Plan Execution Using Human Agents

Carol A. Broverman
W. Bruce Croft

COINS Technical Report 89-83
March 1989

Computer and Information Science Department
University of Massachusetts
Ambherst, Massachusetts 01003

Most planning systems have been applied to simple domains. In complex domains, the
autonomy of human agents and the dynamic nature of realistic settings give rise to fre-
quent exceptional occurrences (exceptions). Rather than using a traditional error recovery
approach, we advocate the use of plan recognition techniques to identify the purposeful
behavior underlying an exception and its contribution to an ongoing plan. This paper
discusses a model of plan execution and exception handling, and describes SPANDEX, an
implementation of this approach. The SPANDEX system produces explanations consisting
of rationales and amendments to incorporate exceptions into the current plan, allowing
planning and execution to continue.

This work is supported by the Air Force Systems Command, Rome Air Development Center, Griffiss Air
Force Base, New York 13441-5700, the Air Force Office of Scientific Research, Bolling Air Force Base, District
of Columbia 20332, under contract F30602-85-C-0008, and by a contract with Ing. C. Olivetti & C.

Contents

1 Motivation 1
2 Planning 2
3 Plan Execution and Exceptions 5
3.1 Detection of Exceptions, 6
3.2 Explanation generation 8
4 Example 10

1 Motivation

Planners can potentially be used to automate or support a variety of complex tasks
[8,12,14]. Most planning research, however, has been done in very simple domains (e.g. the
blocks world). The dynamic and unpredictable nature of many real world domains sug-
gests that sophisticated monitoring of plan execution is vital and systems should have the
capability to respond to unexpected change. Recovery measures such as those of [1,6,14]
have been proposed to effectively replan around an unanticipated domain state change,

allowing resumption of the task while preserving as much of the plan as possible.

In our work, we are concerned with the special requirements of domains where a plan-
ner is used to support the cooperative work of one or more human agents [8]. In such
environments, human input is required to guide the development of a plan for a task. In
addition, execution of plan steps will be performed by human agents as well as by the
planning system. The natural intelligence and familiarity of humans with the application
domain means that their actions, even when inconsistent with system expectations, are

generally purposeful. That is, human-generated plan exceptions should be incorporated

into the developing plan, rather than “undone” using replanning techniques.

A planner employs a set of axioms that defines the planning process and a predefined
set of domain activities and objects to generate valid plans that accomplish a particular
goal. While restricting a potentially explosive search space, the plans that are produced are
stereotypical and may not be adequate predictors of subsequent execution behavior. Our
approach is to make a conventionally produced plan “elastic” in response to exceptions and
to thus allow the continuation of planning and execution [2,3,5]. The domain knowledge
base is used in an attempt to transform the current plan into a valid alternative, or,
put another way, to recognize an alternate plan. During this process, additional domain
knowledge may be acquired. The overall goal of our approach is to allow the system
to continue planning and execution while incorporating the exceptions that occur in real

domains.

In this paper, we give a detailed formulation of plan execution and the exception
problem. We then describe iterative and interactive algorithms which provide explanations
for exceptions by establishing plausible rationales and proposing corrective measures. In
the final section, we describe the implementation of these ideas in the SPANDEX exception

handling system using an example from the software development domain.

2 Planning

In this section, we give a formalization of the planning problem and define terminology

which is relevant to plan execution and exception handling. Our definition of the planning

task of a hierarchical nonlinear planner is similar to that proposed in [9]:
Given:

« w: an initial world state

~ A: a set of activities, some of which are primitive (4,) and others which

are complex (A4.);

» g: a desired final goal state;

~ E: a set of available agents;

Determine: a partial ordering P of primitive activities A, in A which, when
executed in an initial state w by agentsin E, will produce a new state containing

the final goal state g.

