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1. Introduction

The task of incremental plan recognition can be computationally expensive, even
in a simple domain. Deriving all possible meanings of a particular action, given the
limited context of previous actions, can lead to an explosion of competing interpre-
tations, many more than expected at first glance. There are at least two causes.
Some interpretations have to be considered viable because unbound parameters are
possibly consistent, and multiple top-level goals can be in progress simultaneously.
This paper examines a set of techniques that can be used to contain the prolifer-
ation of alternative plan interpretations as soon as possible during the recognition
process. These ideas are implemented in a system called GRAPPLE. GRAPPLE is
a hierarchical plan recognition system used in an intelligent interface for recognizing
user goals from low-level actions.

GRAPPLE recognizes a series of user actions in order of occurrence and incre-
mentally builds reasonable interpretations for the actions. Operators in GRAPPLE
are hierarchical and are assumed to be complete. (Research direcied at relaxing the
assumption that the plan recognizer has complete state information is described in
|Huff, Dec., 1988] and [Huff, 1989].) GRAPPLE uses the hierarchy to build interpre-
tations through linking of operators (goals of some match subgoals or preconditions
of others). By recognizing the possible goals of a user and the alternative ways
to achieve them, GRAPPLE identifies the rationale of a proposed action. It then
uses its picture of what the user is intending to do in order to to give assistance.
Information is provided to the user before a proposed action is actually put into
effect. In the case where a proposed action would not be consistent with either the
existing state of the world or with previously executed actions, the user is advised
of the problem and can specify an alternate action.

The key problem in plan recognition is that the large number of plan deriva-
tions implied by even a few actions in a simple world requires careful and quick
control of computation. GRAPPLE does aggressive checking to rule out invalid in-
terpretations, it then applies heuristic knowledge to focus on preferred alternatives
among those that appear viable. Domain knowledge which is already available
is fully exploited. Syntactic and semantic checks on expressions in the operator
definitions (preconditions, constraints, and goals) are used to prune out nonviable
interpretations. Additional checks, based on the heuristic that the user prefers to
act rationally, are used to discard interpretations. These assume that a user will
not reachieve a goal alrcady achieved, that a user tends to continue on-going plans,
and that a user prefers short plans over long plans. Consequently, only reasonable
or plausible interpretations of actions are constructed.

GRAPPLE has been tested in a blocks-world environment and in a simple case
of a software development environment [Huff, Nov., 1988]. Domain knowledge
is contained in the set of operator definitions and associated state schema; the
language used for these definitions is based on classical hierarchical planning for-
malisms [Sacerdoti, 1977) [Wilkins, 1984] with some extensions [Huff, 1987). The
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state of the world, represented by objects and axioms involving these objects, is
implemented using Knowledge Craft.> The recognition algorithms themselves are
domain-independent. Therefore in order to consider a new or changed domain only
the set of operators and the state schema need to be changed.

Plan recognition is performed automatically, without recourse to the user for
information beyond the action sequence. At any given time GRAPPLE may be
working with incomplete information. Variable values for higher level operators are
often not yet determined. Because not all the actions have been seen, the system
does not know what the future will bring. The only input to the program are the
primitive actions and the user determines their order, which may be wrong. In
consequence error detection is a critical objective of the system.

In this paper a simple example consisting of a sequence of actions in the blocks-
world demonstrates the techniques used to control the recognition process. GRAP-
PLE applies checks as paths are constructed from an action to new top-level goals
or pending goals. It continues to check as variables are bound, plans are extended,
and action effects are simulated. Some checks are syntactic and semantic: checks for
inconsistent bindings, precondition violations, and constraint violations and some
checks use the heuristic that interpretations should be plausible: checks for looping
plans, redundant plans and on-going plans. All of these checks are applied as soon
as possible in order to quickly discard nonviable interpretations and reduce overall
computation.

2. Operator Definitions

Operators in GRAPPLE are hierarchical. Those used to demonstrate the ex-
amples in this paper are given in the appendix. There are three levels of operators.
At the lowest level (stack, unstack) there is no mention of structures, rather just
the positions of the blocks. At the middle level (start-struct, extend-struct,
remove-top-block, dismantle-struct) the concern is with which blocks are in
which structures and with a block’s role within a structure. At the top level (make-
red-tower) the concern is with what type of structure exists. GRAPPLE uses the
hierarchy to build interpretations.

