do research instead of
doing it. But this is preferable to messing around with expert systems as we have in the past.

2 What .Now?

In the previous section I raised two issues, scientific purpose and methodology, that cause
me (and I believe others) to be dissatisfied with knowledge systems research. In this section I
describe a problem that, I believe, focusses my research on the right scientific issues, and the
methodology that I think is appropriate to study it.

We have built a large simulation of forest fires and the equipment commonly used to put
them out. We are building a planner called PHOENIX that operates in this dynamic, real-time
world. The planner’s goal is to manage the fire—limit the loss of human life, limit the damage
to forest and buildings, and limit the monetary costs of achieving these goals. Our simulation
consists of a large geographical area (“Explorer National Park”) in which there is a considerable
variety of topography and ground cover, as well as roads, lakes, and streams. These features
affect how forest fires burn. Equally important features are wind speed and direction, both of
which can change unpredictably; and the moisture content of the ground cover, which varies in
time and geographically. To fight the fire, the simulation provides bulldozers, crews, transport

vehicles, planes and helicopters. These cut fire line, move firefighters, spray water, or dump
retardent. :

Originally, these fire-fighting agents were directed by a human player in what was essentially
a complex, real-time video game. We gained considerable insight into (and respect for) the
dynamics of this mini-world by playing against the simulation—often losing many lives and
considerable real estate to a seemingly slow and containable fire. It is difficult for a planner,

human or Al program, to do very well at the game (i.e., put out the fire with reasonable costs,
no loss of life, etc.) because:

o The simulation is real-time with respect to the fire. While fire-fighting agents move,
cut line and drop retardent, the fire keeps burning. Any time the planner devotes to
deliberation is claimed as real estate by the fire.

o The player’s knowledge of the fire is limited to what the agents in the field can “see.”
Crews and bulldozers can see only short distances; watchtowers and aircraft can see
further. The planner rarely, if ever, has complete knowledge of the extent or location of
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the fire. This is evident in Figure 2, which shows in the right panel the world as it “really
is,” and in the left panel the world as seen by a watchtower—the spindly icon a little
north of the center of the panel. (The figure also shows roads, houses, and a lake in the
southeast. This is a small fraction of Explorer National Park. Normally, the display is in
color.)

e The behavior of the fire cannot be accurately predicted because some factors that affect
it, terrain, ground cover and the moisture content of the ground cover, are known only
approximately. Moreover, wind speed and direction can change unpredictably.

e The behavior of the fire-fighting agents cannot be accurately predicted. In particular, the
time required to move to a location or perform some task depends on terrain and ground
cover. Fire-fighting agents also have varying degrees of autonomy, so the central planner
cannot always be sure of their location.

These are some of the specifics of the fire environment, and the difficult technical problems
they raise for the PHOENIX planner. More generally, they exemnplify the kind of environment
we should be studying in knowledge systems research if we want to learn about intelligent
behavior. Two salient characteristics of the fire environment are uncertainty and real-time
dynamics, described above. Others are that the environment is ongoing (as opposed to one-
shot), so the emphasis is on controlling a process through one’s behavior, as opposed to solving
a problem through inference. The environment supports multiple agencies, such as wind, rain,
and the fire itself; and it supports multiple actors which need to be coordinated to get a global
view of the situation and to control it. The environment also has several measures of success
(or failure). Most importantly, it doesn’t have just one “right answer,” but requires a planner
to evaluate tradeoffs between plans, even during execution.

Given this focus; how should we proceed? We have three goals, related to the problems we
discussed earlier: ‘

e Work in complex environments, in which behavior matters.

o Justify desig_n decisions by reference to aspects of the environment, instead of accepting
the first sufficient design.

o Design and build complete, autonomous agents, and de-emphasize component technolo-
gies.

I am hedging my bets with respect to these goals by working simultaneously within two
methodological frameworks. The first, which guides the development of PHOENIX, is a top down
design effort in which we identify the abilities that we believe a planner will need to excel in the
fire domain. We designed the domain itself to ensure that providing these abilities would solve
open technical problems in Al (specifically, problems in real-time planning and distributed AI).
As predicted by the empirical inquiry hypothesis, we are discovering unexpected behaviors. One

7’
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surprise is that purely reactive behavior is sufficient to put out some fires. But to follow through
on the goals, above, we need to explain this result by reference to aspects of the environment.
For example, one reason that reactive planning works is that the fires are typically convex, so
it is rare for reactive bulldozers to get trapped in “pockets” of fire (but see Figure 3) for a
counterexample.) Note also that we can’t explain getting trapped (or avoiding it) by reference
to any single component of the bulldozer’s architecture. Getting trapped is a function of the
bulldozer’s radius of view, the frequency with which it updates its view, and its set of reactions.
We can’t explain performance in terms of a single component, nor can we improve performance
by developing component technologies in isolation.

