Experimenting with Control in the
DVMT

Keith Decker Marty Humphrey Victor Lesser !
Computer and Information Science Department
University of Massachusetts

COINS Technical Report 89-85
August 16, 1989

Abstract

In order to operate effectively in real-time situations, or to integrate into
a single control architecture a variety of control regimes appropriate for dif-
ferent classes of problems or stages of a problem, the low-level contrel loop of
-a blackboard-based problem solver must change significantly. For example,
in a real-time system the low-level control loop must support the ability not
to do exhaustive analysis of blackboard data and not to apply all applica-
ble knowledge. Similarly, at different stages of problem solving, it may be
appropriate for a system to operate with data-, goal-, or plan-based control
regimes.

A modular control architecture is proposed to answer all of these needs.
Its approach is based on re-engineering the basic blackboard control loop to
be highly parameterized — not just in the area of agenda management, but
in each area of the basic control cycle. The details of this parameterization
will be presented along with examples of how this control architecture allows
the expression of a range of control regimes and the reduction of overhead
for real-time problem solving.

1This work was partly supporied by the Office of Naval Research under a Uni-
versity Research Initiative grant, number N00014-86-K-0746, NSF-CER contract
DCR-8500332, and ONR contract N00014-89-J-1877.

Introduction

The Distributed Vehicle Monitoring Testbed (DVMT) [12] is a blackboard-
based system with a rigid and complex control structure. This structure
allows both data-directed and goal-directed problem solving[4]. Extensions
added over time have allowed sophisticated goal processing and more intel-
ligent KSI scheduling[10].

More recently, researchers [6,1,2,9,5] have proposed plan-based control
systems for the DVMT domain. Implementing these systems, however, re-
quired either partially bypassing the existing control mechanism or com-
pletely rebuilding the control component. Other researchers [13,9] have been
exploring how real-time constraints effect problem solving in the DVMT
domain. Real-time techniques such as approximate processing [11,13] re-
quire reasoning beyond the traditional data-directed/goal-directed dichoto-
my. There has also been the recognition that meta-level reasoning about
how much time is spent in control versus domain processing should also be
allowed.

In order to support these diverse lines of inquiry, the DVMT low-level con-
trol loop has been streamlined and parameterized: KSIs produce hypotheses
that produce goals that produce more KSIs (see Figure 1). This new loop
can be characterized as evaluating the blackboard to decide:

1. What potential work can be done (hyp-to-goal mapping)

2. Relating potential work to existing goals (goal merging and subgoaling)
3. Determining what goals are important to achieve (goal filtering)

4. Deciding how to go about achieving them (goal-t0-KSI mapping)

5. Choosing which ones of these to actually do (managing the agenda, or
“KSI filtering”).

It is controlling each of these activities dynamically that is the key to
efficient real-time specialization for specific situations, as well as allowing
data-, goal-, and plan-based control regimes. Not only does this control
architecture give us the flexibility to dynamically reconfigure the system for
different control regimes and to exploit approximate data and knowledge for
real-time processing, but it also enables us to reduce the low-level control
processing overhead. It ensures that all of the KSIs that appear on the KSI
agenda are potentially useful to run (as opposed to merely runnable). Finally,
allowing control over all of the phases makes control strategies clearer and
easier to implement by reducing the amount and type of data that must be
considered at each point. This conceptual clarity allows rapid prototyping
of control strategies.

KSI ag’e;—c-l;—\

Hyp blackboard

e

Goal blackboard

Figure 1: Simple View of the Low-level DVMT Control Loop

In the initial implementation, this low-level loop is controlled by a BB1-
style control mechanism(8], where all aspects of the low-level control loop can
be modified — what activities are placed on the agenda, why they get there,
and the amount of effort involved in making these decisions. The ability
to dynamically modify the low-level control loop is an extension of ideas
developed originally in BB1 for dynamically specifying the predicates used
to evaluate activities on the agenda in order to impose different high-level
strategies. In more recent work, B. Hayes-Roth has also proposed extensions
similar in character to some developed in this paper for controlling other
aspects of agenda maintenance(7].

1 Architecture

Between each major data structure (KSI agenda, hypothesis blackboard,
goal blackboard) there is a mapping — hypotheses to goals, goals to KSs
(KS triggering), KSIs to hypotheses (KSI execution). These mappings can
be changed by the meta-control component to indicate what potential work
a hypothesis represents, or what methods should be considered in trying to
achieve a goal. Subgoaling can also be considered as a mapping of goals to
other goals.