An operator is composed of a goal, preconditions, subgoals, constraints and
effects. The linking of operators (goals of some match subgoals or preconditions of
others) enables the construction of interpretations. Operators are either primitive
or complex. A primitive operator is an explicit user action; it has no subgoals.
A complex operator has one or more subgoals and is not an explicit action. In
the blocks world stack is a primitive operator and make-red-tower is complex.
It is useful to look at complex operators as referring to higher level concepts and
activities. The purpose of complex operators is to decompose more complicated
goals into simple ones, allowing a hierarchical view of domain activities.

2Knowledge Craft is a trademark of Carnegie Group Incorporated.



The preconditions of an operator define the state from which the operator can
legally be executed. Consequently all preconditions of an operator must be true
simultaneously before any action is taken to satisfy the operator’s goal or subgoals.
This implies that the preconditions of a complex operator must all be true before
any primitive action in the expansion of one of its subgoals begins. There are two
kinds of preconditions, normal and static. A normal precondition can intentionally
be satisfied by taking actions while a static precondition can not. A precondition

which is not explicitly defined as static in the operator definition is understood to
be normal.

By using subgoals a complex operator is decomposed into subproblems, each of
which must be satisfied before the effects of the operator are achieved. For example,
make-red-tower is a complex operator having two subgoals. It is divided into the
subproblems of starting the tower and finishing it. In the case when an operator has
more than one subgoal, the order in which subgoals should be satisfied is determined
solely by the state of the world and the preconditions of the operators being used
to satisfy the subgoals. The only restriction is that all subgoals which are labeled
"final” must be true simultaneously to enable installing of the effects clause.

Constraints restrict the bindings in the operator. They must not be violated
from the time the operator’s preconditions are true until the time its effects are
posted. Effects are the changes to the data base (the "world”) which result from
executing an action or from completing a complex operator. New objects can be
created, attribute values can be set, new predicates can be added, and old ones
deleted. Further, an effect can be made conditional on the state of the world. Not
only do the effects of an operator cause its goal to be true, but often additional
changes are made in the state of the world. These are side effects.

The recognition algorithms regard the goal of an operator as the main purpose
for an operator’s execution. The plan network which is built by matching operator
goals to subgoals and normal preconditions of other operators is central to the
recognition process. In particular, the purpose of an operator might be seen as the
achievement of a subgoal of a second operator which might in turn be satisfying
the precondition of another operator. The reason, then, of carrying out a series of
actions can be to satisfy the goal of some top-level operator; a top-level operator is
one whose goal does not satisfy a precondition or subgoal of any other operator.

3. The Recognition Cycle

After GRAPPLE is first initialized, an initial world state is input to the pro-
gram. The actions are then processed one at a time. Before an action is actually
completed and in consequence the state of the world is changed, GRAPPLE builds
interpretations of the proposed action. These are used by the program to decide
whether or not an action should be taken and what, if it should, its purpose would
be. A contextis a world view. Different contexts provide alternative world views;



each is a separate data base state. An interpretation for an action or sequence of
actions is a tree of operators where top-level operator goals are linked to primi-
tive actions. When all the variables of the linked operators in an interpretation
are bound to values, the interpretation is complete. At any given time during the
recognition process there might be a number of alternative interpretations for the
sequence of actions, all with operator variables partially bound. When no interpre-
tations for an action exist, the user is advised to take another action. When many
exist, focusing decisions are made to pick preferable interpretations.

GRAPPLE can consider actions leading to more than one top-level goal simul-
taneously. However in the case where a particular action leads to two or more
top-level goals at the same time only one is the "purpose” of the action in a partic-
ular interpretation and the others are side effects.