Activities are considered complex if they can be elaborated by the planner into sub-
activities; primitive activities are associated with executable actions. The partial ordering
P which represents the final plan for a task is the result of a series of transformations of
the initial goal specification g. The result of each of these manipulations is represented by
a plan network, which represents the current version of an evolving plan. A plan network

is a strict partial order and consists of the following elements!:

N: a set of nodes, where each node represents a goal or activity;

L: a set of temporal links which establish a partial ordering among the

nodes;

o W: a set of world states, which are snapshots of the dynamic domain
knowledge base. Two of these world states are attached to each node
in N to describe the world states believed by the planner to hold before
(before-world) and after (after-world) the execution of that node;

I: a set of protection intervals, where each interval specification designates
a partial world state and the temporal range during which it must be

maintained.

Plan networks can also be described in terms of the stage of their execution. Since the
domains we are concerned with generally interleave planning with execution, plan networks

are often partially executed. Associated with each plan network is a set of exzpected action

"More detailed descriptions of each of these elements can be found in [8].

nodes which are the nodes which can be executed next. A node is in this set if and only

if?:

» it is a primitive activity node;
» all of the conditions specified in the node’s before-world are satisfied;

» all of the node’s necessary predecessors are complete and awaiting succes-

SOrsS.

The process of planning is viewed as iterative iransformations on plan networks. A
complete plan is a plan network which has been fully ordered, and every node is either a
phantom?® or it is a primitive activity node that has already been executed. Thus, a plan
network represents a class of complete plans; i:here are multiple possible complete plans
that may result depending on the choices of elaborations and operations that are subse-
quently applied. As a plan network is further elaborated and executed by the plan network
maintenance system (PNMS(8]), a plan history is built up since a new plan network results
each time a PNMS operation is performed. PNMS operations include node expansions, the
imposition of temporal orderings and protection intervals, etc. The complete plan history
is the set of all intermediate plan networks created by the planner. Thus, the plan history
is a partial order of plan networks ordered within planning time, where the distinguished
upper bound is the eventual complete plan. The relation is a partial order since backtrack-
ing may be allowed. The plan history maintains a record of all planning actions performed

in the production of the final plan.

We define the concept of a plan wedge* in order to be able to refer to the portion of plan

history that represents the abstractions and subsequent refinements which introduced a

2A more complete definition of “ready nodes” which defines “conditions” and “necessary predecessors”

in detail can be found in [8].
3A phantom node [13] is a goal node which has been determined to be true at its position in the plan

without further expansion and execution.
*Our definition is similar to the definition of a wedge used by Wilkins [14] and produces the semantic

equivalent.

given node n into the plan. The concept of a wedge is important both for general replanning
and in establishing a rationale for how an unanticipated event may be relevant to the plan

history. A plan wedge for a node n is a set of nodes defined as follows:

Given the following recursive functions:

1. node-ancestors(n) which returns set of nodes containing the parent
node which produced the expansion containing n as well as all node-

ancestors(parent node), and

o

node-descendants(n) which returns all children nodes which form the

expansion of n, as well as all node-descendants(child) for each of the

children nodes,

a plan wedge consists of a distinguished node in node-ancestors(n) which is

chosen as the apez of the wedge, and the set of nodesin node-descendants(apex).

3 Plan Execution and Exceptions

We can now describe how exceptions arise during the planning and execution process. We
sketch the system loop in order to provide an overall context:

1. The planner completes an elaboration cycle of the current plan network.

2. An action is executed and incorporated into the plan network.

3. Inconsistencies in the plan network resulting from the executed action are calculated.

1. Rationales are generated as justifications for the inconsistencies, along with proposed

amendments that will restore a consistent system state.

Ot

A rationale and an amendment are chosen through an interactive dialogue with the

user. If no explanations are produced or considered acceptable, the exception may

represent a user error. SPANDEX is also capable of interpreting a limited set of
common user errors, which are based on models of procedural error types or “slips”

[7,10,11].

6. Any inconsistencies which might remain are handled by standard replanning tech-

niques.

7. Planning and execution resume (new elaboration cycle).

In the remainder of this paper we describe in detail the detection and explanation of

exceptions.

3.1 Detection of Exceptions

Given a plan network p with an identified set of expected action nodes, an action a may be
executed with the resulting world state w. The execution event is denoted by (a,w). The
activity descriptor a consists of an operator and parameters. The operator name is assumed
to uniquely identify the activity and the parameters refer to domain knowledge base objects
which are being manipulated by this activity. For example, a might be compile-file(module-
1). The operator in this case is compile-file, where the file being compiled by this activity

is module-1.