For both real-time and plan-based control, the meta-controller needs to
limit the hypotheses being considered by location, belief, blackboard level,
and so on. The same holds for goals and KSIs. A filter located before
each mapping allows the meta-controller to reduce the amount of data being
considered at any point, either to reduce overhead (in real-time situations)
or distraction (in plan-based coordination situations). Data that is blocked
by the filter is stored so that when the filter changes the blocked data may
be refiltered if desired.

The meta-controller can also control how hypotheses, goals, and KSIs
are grouped and merged into larger units to avoid duplication of effort or to

reduce the amount of data being considered. This process is invoked after
each mapping.

Of course the meta-controller still has access to traditional control meth-
ods — it may reason about and insert hypotheses, goals, and KSIs into the
pipeline on its own, control the KSI agenda queue cluster width, and it can
control the rating of KSIs on the agenda to express preferences in the order
of processing. Knowledge sources still have preconditions, and these precon-
ditions return a cost and benefit rating that is used to choose the best KS
for a goal.

Finally, it is postulated (though not yet implemented) that the low-
level control mechanism can run asynchronously with respect to the meta-
controller. The meta-controller is notified of events of interest (for example,
an empty KSI agenda) and observes the performance of the low-level mech-
anism. It may then modify that mechanism dynamically during problem
solving. 1t could also examine the KSI queue after a KSI is chosen but
before it is run, so that a different KSI could be executed if needed (3].

1.1 Parameterizing the DVMT

To examine how this approach works, let us step through the cycle in the
DVMT (see Figure 2). When a DVMT node is executed, the KSI filter
chooses a KSI (or set of KSIs in the multiprocessor case) to execute in the
usual way — the first KSI in the queue cluster is chosen, and if the queue
cluster is empty then all the KSIs within some distance of the highest rated
KSI on the agenda are grouped into a new queue cluster and the highest
KSI is chosen. The executed KSI is rated based on the expected costs and
benefits (computed by the KSI precondition, see below) including the goal
or goals it was intended to satisfy.

KSIs produce hypotheses (or sometimes received goals) which are merged
into the hypothesis (or goal) blackboard. If the goal of a KSI was not data-
directed’, then a test for goal satisfaction is made, and the goal is marked
as either satisfied or failed. The expected and actual costs (such as time)
and benefits (such as goal satisfaction) are recorded in the KSI execution
record. KSs have been modified so that when triggered by data-directed
goals, they may produce all the data they can, but when triggered by goal-
directed goals they try to produce only enough output data to satisfy that
triggering goal-directed goal. Triggering goals are called stimulus goals.

Hypotheses on the hypothesis blackboard are filtered, and the hypotheses
not blocked by the filter are passed through the hyp-to-goal mapping to
produce data-directed goals. The hypotheses that are blocked are collected

A dala-dirccted goal is one that is created by the hyp-to-goal mapping, as opposed to
a goal-dirccted goal that is created by subgoaling or a reccived goal that was reccived from
another node.

KSI Queue Clustering

KSI agenda

KS! Execution

KSI Merging >

Run
Preconditions

Goal-to-KSI
mapping

Goal Filter &’

Hyp-to-goal mapping
) Goal Merging

Goal blackboard
Figure 2: The New Low-level DVMT Control Loop

and saved. The resulting goals are merged with the current set of data-
directed goals, received goals (from communication with other nodes), and
goal-directed goals produced by subgoaling. All of the filters and mappings
keep statistics for use by the meta-controller in making decisions. Examples
of these statistics include the average number of objects blocked by the filter
or the ratio of input objects to output objects at the mapping. Events may
be generated if a number of objects above a certain rating are blocked that
might indicate a possible problem with the control strategy.

Elements of the goal blackboard that pass the goal filter are run through
the goal-to-ksi mapping, which produces a set of triggered KSs that may
accomplish that goal. The preconditions of these KSs are run, which results
in a set of costs (such as estimated time) and benefits (such as an estimated
output set) for each triggered KS. One KS is chosen based on this data and
its instantiation is merged into the runnable KSI queue. A final filter allows
some KSIs to pass through to the agenda (for example, low-rated KSIs might
be filtered out as runnable but unlikely to produce interesting results). An
event may be generated if the KSI agenda is empty to indicate a shift in
control strategy may be needed.