A broad outline of the plan recognition cycle is given below.
Initialize GRAPPLE: establish links between operators.
While: there is a proposed new action.
For each active context:
Find all valid possible interpretation paths from action to top-level goal.
If: No interpretations in context, go to next active context.
Else:
For each interpretation in context:
Make new child context and instantiate operators.
Test extended interpretations for inconsistent bindings.
Test for possible constraint or precondition violation.
If interpretation invalid:
refute context.
go o next interpretation.
Else:
Assert effects of the action in the interpretation.
Evaluate all task preconditions, constraints, and subgoals.
Assert effects of enabled complex operators.
Monitor constraints, looping and redundancy.
If interpretation invalid: refute context.
Go to next interpretation.
When no more interpretations in context:
Focus: prefer child contexts with extended interpretations.
Parent context is superseded.
Go to next active context to interpret action.
When no more active contexts:
Further focus: prefer child contexts where all actions are interpreted as
extensions.
If action can be interpreted:
Establish new group of active contexts.



If action can not be interpreted in any context.
Inform user.

Restore previous group of active contexts.
Get new action.

4. Initializing GRAPPLE

GRAPPLE is initialized by establishing the links between the operators in the
library. A graph showing the links between operators is shown in figure 1. For
simplification the graph does not show all links. For example, remove-top-block
also links to unstack through its normal precondition, (clear ?x). For each logi-
cal expression that is a subgoal or normal precondition of an operator, alternate
achievers are computed. An alternate achiever is an operator whose goal, when
true, achieves the expression; a set of variable mappings is determined with each
alternate achiever. The operator stack is an alternate achiever of the subgoal
(on ?top-block ?base-block) of start-struct and the mapping is 7x — ?top-block,
?y — 7base-block. Two things can be observed: only part of an operator’s goal
need match the condition for it to satisfy the expression and an operator’s goal
can achieve a condition in more than one way. For example, dismantle-struct
achieves the precondition (clear ?y) of stack with a mapping ?base-block — ?y and
a mapping ?top-block —» ?y. In this case there are two alternate achievers involving
dismantle-struct. In the current implementation of GRAPPLE, when an opera-
tor’s goal only partially satisfies a subgoal or precondition of a second operator, a
link is not formed.

Once links are established they are used to generate paths from primitive ac-
tions to top-level goals. When a user action is proposed and its preconditions and
constraints are not violated, possible interpretations are generated. A possible in-
terpretation is a path, linked through goals and logical expressions from the action
to a top-level goal.

5. Limiting Possible Interpretations When an Action is Pro-
posed

The strategy used in GRAPPLE is to limit the number of possible interpreta-
tions by aggressive checking to throw away those that can not be valid. GRAPPLE
does not consider possible interpretations when it can predetermine that a higher
level operator’s preconditions or constraints are violated, that an already satisfied
goal will be resatisfied or that endless cycles exist. Checking starts as the interpre-
tations are generated; the viable interpretations are then instantiated and checked
further as described in section 6. In the identification of all possible paths from the
action to the top-level goal an interpretation is discarded if any of the conditions
listed below are violated. These conditions are tested as each operator is linked up-



ward. The values of the variables used in the tests are those given as parameters to
the action; these values are propagated up through the links. For example, the ac
tion (unstack cube3 cubel) leads to dismantle-struct with 7top-block = cubed and
?base-block=cubel. The construction of a particular path upward is discontinued
as soon as any operator fails the tested conditions. The result is that the com-
putation involved in generating possible interpretations, and the number of these
interpretations, is greatly reduced.

Tested syntactical and semantic conditions in the bottom-up generation of pos-
sible paths:

e If an operator is linked, either directly or indirectly, to the action through
one of its subgoals then none of its preconditions can be false. The truth of a
precondition is determined by querying the data base. If all the variablesin the
precondition are bound to values, the precondition must be true. For example,
if in the initial state cube3 is on cubel, then the goal of the action, (unstack
cube3 cubei) satisfies the subgoal of dismantle-struct, the variable mapping
is cube3 — ?top-block and cubel — ?base-block. If any of the preconditions
of dismantle-struct are false with this variable mapping, such as cube3 not
being in a structure, then no possible path can be derived which starts by
unstack linking to dismantle-struct in this way.