If the specification of a unifies with one of the expected action nodes, that expected
action node is processed accordingly to reflect that it has been executed, and no further
changes are made at this time to the plan network. Otherwise, a node representing a is
inserted into the network at the current point in execution time, so that it occurs after all

executed nodes and prior to any expected action node, and resulting inconsistencies are

calculated.

Therefore, the problem now posed to the SPANDEX exception handling system can be

stated as follows:

Given:

~ p: a partially executed plan network;
s (a,w): an event-result token;

o [: a set of calculated inconsistencies.

Produce a new successor plan-network p/ which meets the following criteria:

The set of executed nodes in pf/ include all executed nodes in p;

» p/ contains a node representing the exceptional action;

p/ contains no inconsistencies.

p! has the same high-level goal as p.

Our general approach to this problem is to manipulate available domain knowledge to
generate plausible ezplanations which indicate how the current network and domain knowl-
edge base can be transformed to eliminate inconsistencies resulting from the occurrence of

(a, w). Inconsistencies must be one or more of the following:

1. The action type of a doesn’t match with the types of any of the ezpected action

nodes.

2. The action type of ¢ matches with the type of one of the ezpected action nodes, but

the parameters of @ and the parameters of the expected action node do not match.

3. As aresult of changes reflected in the new world state w, the plan network may now
be inconsistent. In other words, a violation may be detected of one or more of the

plan network consistency criteria defined below:

(a) All before-worlds and after-worlds in W are internally consistent with respect

to domain constraints.

(b) The preconditions of each plan step are satisfied in its before-world.

(c) The after-world of each plan step must be consistent with the goal of the plan
step.

(d) All protection intervals in I must hold.

(e) The set of temporal ordering specifications L must be consistent.

The procedure followed up to this point (exception detection, insertion of a node rep-
resenting the exception, and subsequent problem computation) is very similar to that
followed by SIPE’s exception handling component [14]. SIPE and other systems [1,6] have
also categorized potential plan “flaws”’ that may be introduced as a result of an unex-
pected state change. These flaws can be shown to be a subset of the above categorization
of inconsistencies. In SIPE, all exceptions are treated as “mother nature” occurrences,
handled by simple insertion into the plan network followed by generic recovery actions.
Neither SIPE nor other replanning systems make any attempt to establish any correla-
tion between an unexpected event and other elements of the ongoing plan, whereas the
remainder of the SPANDEX task is to do exactly that. In the next section, we discuss

how explanations are constructed to justify exceptions and eliminate inconsistencies.

3.2 Explanation generation

In the previous section we have enumerated the types of inconsistencies that can result
from an unexpected user action. Explanations for these inconsistencies are generated by
the controlled application of a set of plausible inference rules (PIs). Each PI maps from an
inconsistent state specification § to an explanation E. § consists of a set of identified incon-
sistencies which are constrained by one or more specifications of relations between domain
knowledge base objects. For example, the inconsistent state specification § of the PI which
is used in the example in Section 4 is the following: “If the inconsistency is unexpected-
action-type(a), and specialization-of(action-type(a), action-type(expected-action)), then
...” The explanation E also has two components: a rationale, and an amendment. The ra-

tionale gives a semantic basis for the exception, suggesting its contribution to the ongoing

8

plan. Examples of rationales are:

e This is an alternative way of performing an expected action.

 This is an alternative way of accomplishing an abstract goal or activity which is

in-progress, which means that one or more of the subnodes of the abstract node has

been executed.

e This is an alternative action which represents a shortcut in the plan (some steps may
be skipped).

e Actions are being performed out of order and ordering may be relaxed.

e This is a new action which was not known to be part of the plan and should be added

to the static task description.