Here is a summary of the modifiable DVMT parameters:

Hypothesis Filter: The hypothesis filter takes as input the hypotheses cre-
ated by a KSI execution and outputs hypotheses to be processed by the
hyp-to-goal mapping. Hypotheses can be filtered by time, region, event
class, blackboard level, or belief. Filtering a hypothesis means that it

¥

will not create data-directed goals, and therefore will not stimulate any
KSs. For example, if a DVMT node decides it will only track objects
of class A the hypothesis filter can be set so that only hypotheses that
have class A event classes are processed by the hyp-to-goal mapping.
Hypothesis filtering allows the reduction of low-level control process-
ing overhead since the filtered hypotheses do not create goals, KSIs, or
cause any of the processing associated with goals and KSIs. In general,
the hypothesis filter is used to prune the raw data by class, time, or
location. Filtered hypotheses (those blocked by the filter) are stored
and can be re-filtered if necessary. All hypotheses, filtered or not, are
stored on the hypothesis blackboard and are available for supporting
KSI executions or for examination by a planner.

Hyp-to-Goal Mapping: The hyp-to-goal mapping takes as input a hy-
pothesis that passed the hypothesis filter and outputs goals to be
merged into the existing goals on the goal blackboard. The mapping is
specified by a set of goal templates that specify a pattern that a hypoth-
esis must match and a transformation of that hypothesis into a goal.
The hyp-to-goal mapping allows the control of what types of problem
solving tasks the system should be concerned with by controlling what
goals are created, and therefore what KSs are potentially triggered.
For example, if only hypotheses at time n need to be clustered, then
only hypotheses at the signal level at time n will generate a cluster
goal (all hypotheses at the same time will then be merged into a single
cluster goal for that time). Hyp-to-goal mapping is used to control the
rough character of problem solving (types of methods applied to the
data) by the creation of the proper data-directed goals.

Subgoaling: The subgoaling mechanism takes newly created or updated
(merged) goals and produces goal-directed goals. For example, a ve-
hicle level goal creates a group-level subgoal, which in turn creates a
signal-level subgoal. The mapping is specified by a set of patterns be-
tween blackboard levels. Subgoaling allows us to make the system run
in a goal-directed manner, where the system works on producing the
parts of a known high-level goal rather than by piecing together exist-
ing parts into whatever they might fit. For example, when the most
appropriate control is data-directed, subgoaling is turned completely
off. If a planner wanted to work on a specific solution (whatever the
reason — perhaps as part of a partial global plan) it would place that
solution as a goal on the goal blackboard and invoke subgoaling on it to
produce the goals of building the components necessary for producing
that solution. Subgoaling is used in the balance of data-directed and
goal-directed processing.

Goal Filter: The goal filter takes newly created or updated (merged) goals

5

of any type and outputs goals that will be used to trigger KSs. Goals
can be filtered by time, region, event class, blackboard level, belief, or
type. The goal filter reduces the number of goals that might trigger
KSs, and therefore the number of KS preconditions that must be run.
For example, if the control strategy is to produce vehicle level data
before creating vehicle tracks, vehicle track goals that are created (by
the hyp-to-goal mapping, subgoaling, a planner, or received from other
nodes) can be filtered so that none of them trigger (stimulate) track
creation/extension KSs (and do not subsequently run KS preconditions
or create KSIs). The goal filter is used to avoid triggering and running
the preconditions for a class of KSs that is not currently desired but
will be in the future (otherwise the goals would not have been created
in the first place).

Goal-to-KSI Mapping: The goal-to-KSI mapping takes goals and pro-
duces a set of KSIs that attempt o satisfy those goals. It is specified
as a table that matches goal types to KSs that can satisfy those types
of goals. The preconditions of these triggered (or stimulated) KSs are
then run, and the best KS is chosen based on the costs and benefits
that the precondition returns (see the KSI precondition choice param-
eter below). This KS is then instantiated with its context, including
the stimulating goal. The goal-to-KSI mapping is used to fine-tune the
precise method or algorithm used to satisfy a goal. In the DVMT, the
goal-to-KSI mapping is rather coarse, because KSs tend to be written
in a general manner rather than tailored for a very specific situation.
For example, one may satisfy a vehicle level goal by either the synthesis
KS from the group level to the vehicle level, or a level-hopping KS that
synthesizes data directly from the signal level to.the vehicle level (skip-
ping any intermediate processing). The goal-to-KSI mapping tends to
be simple in the DVMT because we have only a few classes of KSs.