® No constraints of an operator are violated. Again the bindings are those taken
from the action (as propagated up through the path link via the mappings).
Since there are no constraints on dismantle-struct, the test will not apply.
If cubel eventually maps into ?first-cube of make-red-tower, then it must
be red to satisfy the top-level constraint, (color ?first-cube red).

Tested conditions, based on the heuristic that the user prefers to be rational, in
the bottom-up generation of possible paths.

e No goal of an operator having all its variable values bound from the parameters
of the action when propagated upward is already true in the current state of
the world. The user’s action in such a case would serve no purpose since the
intent of the action is seen as satisfying an already satisfied goal. If a goal is
already true, any interpretation which reachieves it should be discarded.

¢ No linked precondition or subgoal of an operator is already true in the current
data base state. For example the path starting as follows (unstack cube3
cubel) leading to the subgoal (not (on ?top-block ?base-block)) of dismantle-
struct leading to the precondition (clear ?y) of stack with cube3 = ?top-block
= ?y will be discarded because cube3 is already clear in the current state.

¢ No loops exist in the interpretation. No operator is revisited on a path with
identical variables bound to the same values or with identical variables un-
bound. This insures that possible interpretations in which cycles occur are
not considered. For example, the operator (stack cube?2 ?y) can not occur
more than once in a path, although both (stack ?x ?y) and (stack cube2 ?y)
could appear.



In order to inhibit endless searching a given cutoff level or maximum number of
operator links allowed is input to GRAPPLE. This is based on another "rationality”
heuristic: that the user will not prefer long paths to top-level goals when shorter
ones exist. There are some instances when an action taken in a given data base
state can not lead to any top-level goal through a reasonable number of links. When
this occurs or when there are no valid possible interpretations, the action can not
be recognized and the user is so advised.

6. Exploiting Available Constraints

The process of limiting the derivation of interpretations and checking those that
remain is best understood by looking at a particular example. The illustrations in
the figures are actual output from the program. Figure 2 shows the initial state of
the world for the example. There is only one context, the initial world state, in which
to interpret the first action. The first action is (unstack cube3d cubel). Four possible
interpretations leading to the goal of completing a red tower are derived. Ninetecn
possible interpretations are discarded while testing the conditions (described in
section 5) in the process of finding these potentially acceptable paths.

The four interpretations are instaniiated before further analysis is done to see
if there are additional reasons to discard them. Each interpretation is tested in
turn. For each, the original parent context is copied to a new context. Every
operator of the interpretation within the new context is instantiated as a separate
task ( instantiated operator) and its preconditions and subgoals are expanded. The
original parent context, replaced by new ones, is superseded. When an interpretation
within a context is found to be invalid, the context is refuted. In the example,
there are four ways to interpret the first action in the parent context ; four new
contexts are created. Figure 3 shows the context tree after the instantiation of
the four interpretations of the first action. Figure 4 shows the instantiation of an
interpretation in a particular context.

As stated previously, preconditions of operators linked to the action through a
subgoal must be true for the interpretation to be valid. No interpretations with
operators having false preconditions and bound variables survived the derivation,
but there may exist operator preconditions with unbound variables which are false
because values do not exist for those variables in the existing data base state which
will make the expressions true. Because it is necessary that all preconditions of
a complex operator be true before any action is taken which leads to one of its
subgoals, the program allows the binding of variables through preconditions from the
existing state of the data base when such an action is proposed. Any variable values
which are found in this way must not violate the constraints of the operator. If a
variable is propagated up through links of the interpretation and is included in other
operator constraints or preconditions which must also be true (when the operator
is linked through a subgoal), then these expressions further the restrictions on the
bindings. The result is a query to the data base with a set of logical expressions



which must all be true simultaneously. This query constrains the search for plans
in three ways. It throws out invalid interpretations, it binds variables when the
bindings are unique, and it provides constraints on variables when the bindings arc
not unique.