I call PHOENIX a top-down design effort because it is driven by a longish list of design goals.
Eventually, PHOENIX will handle multiple fires, and coordinate multiple fire-fighting objects. It
will monitor the progress of plans in real-time, and modify plans to give the best performance
for the available resources. Where do these goals come from? One source is the judgment that
the PHOENIX planner will need these skills to put out fires; the other is the recognition that these
are open technical problems in AI. Now, ordinarily, a researcher is congratulated for finding a
task, like fire-fighting, that requires methods which Al hasn't yet developed. Fire-fighting is a
good task because, apparently, we will need to advance the state of the art to do it right. But
in the context of my previous comments, I think we should be a bit suspicious. Are these design
goals really mandated by the environment? I believe that these skills will enable a planner to
put out fires (i.e., will enable a demonstration of sufficiency), but are they necessary? Do we
need to modify plans during execution, or is this just a bit of technical showmanship? The
trouble with top-down research is that this question is often very difficult to answer. For this
reason, I have recently started another project with the same methodological goals—to work
in complex environments, eschew component technology, and justify design decisions in terms
of structure and dynamics of the environment—but with a different methodology.

We can approach intelligence from the bottom up by starting with simple structures, ex-
tending them only to provide adaptability in environments, but making the environments in-
creasingly complex, and the required behaviors increasingly sophisticated. Bottom-up work
is rare in Al, but is typified by Brooks’ approach to robotics [2] and Braitenberg’s Vehicles
[1]. Bottom-up research is applied in the sense that all our technology must be immediately
useful, that is, must have “adaptive significance” to the automata for which it is developed.
We don’t introduce technology for its own sake, but only to make our automata more capable
in increasingly complex environments. Progress is driven by primarily by environments.

Perhaps the most important aspect of bottom-up research is that it uncovers unintended,
emergent behavior. By emergent I mean behavior that is due to interactions between the agent
and its environment, or within the agent. Our recent work suggests that unintended, emergent
behavior is common in agents that interact with even simple environments over time. Moreover,
this behavior has assymetric consequences for the bottom-up and top-down research strategies.
For bottom-up research, every emergent behavior is an opportumty to expand the repertoire
of behaviors; that is, many emergent behaviors are serendipitous. For top-down research,
unintended, emergent behavior is rarely serendipitous. It usually messes up the design. This
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suggests that if we are trying to design agents to interact with ongoing, dynamic environments,
it may be more efficient to design them bottom-up than top-down. For example, imagine I
wanted an automaton to learn how to find its way downhill from any point in a landscape
to the lowest accessible plateau, and to stay on the plateau thereafter. .\ top-down approach
might involve three components—one to get the automaton onto a plateau (presumably using
what it had previously learned), one to learn from the current problem, and one more to keep
the automaton on the plateau once it gets there. In fact, a recent bottom-up approach to this
problem found that the third component is unnecessary: in learning how to go downhill, the
automaton learns not to go uphill, and so by the time it reaches the plateau it already knows
enough to avoid moving off the plateau.

The bottom-up project, which we call PM, is in its early stages. Eventually, we hope to have
autonomous agents capable of putting out fires in Explorer National Park, but the methodology
calls for approaching this goal incrementally, so now we are working with simple automata in
simple environments. For example, Figure 4 shows a “beach” over which a version of Simon’s
ant perambulates.

Recall that one of my three methodological goals is to build complete automata. We don’t
really know the minimum set of skills an automaton needs, but I settled on these four as a first
cut:

1. Automata should perceive their environments. Roughly, this means at least that they
construct internal representations of some or all of their environments.

2. Automata have internal state. In some cases, internal state will be no more than the in-
ternal representation of the environment. In others, it will include “forces” like “hunger.”
In more sophisticated automata, internal state might result from processing information
beyond perceptual processing. Internal state (mcludmg perceptions) determines how au-
tomata behave.