KSI Rating: The new or merged KSIs must then be rated and inserted on
the KSI agenda. The rating can be computed from a set of heuristics
and a focus combining function, as in BB1. Currently a single rating
function is specified by the meta-controller to be active at a given time.
Any KSI that makes it to this point should be run in the active control
strategy, so the rating function acts as a preference for what order in
which to do things that must all be done. For example, a preference can
be given to run KSs that work on highly believed stimulus hypotheses
first since they are likely to produce highly believed results.

Goal Merging: Goals that are produced by hyp-to-goal mapping, received
from other nodes, or created by subgoaling may need to be merged.
Currently the dynamic modification of goal merging is not implemented,

and goals are always merged if they have equivalent event classes, time-
regions, and output types. Merging goals controls the number of over-
lapping KSIs that are scheduled. Not merging two similar goals means
that there may be a KSI for each of them on the agenda that will
produce a very focused result rather than one KSI that will produce a
slightly less focused result but potentially satisfy both goals at once.

KSI Merging: Sometimes it turns out that two goals that were not merged
will stimulate KSIs that will do very similar work, for example if one
of the goals subsumes the other. KSI merging allows us to control
our scheduling granularity by allowing us to group several processes
into one KSI for scheduling or to leave them separate. Currently the
dynamic modification of KSI merging is not implemented, and KSIs
are merged when they are the same type and one has at least the same
set of stimulus hypotheses as the other.

KSI Precondition Choice: If the goal-to-KSI mapping indicates several
KSs are triggered, then the preconditions of each are run and return
the costs and benefits of running their associated KS. From among
these, the KSI precondition chooser picks one to be executed. It seems
appropriate to modify the choice function to reduce the effort spent in
picking a KS (for example, by taking the first KS whose precondition is
satisfied). Each KS could have multiple preconditions that analyze the
costs and benefits of running the KS at different levels of detail — a
quick analysis might only examine the goal, while a detailed precondi-
tion might examine the hypothesis blackboard. The KSI precondition
chooser could then choose among these precondition effort levels. Cur-
rently this is not implemented, and the system chooses a KS for a goal
by choosing the first KS whose precondition returns a positive benefit
measure.

KSI Queue Cluster Width: When a KSI is executed on the agenda, all
the KSIs near the top of the agenda (those within the KSI queue cluster
width) will all execute before looking at the agenda again. By setting
the width to 1, a depth-first search occurs while wider settings give a
more breadth-first character to the search. A narrow setting allows fine
control over what is executed, while a wider setting is appropriate when
there is uncertainty over how to proceed and thus prevents the early
choice of a preferred solution path. The normal setting is to cluster all
KSIs that are rated the same as the highest-rated KSI.

After changing a parameter, the meta-controller may re-run the low-
level control loop from any point — often from just before the point that
was changed. The meta-controller has the option to reintroduce filtered
data at this time as well, from cither the hypothesis or goal filter or both.

Various schemes have been discussed for the storage of blocked hypotheses
and goals that would make the re-filtering very efficient, but none have been
implemented (blocked data is simply re-run through the filter). For example,
blocked objects can be divided into classes, i.e., objects to be saved and
objects to be permanently removed from consideration. Blocked objects can
be stored according to how they were blocked, so that when a filter changes
the data that needs to be refiltered (or that passes the new filter) can be
retrieved efficiently.

1.1.1 The DVMT meta-controller

In our initial implementation of these ideas in the DVMT, a BB1-style meta-
controller with appropriate control knowledge sources and a control black-
board (GBB1) was used to parameterize the low-level control loop. Control
knowledge source preconditions examined the current state of the low-level
control loop, usually the contents of the agenda and the blackboards. BB1
prescription KSs are used, and strategy and focus goals also examined the
agenda and blackboards. Heuristic control KSs were free to modify
any of the low-level control loop parameters, not just the agenda
rating mechanism.