In the first interpretation of the example (unstack cube3 cubel) satisfies the
subgoal of dismantle-struct (all its preconditions are true with bound variables
from the action); dismantle-struct satisfies the normal precondition, (on-table
cubel) (clear cubel), of stack; stack leads to the subgoal (on cubel ?base-block)
of start-struct; and start-struct leads to a subgoal of make-red-tower. In the
solution all the preconditions of start-struct must be true for the interpretation to
be valid. The data base is queried with the two precondition clauses of start-struct
and the relevant constraint clauses of make-red-tower. As a result the variable
7base-block of start-struct is bound to cube2 from the data-base; this is the only
value in the data-base which is on the table, not equal to cubel and satisfies the
constraints (?first-cube being a cube and red) of the operator make-red-tower.

When there are no values for the variables in the data base which satisfy the
query, the precondition is false. This is what happens in the fourth interpretation
which is instantiated in context5 (see figure 3). The path from the action, (unstack
cube3d cubel), is unstack — dismantle-struct - stack — extend-struct --
make-red-tower. Extend-struct leads to the subgoal (add-pyramid) of make-
red-tower. The variables ?top-block and ?base-block of extend-struct are both
unbound. The data base is queried using the preconditions of extend-struct and
relevant constraints of make-red-tower. The query fails because the expressions
can not be solved simultaneously. This is because ?lower-block and ?base-block both
are bound to cubel which violates the precondition that they can not be equal. The
interpretation is discarded and the context refuted. Notice context5 in figure 3 is
refuted. When more than one value can be bound to a variable, the alternative
possible values of the variable are added as a constraint on the task. The effects
of any task which affect or use such a variable are not activated until one of the
multiple values is actually forced on the interpretation by a subsequent action. The
additional constraint on the variable may restrict the possible extensions of the
interpretation.

By exploiting the constraints in the example, GRAPPLE determined that there
were only three possible interpretations for the proposed first action.

Finally it should be emphasized that GRAPPLE binds variables in only three
ways: from an overt action and the linking of operators, from asserting effects which

create new variable values, and from a query to the data base with expressions which
must be true.



7. Monitoring Constraints, Looping, and Redundancy with
Data Base Changes

Some interpretations may be discovered to be invalid only after the effects of
the action are simulated. For instance, a side effect of an operator could cause the
violation of a precondition or constraint of another operator (upward on the path).

The state of the world actually changes in each active (neither superseded or re-
futed) context when the effects of an action or operator are asserted. (In GRAPPLE
all the contexts which are active are carried forward.) Afterwards every task (instan-
tiated operator) in the context is then processed to see if previously unsatisfied pre-
conditions or subgoals are now satisfied due to:the data base changes. Tasks exist in
varying stages of completion - :trying-to-achieve- preconditions, :trying-to-achieve-
subgoals, or :accomplished. When all of the tasks in a context are accomplished, the
top-level goal is achieved. If the state of a task is :trying to achieve-preconditions,
the preconditions having bound variables are tested. When all of a task’s precondi-
tions are true simultaneously, the state of the task is changed to :trying-to-achieve-
subgoals. If the state of a task is :trying-to-achieve-subgoals, the subgoals having
bound variables are tested. Once the subgoals are satisfied and the truth of all the
task constraints on the interpretation path is established, the effects of the task
are asserted. The effects of complex operators are automatically asserted when its
subgoals become true and that primitive operators are overt actions which must be
taken by the user. |

Redundant plans or actions and looping may be discovered as variables are
bound. One of the ways a context can be refuted is by the discovery that there
exists two different tasks in the context which are instantiations of the same oper-
ator and which either have matching bindings or have the set of bindings for one
task subsumed by the bindings of the other. This means that these two tasks are
combined in some other context to form one interpretation or that looping occurs.
Notice that it is possible that a precondition or subgoal can become true as a result
of asserting the effects of a task even though the goal of the task in the interpreta-
tion is not to satisfy that particular condition. No variables are bound during the
process of checking the truth of preconditions or subgoals of a task; an expression
is true only if its variables are bound.

There is an additional reason to discard a context when the data base is altered.
Changes in the world state may violate operator constraints. Therefore, when any
constraint is found to be false while processing the tasks, the context is refuted.

