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Abstract

We present a new averaging probabilistic clock synchronization algorithm, based on the re-
dundant transmission of multiple synchronization méssages, that can guarantee a much lower
upper bound on the deviation between clocks than most existing algorithms. Our algorithm is
probabilistic in the sense that the upper bound on the deviation that it guarantees has a proba-
bility of invalidity associated with it. The probability of invalidity, i.e., the probability that the
deviation exceeds the guaranteed maximum deviation, may however be made extremely small
by sufficiently increasing the number of messages transmitted. We prove that an upper bound
on the probability of invalidity decreases exponentially with the number of messages, i.e., the

probability of invalidity itself decreases exponentially or better.
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1. Introduction

A fault-free hardware clock (HC), even if initially synchronized with a standard time refer-
ence, tends to drift away from the standard over a period of time. If such a clock is used to
measure a time interval (¢,,12), the measured length of the interval (HC (t;)— HC (t,)) tends to
differ from the actual length of the interval. However, the fractional error in the measurement

of the interval is bounded by a constant p, called the drift rate of the clock:

(HC(t2) = HC (t1)) — (t2 — t1)
(t2 — t1)

< pe. (1)

pe is typically of the order of 1 psec/sec; thus an initially synchronized fault-free clock could
drift away from the reference by a few seconds every few days, in the worst case. A clock
synchronization algorithm is used in a distributed system, to synchronize clocks that can drift
apart, to ensure that the maximum deviation between the clocks is bounded.

Clock synchronization has been an active area of research in distributed systems ([1}-[14]).
It is of special importance in distributed real-time systems, where an event may spread across
multiple nodes each with its own local clock. In order to specify the timing constraints of such
events, a common reference of time is necessary in a distributed real-time system [5]. A clock

synchronization algorithm is used to generate such a common reference of time.

1.1 Deterministic Algorithms

Several algorithms have been proposed for clock synchronization ([1}, [2], [4], [5], (8], [9],
[10]). However all these algorithms with the exception of the algorithm in [1] are limited in the
upper bound (7mqz) on the deviation between clocks in the system that they can guarantee, by
certain bounds derived in [3] and [11]. Lundelius and Lynch [11] have shown that, even with

no failures and with clocks that do not drift, for a system of N clocks, the qy,q- that can be



guaranteed has a lower bound given by:

sz 2 (dmas = din) (1= 7 ) (2)

(Dolev, Halpern and Strong [3] have proved a related result for the closeness of synchronization
obtainable along the real time axis). Here dpo, and dpip refer to the maximum and minimum
possible values respectively, of the end-to-end delay (d) of synchronization messages. The end-
to-end delay of a message, which is the sum of the time required for a message to be prepared,
sent to a receiver and be processed by the receiver, is a random delay determined by random
events such as transmission errors that necessitate the retransmission of a message, context

switches and page faults.

1.2 Probabilistic Algorithms

The bounds derived in (3] and [11], however apply only to deterministic clock synchro-
nization algorithms, i.e., algorithms that guarantee a ymq, with certainity. If we relax the
requirement of certainity and permit an algorithm to provide a probabilistic guarantee (i.e.,
the guarantee provided by the algorithm may fail to hold good sometimes, but with a failure
probability that is known or that has a known bound), then we can find algorithms that can
guarantee a 9yq, Which need not conform to Eq. (2). However for a probabilistic guarantee to
be useful, it must be possible to reduce the failure probability to any desired level by choosing
the parameters of the algorithm suitably. Clock synchronization algorithms that can provide

such a probabilistic guarantee on v, are referred to as probabilistic’ clock synchronization

algorithms.