2 DVMT Examples

One meta-controller that has been experimentally evaluated was for real-
time vehicle monitoring. The approach used by this meta-controller was to
use approximate knowledge sources to control the amount of time it takes to
build vehicle tracks, trading off precision for execution time through various
approximations such as ‘level-hopping’, ‘partial-support’, and ‘time-frame-
skipping’. These algorithms are beyond the scope of this paper (see [11,13)).
The meta-controller decides to switch processing modes (from precise to
approximate) when either external information or its own monitoring of the
system state shows that a deadline will not be met. It accomplishes this
change through the modification of the low-level control parameters. The
meta-controller also uses the filtering and mapping mechanisms to reduce
the amount of unnecessary hypothesis and goal processing that is performed.

Another meta-controller paradigm that has been considered but not yet
built is an incremental planner for control[6]. In this example, the hypoth-
esis filler only passes hypotheses that are posted by the node sensors or
external hypotheses. Hypotheses that pass the filter are then mapped into
data-directed base cluster goals, which the subgoaling mechanism develops
(or ‘clusters’) into a set of ‘alternative goals’, representing all the tracks pos-
sible in the data. Alternative goals are filtered out and do not trigger KSIs
themselves. The incremental planner builds a plan to achieve the alterna-

tive goals, and when expanding the plan produces ‘intermediate goals’ that
are posted to the goal blackboard and which do pass through to the goal-
to-KSI-mapping. The incremental planner can also use the KSI execution
record to perform plan monitoring. Details on the planning mechanism itself
are beyond the scope of this paper.

2.1 Real-Time Vehicle Monitoring

The real-time DVMT meta-controller was developed to control experiments
in soft real-time approximate processing — using approximate knowledge and
data effectively. Two BB1-style strategies were developed: a goal-directed
strategy and a data-directed clustering strategy. The GBB1 prescription KSs
were used to move between foci when the goal of a focus was satisfied. A
pictorial representation of the goal-directed strategy in shown in Figure 3.

The initial control KS sets all filters to open, the hyp-to-goal mapping to
normal (signal level to group level to vehicle level to vehicle tracks to pattern
tracks), the goal-to-ksi mapping to normal (the regular, non-approximate
KSs), subgoaling off, and KSI rating tied to the rating of the stimulus goals
and hypotheses.

2.1.1 Goal-directed Strategy

This strategy is invoked when its precondition determines that there are
multiple vehicles and that there is good sensor data. This is determined by
testing that the initial data at time 1 is spatially separated. This strategy
tries to determine what might be out there, whether it is important to track,
and then tracks only what it finds to be important. It has three foci: find
initial vehicles, approzimate short tracks, and patiern directed processing.

Find Initial Vehicles: This focus concentrates on the careful (non-ap-
proximate) data-directed analysis of initial data. It consists of two heuristics.
This focus is over when the KSI agenda is empty.

Consider only time 1 hypotheses: This heuristic sets the hypothesis fil-
ter to allow only hypotheses from time 1 through and to block all oth-
ers. Only time 1 hypotheses, then, pass through to the hyp-to-goal
mapping.

Create no tracks nor patterns: This heuristic sets the goal filter to block
any track (ST, GT, VT, PT) and pattern (PL, PT) level hypotheses.
Thus the system will only work up to the vehicle level.

Approximate Short Tracks: This focus concentrates on quickly building
up an idea of what possible patterns are present in the system. It does this

Gt/ Dected Shovzey. /st Sranteey)

Strategy Level /\N\
[\ —~ '
/) fond b Wby Nutem Dyecred Aocessing)

h W/ﬂfﬂ'zz/&ﬂﬂfz‘/fkg@/ -
Focus Level VAN

[omsitr St/ ///fc'[c’//f/z%,qaﬂ;f/

Heuristic Level

Domin Level G/ bednye

Figure 3: The DVMT Goal-directed Strategy

10

so that our process resources can be concentrated on what are viewed as im-
portant patterns. This focus is completed when all pattern track hypotheses

have reached a minimum length at which a decision about their importance
can be made.

Consider early signals: This heuristic sets the hypothesis filter to only al-
low hypotheses from time 1 through 5 through. Hypotheses previously
blocked are refiltered. Thus only early hypotheses are considered for
further processing.