An amendment prescribes the changes to be made in order to establish the rationale
and restore system consistency. It consists of one or more of: a predefined set of plan
network alierations, and primitive modifications on the domain knowledge base. The plan
network alterations are composed of the primitive plan network operations delete-node,
insert-node, expand-node, and establish-ordering. Examples of plan network alterations
include: 1) replacing one of the expected actions with a node representing the unexpected
action, 2) replacing a wedge containing one of the expected actions with a node representing
the unexpected action, and 3) replacing a later activity node with a node representing the
unexpected action and deleting the intervening nodes. The modifications that may be
made to the domain knowledge base include the addition or deletion of values to a field of

an object, adding or deleting a taxonomic link, or modifying a constraint.

The most likely explanations will be generated by the application of PI rules whose
inconsistent state specification § holds completely in the current world model, and are
referred Lo as complete explanations [3]. However, since we are interested in adding to

an inherenily incomplete domain model, we want also to consider rules whose inconsistent

state criteria are not entirely met; we attempt to establish the missing information through
interactive dialogue, thus producing additional plausible explanations while adding to do-
main knowledge. In order to intelligently control the application of PI’s, we use a set of

heuristics similar to those applied to plan recognition problems [4]:

e Completeness: Prefer a plausible inference rule which has more components in its
inconsistent state specification § that are true in the world model to a rule with

fewer true components.

e Locality: Prefer a plausible inference rule that considers an expected action (or

wedge) to one considering a later action (or wedge).

e Cost: Prefer a plausible inference rule that proposes fewer modifications in its

amendment to one proposing more modifications.

A threshold is set to limit the number of explanations produced. These most likely
explanations are presented to the user in an interactive fashion and a choice is requested.
If none of these explanations are acceptable, the process is iterated and the next set of
explanations are produced and presented, until an explanation is selected. If no explanation
is selected, SPANDEX attempts to fit the exception into one of its known common error
classes. If an explanation is selected, the amendments are applied, and SPANDEX must
check the resulting network for consistency. Any remaining violations are handled through

standard replanning techniques or through an interactive acquisition session with a human

agent.

4 Example

In this section we present an example from the domain of software engineering, one of the

domains which is currently implemented in SPANDEX.

10

The overall goal of the example task is to create a new version of a software system,
incorporating desired changes and additions. A partial plan network is generated for this
task, and is executed in conjunction with the relevant agents. Three ordered subgoals are
generated for this task: (decide-on-changes (the programmer must decide which particu-
lar changes to make), make-changes (the editing must be performed on the appropriate
modules)) are expanded and accomplished, and have-consistent-system (the entire soft-

ware system must be updated so that changed modules are recompiled and the system is
relinked).

After expanding and accomplishing the first two subgoals, the planner attempts to
achieve the third subgoal have-consistent-system by selecting the activity update-software-
system. Upon requesting verification from the user to perform the first primitive action
in this activity expansion (compile the first changed file), the user denies verification and
instead initiates a uniz-make action. SPANDEX determines that an action mismatch has
occurred, implying a possible attempt at an action substitution or an out-of-order action®.
An ezception record (see Figure 1) is created to summarize the exception. The exception
analyst module of SPANDEX then uses a heuristic rationale.selector to choose a method to

generate rationale records for the exception.

In this example, a single applicable plausible inference rule is retrieved, and SPANDEX
constructs one rationale record, which represents a complete explanation (see Figure 2). In
this particular case, the record states that since the activity uniz-make is a known special-
ization of the activity update-software-system, the unexpected action may be a substitution

for the more abstract activity node.

An amendment record is next constructed for the explanation which specifies the
changes that must be made to the current plan network and domain knowledge in or-
der to restore consistency to the system. The implementation of this rationale record
involves replacing the wedge of the plan network subsumed by the more abstract parent

node (update-software-system-01) with the unexpected action (uniz-make-01). As a side

3These implications are derived from relevant plausible inference rules, as described in section 3.2.