1The word ‘probabilistic’ refers to the uncertainity in the guarantee offered by the algorithm and is different
from the sense in which the word is used in [3], where 2 probabilistic algorithm is an algorithm whose behaviour

itself is randomly determined.
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1.2.1 Cristian’s Algorithm

Cristian (1] has proposed one (probably the first) such probabilistic clock synchronization
algorithm that is capable of guaranteeing much lower v,,0.’s than deterministic algorithms.
Cristian’s algorithm, based on reattempting synchronization if a process does not receive a
reply to its request for synchronization within a specified timeout period, guarantees a Ymqz at
synchronization of U — d;n, where U denotes half the specified timeout period. The Y,ne. can
be reduced, for a specified probability of losing synchronization, by increasing the maximum

number of atiempts permitted.

1.2.2 Our Algorithm

In this paper, we propose an algorithm that represents a new approach to probabilistic
clock synchronization, based on averaging end-to-end delays of synchronization messages. Our
algorithm makes use of a new probabilistic time transmission protocol, that can be used to
transmit the time on the clock of one process to another process with a desired accuracy. The
protocol involves the transmission of multiple synchronization messages and works by filtering
out the random variations in the end-to-end delays of the synchronization messages through a
process of averaging. .

Our algorithm, like Cristian’s algorithm, can guarantee a much lower 9> than the deter-
ministic algorithms that have to conform to Eq. (2). Also, the probability that the guarantee
provided will fail to hold good can be reduced (with an ezponential rate of decrease) to an
arbitrarily small value by increasing the number of synchronization messages. An interesting
feature of our approach is that if a certain minimum level of message traffic can be assumed

to ezist between nodes, then there is no need for any special synchronization messages to be
lransmatted at all.
The rest of the paper is organized as follows. In the next section, we provide an overview of

our algorithm. We first state the assumptions underlying our work. We then discuss the pro-



posed time transmission protocol (TTP) and describe how a clock synchronization algorithm
can be constructed from it. Next, we state the main properties of TTP and the clock synchro-
nization algorithm and provide examples to illustrate them. We then provide an analysis of
TTP and the clock synchronization algorithm and prove the properties stated. We conclude the
paper by summarizing it and identifying potential areas of future research. We have provided

in Appendix B, a glossary of symbols used in the paper, for the convenience of the reader.

2. Overview of Our Algorithm

2.1 Assumptions

We make the following assumptions about clocks, processes and message delays:

1. The system consists of N hardware clocks HC;, with one clock synchronization process
associated with each clock. The synchronization processes have only read-only access to

their own hardware clocks.

2. The hardware clocks are p-bounded, i.e., they obey Eq. (1), which can be rewritten as

follows:

(1= pa)(tz — t1) < HC(t2) - HC(t1) < (1 + pa)(t2 — 1) (3)

where p, is the drift rate of the clocks. It follows that the rate at which two p-bounded
clocks can drift apart from each other during an interval of time 7 is bounded by (1 +

pa)T — (1 = pa)T = 2poT. We refer to the term 2p, as the relative clock drift rate (p)-

3. Each synchronization process maintains one or more (depending on whether continuous
or instantaneous adjustment is used) logical clocks, each of which is a linear function of
the time on the hardware clock of the process. In the rest of the paper, unless otherwise
stated, the term ‘clock’ always refers to the logical clock (or the current logical clock if

instantaneous adjustment is used) of the process under consideration.

"



4. Processes can have performance or omission faults [2].

5. A process conveys the time on its clock to another process by transmitting synchronization
messages. The end-to-end message delay (d) between two processes, at any instant, is
unpredictable and indeterminable and can be modelled as a random variable. The end-

to-end delay at different instants of time are assumed to be independent of each other.

6. The end-to-end message delay at any instant has an expected value of d and a standard
deviation of o4. We discuss later how it may be possible to separate successive messages
in time if that is necessary to ensure the independence of successive message delays and
how occasional transient perturbations in the expected value and standard deviation can
be accomodated easily, provided these perturbations do not last too long. Note that we
do not make any specific assumptions about the shape of the probability density function

of d.