Use level-hopping: This heuristic changes several parameters to set the
system up for level-hopping. Level-hopping is used to approximate
vehicle level data directly from signal level data by compression of
the signal/group/vehicle grammar. The hyp-to-goal mapping is set to
create vehicle level goals from signal level data, subgoaling is turned
off, and the goal-to-KSI filter is set to block signal and group goals
(since the creation of vehicle level hypotheses is desired).

Pattern Directed Processing: This focus concentrates on developing
‘important’ tracks at the expense of mostly ignoring ‘unimportant’ tracks.
The importance of a pattern is resolved by a pattern track KS that ran at the
end of the approximate short tracks focus. The pattern directed processing
focus remains active until the end of problem solving. In pattern directed
processing, rather than work in a data-directed manner, we configure the
system to work in a goal-directed manner.

Work on important patterns: This heuristic sets up several patterns to
process important patterns. The hypothesis filter is set to only allow
vehicle level hypotheses through from the important patterns, because
we will work below the vehicle level only in a goal-directed manner.
Subgoaling is invoked on the important patterns to create goals for
extending the important pattern and building it up from the signal
level (this creates a partially ordered plan for processing the important
tracks). The KSI queue cluster width is set to only execute 1 KSI at a
time, so that there is precise control over each invocation.

Approximate unimportant patterns: This heuristic deals with the pat-
terns that are not deemed to be important. The hypothesis filter is set
to allow only signal and vehicle level hypotheses through from unim-
portant patierns, and the hyp-to-goal mapping is set to create level-
hopping goals for approximating these unimportant patterns (in the
future, we may use time-frame-skipping, which tracks an object inter-
mittently, instcad). The KSI rating is reduced on level-hopping KSs,
so the system prefers to work on the important patterns instead.

11

2.1.2 Cluster-directed Processing Strategy

The cluster-directed processing strategy is invoked when its precondition
determines that there is highly errorful sensor data; this can be determined
by testing that the data at time 1 is not spatially well-separated. This
strategy assumes that there is too much data to process individually, and
so it clusters data at each time and then processes the clusters in a data-
directed manner. It has two foci, cluster initial data and process clustered
data.

Cluster Initial Data: This focus concentrates on clustering the data at
the signal level of the blackboard. The focus is completed when there are no
more clustering KSs to run.

Turn on clustering: This heuristic sets the hyp-to-goal mapping to map
signal level hypotheses at time n to a clustering goal for time n. Sub-
goaling is turned off; this strategy works in a completely data-directed
manner.

Process Clustered Data: This focus concentrates on traditional data-
directed processing of the signal-level clustered data. It remains active until
the end of processing.

Turn off clustering: This heuristic sets the hyp-to-goal mapping back to
its regular set of templates. Subgoaling stays off.

3 Performance Evaluation

To assess the viability of our design, a scenario was constructed which was
applicable to real-time vehicle monitoring. The DVMT was run twice; in the
first run, the control that was used by the DVMT utilized the design pre-
sented in this paper. In the second run, we simulated controlling the domain
processing using only an elaborate evaluation function with no parameteri-
zation of the low-level control loop, i.e., at each point in the second run, the
KSI that was executed in the first run at that point was forced to execute.
Each system thus ran the same domain KSIs, in the same order.

The comparison of the runs illustrates the computational benefits of a
parameterized low-level control loop. A rough description of the domain
processing is presented in Appendix A, not so much as an illustration of

real-time problem solving in the DVMT, but as background information for
the run analysis.

12

Node 1 Node 2
KSI Execute | 3170 (26%) | 14436 (72%)
Goal Create | 2961 (24) | 4331 (22)
| Goal Merge 1 (<1) 4 (<1)
KSI Create | 2569 (21) | 1094 (5)
KSI Merge | 3507 (29) 128 (1)

Table 1: Summary of Run Times under New Parameterized Architecture

3.1 Run Comparison

The environment file for the run consisted of two nodes, each responsible for
a different physical region. Node 1 had good, spatially distributed data, so it
chose the goal-directed strategy. Node 2 was given noisy data; thus, it chose
the cluster-directed processing strategy.