Consider the example. There are three active contexts for the first action after
the effects are posted in each (sce figure 3). The interpretation in context2 is
illustrated in figure 4. After the action (unstack cube3 cubel) the tasks unstack3
and dismantle-struct3 are completed; and the preconditions for stack3 are true.
The task, start-struct3, is in the state :trying-to-achieve-subgoals as is the task
make-red-tower3. Three subgoals need to be satisfied in order to achieve the top-
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level goal. If all the child contexts (context2, context3, contexid4) are refuted the
primitive action can not be recognized and the user is is so advised. This does not
happen in the example. In the example none of the simulated effects of the first
action caused GRAPPLE to discard an interprctation. The action is taken in each

active context.

8. Narrowing Interpretations with Additional Actions

Additional actions reveal more of the plan and provide information which is used
to discard existing interpretations.

After the first action is processed in all active contexts, GRAPPLE asks the
user for the next action. This action is considered in each active context in turn. In
the example (stack cubel cube2) is the second action; it is interpreted in context2,
context3, and context4. Possible interpretation paths are derived and discarded as
before. There is a difference though and that is: a path can lead to an operator
corresponding to an instantiated task which is pending (not yet complete) in the
context as well as to a top-level operator. For example: since stack3 is a pending
task in context2, a possible interpretation leads to stack. In each context of the
example four possible interpretations out of eight survived the derivation.

Each surviving candidate interpretation can either be an extension of an existing
interpretation or, if it leads to a top-level goal, the start of a new interpretation in
the given context. An interpretation which does not lead to a top-level operator
must necessarily be an extension. An interpretation which does lead to a top-level
operator might be an extension if it leads to an unsatisfied precondition or subgoal
of a partially satisfied top-level task. Alternatively it might be the start of a new
interpretation to a top-level goal.

There may be reasons to reject an extended interpretation before tasks are in-
stantiated. When the bindings of the new action are inconsistent with the existing
bindings of the top-level task, when the new bindings will cause a constraint viola-
tion in the existing interpretation or when a precondition of a task linked through
its subgoal is violated with the new bindings added, the interpretation is not con-
sidered as an extension. For example, in both context4 and context3 two of the
possible interpretations, one leading to stack and another leading to start-struct
are thrown out due to inconsistent bindings.

For each remaining candidate interpretation, whether it is an extension or a new
interpretation, the active context is copied to a new context along with the pending
tasks. The parent context is superseded. The analysis done in each surviving
context is the same as is described for the first action. Contexts are refuted if
necessary preconditions can’t be true. Pending tasks are processed, effects are
asserted and further tests are done to refute contexts.

In building new interpretations, there is a chance that redundant plans evolve.
In cases where an interpretation can be viewed as both an extension and the start
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of a new interpretation, a test is done to see if the two interpretations are in fact
the same. If the top-level goals are identical and the variable bindings of the new
interpretation are subsumed by those of the extension, the context corresponding
to the start of a new interpretation is refuted. This is what happens when the final

action of the example is interpreted as the start of a2 new plan in context9 (described
in the next section).

Looking at the example, the action (stack cubel cube2) can be interpreted as
an extension of the existing interpretation in context2. The bindings are consistent
and no constraints or necessary preconditions are violated. Those interpretations
where bindings are inconsistent, constraints are violated or preconditions violated
are not pursued. The effects of stack are asserted, accomplishing stackll and start-
struct10 and achieving a subgoal of make-red-tower10. Figure 7 shows the task tree
for the interpretation. Of the possible interpretations of the action in context2
three child contexts, context10, contextll, and context12 are refuted because two
instantiations of the operator stack exist with identical bindings in the context.
Figure 6 represents the context tree after the second action. In context3 the action
(stack cubel cube2) can not be interpreted as an extension because the bindings
are inconsistent. The only interpretation allowed in this context is one leading to a
new top-level goal of making a red tower.

As it stands the program does not resolve the problem which arises when
achieved preconditions or subgoals of a task are violated prematurely by assert-
ing the effects of later actions. In this case a decision should be made whether to go
ahead with the action or retract it. If an action is retracted, it must be retracted
in all contexts. On the other hand when the action is taken, previously satisfied
conditions which are violated must be resatisfied by future actions. The existence
of conditions in a context that are violated in this way could also be used to focus
the recognizer. The focusing heuristic is: the user prefers plans in which conditions
do not have to be resatisfied.