The last two assumptions about the independence of d and invariability of the mean and
standard deviation of d are similar to the assumptions made by Cristian in [1] about the

independence of successive attempts and the invariability of the probability distribution of the
end-to-end message delay.
2.2 The Algorithm

We first describe how a process M can transmit the time on its clock to a process S with a
maximum {ransmission error of €mq.. We then describe how this method of transmitting time

can be used to construct a clock synchronization algorithm.

2.2.1 Transmitting Time

A process M can transmit the time on its clock to a process S by sending n synchronization

messages according to the time transmission protocol, TTP, described below. The length of



the time period starting at the time the first message is sent gmd ending at the time the nth
message is sent is referred to as the transmission period (7). On receiving the nth message, S
makes an estimate T.,; of the time on M’s clock. The transmission error € is defined as the
difference between the estimate, that S makes of the time on M’s clock, and the actual time

Taet on M's clock at the time S makes the estimate, i.e.,
€= Teat - Tact (4)

TTP works as follows. When it is time for M to transmit its time, M starts sending
synchronization messages, msg;, to S. The ith message, msg;, which is sent at time T; on its
clock, is of the form “Time is T;”. It sends n such messages within a short transmission period 7
(the transmission period 7 is chosen to be short enough that the maximum possible clock drift
during this period given by pr is negligible compared to the desired maximum transmission
EITOT €pqz). At the S end, each time a timing message, msgi, is received, S records its time
of receipt, R;, according to its local clock. After it has received n messages, 5 computes the

averages of the times on the messages and the receipt times as
. 1&
T (n) = - Z T,'
n i=l

and

It then estimates the time on M’s clock as:

Test = Rn— R(n)+ T (n)+d (5)

We show later that this method results in an average transmission error that is negligible in

comparison to the maximum transmission error. We also show that the maximum transmission



error (€mqz) and the probability (p) that the transmission error exceeds this value (known as
the probability of invalidity) can be made very small by sufficiently increasing the number of

synchronization messages transmitted.

2.2.2 Clock Synchronization

The time transmission protocol that we developed in the previous section can be used to
construct a clock synchronization algorithm, in a manner similar to how the remote clock read-
ing method is converted to a master/slave clock synchronization algorithm in [1]. As in [1],
one process in the system is designated as the master and the clocks of the other processes
(the slaves) are synchronized to the clock of this process through a master/slave protocol. Our

algorithm works as follows.

The master process periodically (at intervals R,ynch according to its clock) transmits its
time to the other processes -using the time transmission protocol of the previous section. Each
slave, when it has received n messages, estimates the time of the master according to the time
transmission protocol of the previous section, computes the adjustment T.,; — R, that it needs

to make to its clock and makes the adjustment.

We did not mention how a slave process adjusts its logical clock at a resynchronization
point. Once a slave process has computed an adjustment through the time transmission pro-
tocol, it can either modify its logical clock instantaneously at the resynchronization point or
conlinuously over a period of time. Even though either of these methods can be used with this
synchronization protocol, instantaneous adjustment has disadvantages like the possibility of a

backward correction of the time or the need to maintain multiple logical clocks [5].



2.3 Main Properties

When the transmission period, 7, is short enough and the number of synchronization mes-
sages, n, is not too large, TTP and the clock synchronization protocol above exhibit certain
interesting and useful properties. In this section, we summarize these properties. A detailed

analysis and derivation of these results is contained in Section 3..

2.3.1 Constraints on 7 and n

We first formally state the constraints that must be satisfied by 7 and n in order for the

properties stated in this section to hold good.

1. The transmission period 7 must be sufficiently short. More specifically,
émﬂt
T Ii—-p- (6)

where x is determined by the desired probability of invalidity (p). We deduce the value
of x in Section 3.. For now it is sufficient to know that £ < 1. Note that if an €mq. of the

order of 1 millisec is desired, then this constraint means that 7 < 100 seconds (assuming

typical values for p (~ 1078) and « (~ 0.1)).