The various problem-solving activities for each of the two nodes involved
in the runs were monitored. From analysis of this data, there were three
ma jor categories in which processing time differed. These were: the KSI
execution time, the hyp-to-goal mapping, and the goal-to-KSI mapping.
In addition, to present a more detailed analysis, the hyp-to-goal mapping
was broken down into two subcategories: creating goals and merging goals.
Likewise, the goal-to-KSI mapping was broken into two subcategories: KSI
creation and KSI merging. For the run using the new parameterized archi-
tecture, the absolute time and the percentages of time each node spent in
each of these five categories relative to the others are presented in Table 1.
Similarly, the data for the non-parameterized run, controlled using only an
evaluation function, are presented in Table 22.

The ma jor conclusion is that overhead for low-level control is significantly
reduced: in node 1 by 33% and in node 2 by 80%. Node 2 came out especially
well because many signals are never processed by the low-level control loop
in the parameterized system. This also shows up in Table 2 for the non-
parameterized architecture where node 2 creates more low-level goals and
KSIs that are never executed. This is because the unneeded goals (and the
KSIs they stimulate) are never created in the parameterized system, which
focuses on clustering hypotheses.

Other relevant statistics include:

¢ Total Blackboard access time was 7:13 for the new architecture, 8:32
for the other.

*Because run 2 simulated a BB1-style evaluation function, there was no way to measure
the high-level time spent in dynamically creating the appropriate evaluation function that
would cxccute the desired KS. The absolute time in the first, parameterized run that was
spent in high-level control was 8139 for node 1 and 11246 for node 2.

13

Node 1 Node 2
KSI Execute | 3022 (18%) | 14271 (34%)
Goal Create | 5573 (34) | 15924 (38)
Goal Merge 5 (<1) | 23 (<1)
KSI Create | 3784 (23) | 9397 (23)
KSI Merge | 4076 (25) 1882 (5)

Table 2: Summary of Run Times using Evaluation Function Only
(Non-parameterized)

o Total KSIs created (parameterized / non-parameterized): node 1 -
(232/280), node 2 - (222/391)

e Total goals created (parameterized / non-parameterized): node 1 --
(221/438), node 2 - (248/831)

o Total executed KSIs in both runs: node 1 - 76, node 2 — 86

e Filtering hyps and goals took < 1% of the total processing time for
each node in the parameterized run. Likewise, passing objects back
through their respective filters took < 1% of the time. Objects were
passed back through the filters each time there was a change in focus.

In summary, the parameterization of the low-level control loop permits a
larger percentage of a node’s processing time to be used in executing KSIs.

4 Summary and Future Work

The system described in the paper is fully implemented (except where indi-
cated) in the DVMT. The strengths of its design lie in the ability to easily
customize the low-level control loop via a set of parameters distributed along
the loop (rather than in agenda management only), and in the framework it
gives for the meta-control component to examine and make decisions about
low-level control. |

The short term goals of this effort are to do further analysis of the benefits
of this approach by analyzing this system using a model of KSI invocation
cost (domain problem-solving cost) and control costs (involving the ratio
of potential to actual data filtered or mapped, control KSI costs, etc.) It
has also been recognized that a more complex and flexible mechanism for
expressing control plans (as opposed to the linear orderings used by the
prescription KSs) is needed. Additionally, it is important to work on how to
dynamically move between strategies and build sets of foci (a control plan)

14

on the fly. Another aspect of the system to be expanded is to introduce
a model of time in the system, in order to investigate more hard real-time
problem-solving tradeoffs.

Finally, there is a desire to build a general control shell for GBB around
these ideas. The user would specify the spaces to be used in the hypothesis
and goal blackboards, and generic filtering processes could be created that
filter objects along GBB dimensional indexes. Goal templates could still be
used to map hypotheses to goals, and either KS templates could be created
or KS definition would contain the template information.

15

References

(1]

[2]

3]

[4]

[5]

[6]

[7]

8]

[9]

[10]

[11]

N. Carver. Evidence based plan recognition. COINS Technical Report
88-13, University of Massachusetts, 1988.

N. Carver and V. Lesser. Planning for the control of an interpretation
system. COINS Technical Report 89-39, University of Massachusetts,
April 1989.

A. Collinot. Revising the bbl basic control loop to control the behavior
of knowledge sources. In Proceedings of the Second AAAI Workshop on
Blackboard Systems, pages 19-36, 1988.

D. D. Corkill, V. R. Lesser, and E. Hudlicka. A {framework for dis-
tributed problem solving. In Proceedings of the Second National Con-
ference on Artificial Intelligence, pages 143-147, Pittsburgh, August
1982.