9. Focusing on Extended Interpretations

Another way of controlling the plan recognition process is to focus on selected
interpretations while saving others for future development. When a new user action
is proposed, GRAPPLE first focuses on interpretations where the action extends
an existing plan. The program prefers to assume that the user has a plan or set
of plans in mind [Carver, 1984]. Unrefuted contexts in which an action can be
interpreted as extending an existing plan are made active; other unrefuted contexts
are made inactive. An inactive context, neither refuted or superseded, is saved for
future processing. In the example, context8 is made inactive because (stack cubel
cube?) can not be interpreted as an extension, but it can be interpreted as the start
of a new plan. When there are no contexts in which the action can extend a plan,
all contexts where the action starts a new plan are made active.
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When there are no contexts in which an aclion can be interpreted, the action
can not be recognized. Consider the situation shown in figure 5. The second action
of the example has been processed. If the user then proposes an aclion such as
(stack pyrl cube3), GRAPPLE can not find a way to interpret the action in any
active context. It then makes all inactive contexts active, processes the unprocessed
actions in the newly activated contexts and tries again to interpret the given action.
If the action still can not be recognized, the user is informed. The interpretations
and contexts are then changed back to the state that existed before the original
action was proposed. The above scenario is not illustrated in the example.

The third action of the example is (stack pyrl cubel); it is processed in the active
contexts , context9 and context7 and is added to the list of unprocessed actions in
the inactive contexts, context8 and context6. All the candidate inierpretations
in context7 are found to be invalid. The action, interpreted as an extension, in
context9 achieves the subgoal of extend-struct3 which achieves the second subgoal
of make-red-tower17. The action, interpreted as the start of a new plan, in context9
gives a redundant interpretation. The top-level goal is accomplished in context14.
The final context tree is shown in figure 9 and the final interpretation in figure 10.
The plan is recognized.

10. Multiple Plans

The ability to limit possibilities is even more valuable when there are multiple
plans being carried out in parallel. GRAPPLE can recognize more than one plan
simultaneously. When a top-level operator, make-blue-tower, is added to the set
of operators, actions for building a red tower and a blue tower can be interleaved
and the program recognizes the purpose of the actions. For instance, the first action
of unstacking a blue cube from a red cube will have an additional interpretation of
dismantling the original structure in order to build a blue tower.

11. Conclusion

We have found that incremental hierarchical plan recognition is more computa-

tionally expensive than expected. Even in a simple domain the task can quickly get
out of control.

In a simple example nineteen possible interpretations for the first action are
reduced to three (of these twelve are discarded based on the heuristic that the user
will behave rationally and interpretations are plausible). Checking and focusing
reduces the number of interpretations for the first followed by the second action
from twenty-four to two (of these eleven are discarded based on the "rationality”
heuristic). Finally GRAPPLE finds only one way to interpret the sequence of three

actions out of ten possible interpretations (of these two are discarded based on the
"rationality” heuristic).

Non-trivial mechanisms are required to control the combinatorial explosion of

13



possible interpretations. There is a need to exploit constraints quickly and to fo-

cus on reasonable or plausible interpretations. With the techniques described here
incremental plan recognition becomes tractable.
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Appendix
Example Blocks World Operators

unstack

(defplan unstack (?x ?y)
(goal (not (on ?x ?y)))
(precondition on-x-y (on ?x ?y) :static)
(precondition clear-x (clear 7x))
(precondition not-eq (not (= ?x ?y)) :static)
(subgoal (primitive))
(effects (add (clear ?7y))

(add (on-table 7x))