3. Automata act. This may be definitional, since the state of an object that doesn’t act is
determined exclusively by its environment, so that object isn’t autonomous.

4. Automata learn.

Since the inception of the project, we have designed a dozen automata for the environment
in Figure 4, and for related environments that present more difficult learning and performance
problems. We have observed automata getting stuck in corners, getting trapped on plateaus,
exhibiting “superstitious” behavior on downhill trajectories, decreasing their rate of learning,
and cycling and other repetitive behaviors. These were all unintended behaviors. There was
no way to predict them by looking at the automaton’s code, nor were they intended by the
programmer. They are emergent behaviors in this sense: None can be explained by a single
aspect of the automaton’s design. Take susperstltlous behavior as an example. When an
automaton moves downhill, it remembers the context in which it started the move, and the
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move itself, and increases the score of that move in that context. Furthermore, it always selects
the move with the highest score. This means that the first positively-scored move will have a
higher score than any other, and will always be selected in that context. Moreover, because of
the way the environment is constructed, and because of the way contexts are constructed to
access moves in memory, a move that led downhill in a context will typically lead downhill the
next time the context is encountered, so the move will typically have its score increased each
time it is repeated. Note that to explain a single observed behavior, I have had to discuss the
agent’s learning mechanism, the structure of the environment, how memories are accessed, and
how moves are selected. For brevity, I left out the influence of the perceptual system, but it
too plays a role in the emergent behavior.

These behaviors aren’t necessarily desirable, but after years of Al programs that do ezactly
what’s expected, any surprises are refreshing. More to the point, the desirability of emergent
behaviors depends on the environment; superstitious behavior on downhill trajectories is only
a problem if the environment demands that automata find the fastest possible path down a hill.

For each automaton, in each environment, we ask some or all of these questions:

1. What is the minimum structure necessary to achieve a level of adaptation for an automa-
ton in an environment?

2. How robust is the automaton to ranges of environmental conditions?

3. Could the amount of learning necessary to achieve adaptation be reduced by making
another evolutionary step? What other aspects of the interaction between environment
and automaton seem to require a more sophisticated automaton?

4. As much as possible (given emergent behavior, interactions, and nondeterminism) explain
why the agent behaves as it does in particular environments. This is especially important
for emergent (unexpected) behaviors. Why does the ant describe a sawtooth? Why does
it get stuck in corners? Are these behaviors adaptive, given one’s definition of adaptive?

o

Are there parallels between the design of one’s automaton and biological systems? There
needn’t be, and we’d be fools to reject designs because they couldn’t occur in organic
systems, but if the parallels are there, I'd like to know about them.

To date, the PM project has not achieved any major results, but we have discovered some
minor ones. For example, an automaton with a relatively poor ability to discriminate con-
texts can actually outperform automata with greater acuity. This is because an inability to
distinguish contexts is de facto generalization over contexts, so automata that can’t distinguish
specific situations in effect learn classes. A simple example is the “beach” in Figure 4. All our
automata learn which of eight neighboring cells to visit from any given cell, and all construct a
context for a move from the altitude values of the eight neighboring cells. But the original au-
tomata discriminated contexts by the actual altitude values, while later automata simply asked
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whether neighboring cells were “up” or “down” from the current cell. The latter case is de
facto generalization over contexts. Moreover, it is a good generalization, because the automata
are punished or rewarded not for moving to particular altitudes, but for moving up or down.
Now, in the long run, the automaton that can discriminate more contexts will outperform the
one that discriminates fewer; but it takes a lot longer to learn all the detailed contexts. You
can have performance at one level quickly, or you can wait longer and get higher performance.
The choice is determined by the environment, as all design decisions should be.

3 Conclusion

I started this paper with Newell’s provocative questions to the psychology community, and
I want to end it by reviewing his recommendations. I found it remarkable that his questions
were so pertinent to Al, and equally remarkable that his advice to the psychology community
is so pertinent to us. Here is what Newell recommends:

The first recommendation is to construct complete processing models, instead
of partial ones as we do now. ...The second ...is to accept a single complex task

and do all of it. [18]

Newell’s paper was written 15 years ago, when psychology seemed stuck and Al seemed to
offer an alternative. Today, knowledge systems research seems stuck because we haven’t built
complete processing models, but have focussed on component technologies; and because we
haven'’t accepted complex tasks, but have stayed within trivial environments. If we are to fare
better than cognitive psychology, it’s time to follow Newell’s advice.
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