K. S. Decker, E. H. Durfee, and V. R. Lesser. Evaluating research in co-
operative distributed problem solving. In M. N. Huhns and L. Gasser,
editors, Distributed Artificial Intelligence, Vol. II. Pitman Publishing
Ltd., 1989. Also COINS Technical Report 88-89, University of Mas-
sachusetts, 1988.

Edmund H. Durfee and Victor R. Lesser. Incremental planning to con-
trol a time-constrained, blackboard-based problem solver. IEEE Trans-
actions on Aerospace and Electronic Systems, 24(5), September 1988.

B. Hayes-Roth. A multi-processor interrupt-driven architecture for
adaptive intelligent systems. Technical report KSL-87-31, Knowledge
Systems Laboratory, Stanford University, June 1987.

Barbara Hayes-Roth. A blackboard architecture for control. Artificial
Intelligence, 26:251-321, 1985.

V. Lesser. Coordination in distributed problem solving networks.
DARPA proposal, COINS, University of Massachusetts, 1989.

V. R. Lesser, D. D. Corkill, R. C. Whitéhair, and J. A. Hernandez. Fo-
cus of control through goal relationships. In Proceedings of the Eleventh

International Joint Conference on Artificial Intelligence, Detroit, Au-
gust 1989.

V. R. Lesser and J. Pavlin. Performing approximate processing to ad-
dress real-time constraints. COINS Technical Report 87-126, University
of Massachusetts, 1988.

16

(12] Victor R. Lesser and Daniel. D. Corkill. The distributed vehicle moni-
toring testbed. AI Meagazine, 4(3):63-109, Fall 1983.

(13] R. Whitehair and V. Lesser. Approximate processing in the DVMT.
Working paper, COINS, University of Massachusetts, 1989.

17

Z
°
\ %
[
Z
)
&
N
o Pigeon
o Fish
¢ Duck

Figure 4: A DVMT Scenario

Appendix A: Environment File and Domain Processing

The scenario used for the experiments consisted of three “vehicles”: a pigeon
meandering on a path roughly from [10,90] to [20,60], a fish swimming around
the point [40,40], and a duck starting at [47,92] and moving on an intercept
pattern with the fish (see Figure 4). There are two problem-solving nodes,
and their job (before seeing the data) is to save all fish by identifying and
tracking ducks moving in an attack pattern toward their general location.
Node 1 has the job of tracking data in the region [0,50] to [50,100],and has
been given 1 sensor which covers the entire region accurately. Node 2 tracks
data in the region [0,0] to [50,50], but its one sensor produces many points
of data for every true sound it senses.

Initially, node 1 assesses its raw sensor data and chooses a goal-directed
strategy. The “find initial vehicles” focus begins at node time 1, by consider-
ing only hyps from time 1, while blocking all others at the hypothesis filter,
in an attempt to identify the objects in its sensed region. By node time 61,
node 1 has assessed that the object at [47,92] is probably a duck (though it
could be a pigeon) , and the object at [17,93] is probably a pigeon (though
it could be a duck). At this point, node 1 changes its focus to approximate
short tracks, in an effort to identify roughly what the ob Jects are doing. By
node time 225, node 1 believes that there is a duck attacking from [47,92)
toward [42,70], and a pigeon wandering from [17,93] to [42,70]. Node 1 then
sends a request to node 2 to look for something that a duck might attack,
in the projected time-region route of the duck. Node 1 then switches to a

18

pattern-directed processing focus, which consists of tracking the duck more
closely, while still monitoring the alleged pigeon in case it suddenly starts
showing signs of being a duck, at which point node 1 would have to devote
more time to tracking it.

Node 2 initially selects the cluster-directed strategy because an cursory
scan of its data suggests that the sensors might be at fault. Its first focus is
thus to cluster its data. At node time 25, it has clustered all of its data and
switches to the “process clustered data” focus. This focus continues for the
duration of the run.

At node time 236, node 2 receives the request to look for something which:
a duck might attack. Its processing suggests that the duck is attacking the:
fish which is around [40,40]. At this point, node 2 would attempt to inform
the fish that a duck is approaching, and processing would continue from that
point, presumably with each node continuing to help the fish escape while
still monitoring its sensed area for other objects. However, this interaction
with the sensed environment has not been implemented yet, so we induce-
termination at node time 325.

19