(delete (on ?x ?y))))

remove-top-block

(defplan remove-top-block (?top-block 7block2 7structure)
{goal (and (clear ?top-block) (on-table ?top-block)
(clear 7block2)))
(precondition not-on-table (not (on-table ?block2)) :static)
(precondition in-structl (in ?block2 ?structure) :static)
(precondition in-struct2 (and (in ?top-block ?structure)
(top ?structure ?top-block)) :static)
(precondition on-blk (on ?top-block ?block2) :static)
(precondition not-eq (not (= ?top-block ?block2)) :static)
(subgoal unstack-blks (not (on ?top-block ?block2)) :final)
(effects (delete (top ?structure ?top-block))
(delete (in ?top-block ?structure))
(add (if (old (not (base-block ?structure ?block2)))
THEN (top ?structure ?block2)))
(delete (if (old (base-block ?structure ?block2))
THEN (in ?block2 ?structure)))
(delete (if (old (base-block ?structure ?block2))
THEN (base-block ?structure ?block2)))
(set (type-struct ?structure unknown))))

dismantle-struct

(defplan dismantle-struct (?top-block ?base-block ?structure)
(goal (and (clear 7base-block) (on-table ?base-block)

(clear ?top-block) (on-table ?top-block)))
(precondition in-struct1 (and (in ?base-block ?structure)

(base-block ?structure ?base-block)) :static)
(precondition in-struct2 (and (in ?top-block ?structure)

(top ?structure ?top-block)) :static)
(precondition on-blk (on ?top-block ?base-block) :static)
(precondition not-eq (not (= ?top-block 7base-block)) :static)
(subgoal unstack-blks (not (on ?top-block ?base-block)) :final)
(effects (delete (top ?structure ?top-block))

(delete (in ?top-block ?structure))

(delete (in ?base-block ?structure))

(delete (base-block ?structure ?base-block))

(set (type-struct ?structure unknown))))
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stack

(defplan stack (7x ?y)
(goal (on ?x ?y))
(precondition not-com3 (and (on-table ?x) (clear ?x)))
(precondition not-pyr-y (not (pyramid ?y)) :static)
(precondition clear-y (clear ?y))
(precondition not-eq (not (= ?x ?y)) :static)
(subgoal (primitive))
(effects (add (on 7x ?y))
(delete (clear ?y))
(delete (on-table 7x))))

start-struct

(defplan start-struct (?base-block ?top-block ?structure)
(goal (and (on ?top-block ?base-block)

(top ?structure ?top-block)

(base-block ?structure ?base-block)

(in ?top-block ?structure)))
(precondition on-table (on-table ?base-block) :static)
(precondition not-eq (not (= ?base-block ?top-block)) :static)
(subgoal stack-blks (on ?top-block ?base-block) :final)
(effects (new (?structure structure))

(add (top ?structure ?top-block))

(add (in 7top-block ?structure))

(add (in ?base-block ?structure))

(add (base-block ?structure ?base-block))

(set (type-struct ?structure unknown))))

extend-struct

(defplan extend-struct (?lower-block ?top-block ?base-block ?structure)
(goal (and (on ?top-block 7lower-block)

(top ?structure ?top-block)

(in 7top-block ?structure)

(base-block ?structure ?base-block)))
(precondition in-struct (in ?lower-block ?structure) :static)
(precondition in-structl (base-block ?structure ?base-block) :static)
(precondition not-eql (not (= ?base-block ?top-block)) :static)
(precondition not-eq2 (not (= ?lower-block ?base-block)) :static)
(precondition not-eq (not (= ?lower-block ?top-block)) :static)
(subgoal stack-blks (on ?top-block ?lower-block) :final)
(effects (add (top ?structure ?top-block))

(add (in ?top-block ?structure))

(delete (top ?structure ?lower-block))

(set (type-struct ?structure unknown))))

make-red-tower

(defplan make-red-tower (?structure ?first-cube ?second-cube ?pyramid)
(goal (redtower ?structure))
(subgoal build-foundation (and (on ?second-cube ?first-cube)

(in ?second-cube ?structure)
(base-block ?structure ?first-cube)) :final t)
(subgoal add-pyramid (and (in ?pyramid ?structure)
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(base-block ?structure ?first-cube)
(on ?pyramid ?second-cube)) :final t)
(constraints (pyramid ?pyramid) (cube ?first-cube) (cube ?second-cube)
(color ?pyramid red) (color ?first-cube red)
(color ?second-cube red))
(effects
(set (type-struct ?structure tower))
(set (color ?structure red))))
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