11

Unit-name: ACTION.TYPE.MISMATCH.01
Unit-comment: “The type of action performed did not match an expected action type.”
Exceptional-action: unix-make-01
Exception-summary:
“The target action: compile-file-01 did not occur;
uniz-make-01 was performed.”
Target.action:compile-file-01
Perceived.action uniz-make-01
Rationales: alternative.aclion.rationale, out.of.order.action.rationale
Rationale.selector: rationale.selector.method
Rationale.records: alternative.action.rationale.01

Figure 1: Exception record (ACTION.TYPE.MISMATCH.01)

Unit-name: ALTERNATIVE.ACTION.RATIONALE.O1
Unit-comment: “The unexpected action is an alternative
to an in.progress.parent.node of an expected action.”
Rationale-summary: “The unexpected action uniz-make-01 is sufficient
since its activity type is a specialization of an in-progress activity node
update-sofiware-system-01. ”
Status: complete
Rationale.type: Alternative.action.rationale
Subrationale.type: Specialization.of.in.progress.node
In.progress.parent.activity: update-software-system-01
Pending.goal.achieved: updated(SPANDEX)
Unexpected.action.goal: consistent(SPANDEX)
Hierarcliy.level.difference: 2
Amendments: Replace.plan.wedge.01

Figure 2: Rationale record for ACTION.TYPE.MISMATCH.01

12

Unit-name: REPLACE.PLAN.WEDGE.O1

Unit-comment: “Replace a wedge of the plan subsumed by a single node by a new node.”

Amendment-summary: “Replace the plan wedge subsumed by
updale-software-system-01 with uniz-make-01.”

Implementation: (do

(replace-wedge update-software-system-01 unix-make-01)
(deactivate compile-file-01 compile-file-02 compile-file-03
link-system-01))

Figure 3: Amendment record for ALTERNATIVE.ACTION.RATIONALE.Q1

effect, the nodes in the expansion of update-software-system-01 are deactivated from the

planner’s predictions (see Figure 3).

References

[1}] Ambros-Ingerson, J.A., Steel, S. “Integrating Planning, Execution, and Monitoring,”

Proceedings of AAAI-88, Minneapolis-St. Paul, Minnesota, pp. 83-88.

[2] Broverman, C.A., Croft, W.B. “Exception Handling During Plan Execution Monitor-
ing,” Proceedings of AAAI-87, July 1987, Seattle, WA.

[3] Broverman, C., Croft, W.B. “Plausible Explanations to Cope with Unanticipated
Behavior in Planning,” COINS Technical Report 88-56, University of Massachusetts,
Ambherst, Ma. June 1988.

[4] Carver, Norman, Victor Lesser, and Daniel McCue, “Focusing in Plan Recognition,”

Proceedings of AAAI-84, 1984, 42-48.

[5] Broverman, C., Croft, W.B. “SPANDEX: An Approach Toward Exception Handling
in an Interactive Planning System,” COINS Technical Report 87-127, University of
Massachusetts, Amherst, Ma. December 1987.

13

[6]
[7]

(8]

[9]

[10]

11]

[12]

[13]

[14]

Hayes, P.J. “A Representation for Robot Plans”, Proceedings IJCAI-75,181-188, 1975.

Hollnagel, IE. “Action Not as Planned: The Phenotype and Genotype of Erroneous

Actions,” draft, Computer Resources International, Copenhagen, Denmark, 1987.

Lefkowitz, L.S. and Croft, W.B. “Planning and Execution of Tasks in Cooperative
Work Environments,” Proceedings of the 5th IEEE conference on Artificial Intelligence
Applications. March 1989 (to appear).

Pednault, E.P. “Formulating Multiagent, Dynamic-World Problems in the Classical
Planning Framework,” Proceedings of the 1986 Workshop on Reasoning About Actions
and Plans. Timberline, Oregon, pp. 47-82.

Rasmussen, J. “What Can Be Learned from Human Error Reports?” In K. Duncan,
M. Gruneberg, and D. Wallis (Eds.), Changes in Working Life. John Wiley: London.
1980.

Reason, J., Mycielska, K. Absent-Minded? The Psychology of Mental Lapses and
Everyday Errors. Prentice-Hall, Inc., 1982.

Sacerdoti, E.D. A Structure for Plans and Behavior, Elsevier North-Holland, Inc.,
New York, NY, 1977.

Tate, A. “Generating Project Networks”, Proceedings IJCAI-77, Boston, 888-893,
1977.

Wilkins, D.E. Practical Planning: Extending the Classical AI Planning Paradigm.
Morgan-Kauffman Publishers, San Mateo, CA. 1988.

14