2. The number of messages must not be too large. Specifically,
1
ng -, (7
p
Assuming p is of the order of 1076 we get n < 10°.

2.3.2 Transmission of Time

The transmission error (¢) is later shown to be a random variable that depends both on the
clock drift during the transmission period and the average end-to-end delay of the transmitted

synchronization messages. However,
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Property 1 The average transmission error (€) is negligible compared to the mazimum trans-

mission error, ve., |E [€]] € €maz-
¢ has the following interesting property.

Property 2 The probability distribution of the transmission error, € approaches the Gaussian

. . . - 62 . . .
distribution N (e, -ni) , as the number, n, of synchronization messages increases.

We refer to the minimum value of n for N (E,f;‘) to approximate Gy,(¢), the probability dis-
tribution of ¢, with an accuracy £ as the Gaussian cutoff corresponding to £. We denote this
cutoff value by n,. In Section 3. we state why we believe that a ny < 10 would be sufficient to
approximate the distribution of ¢ by a Gaussian distribution with a good accuracy.

The following theorem provides an analytical expression for computing the number of syn-

chronization messages required.

Theorem 1 The minimum number of messages required to guarantee a mazimum deviation of

€maz With a probability of invalidity of p is given by nmi, = max(n,y,n,.), where

L 203erfc” (p))?

(]

(8)

2
€maz

Here erfc™!(p) is the inverse of the complementary error function defined as erfc(u) 2 1—erf (u),

where erf(u) 2 72; Jo e ¥ dy.

On the basis of the above theorem, we deduce, in Section 3., the value of x that we earlier

; S 1
left unspecified to be x = min (1, \/Eerfc-l(p))'

The erfc function is a decreasing function of its argument and so it can be seen, by solving

Eq. (8) for p, that the probability of invalidity decreases, for a given €mqz, With increasing n.

11



Complementary Error function
z erfc(z) z erfc(z)
0.000 | 1.0x 10° | 3459 | 1.0 x 10~®
1.163 [ 1.0 x 10-Y || 3.766 | 1.0 x 10~
1.822 [ 1.0 x 1072 [[ 4.052 | 1.0 x 10~®
2327 [1.0x 1073 || 4320 | 1.0 x 10°°
2.751 | 1.0 x 10~% || 4.572 | 1.0 x 107 1°
3.123 | 1.0x 1075 || 4.812 | 1.0 x 107!

Table 1: erfc(x)

The rate of decrease may be gauged by referring to Table 1. However, the following important

result provides a clearer idea of the rate of decrease.

Property 3 For a given émaz, the probability of invalidity, p, decreases ezponentially or better
with the number of messages, i.e., there exists a bounding function for p of the form ae~ ™8

such that the magnitude of a does not increase with n and 8 > 0 is independent of n, t.e.,

p=Plle| > €maz) < ae™™

It will be seen later that the coefficient « is also a decreasing function of n (« ﬁ) Thus the

coefficient is also responsible for a decrease, albeit a weak one, in the probability of invalidity
with increasing n.

The next theorem is the basis of our claim that our algorithm is exempt from the bounds
imposed by Eq. (2). TTP provides a way of determining the time on a remote clock with any

desired accuracy in spite of variable message delays.

Theorem 2 TTP can guarantee any desired mazimum transmission error, €mez > 0, with any
desired probability of invalidity p in the range 0 < p < 1 as long as the choice of values Jor €maz,

n and T is consistent with Eq. (6) and Eq. (7).

12



2.3.3 Example

We present an example below to provide an idea of the magnitudes of the various parame-

ters involved in TTP. If the ¢mq, desired is of the order of millisecs (say 1.0 msec, which is one
hundreth of the dmer (= 0.1 sec) quoted in [4]), p is taken to be 2 usec/sec, o4 is assumed? to
be 1 millisec and a probability of invalidity of 1 x 1078 is desired then £ = min(0.2,1) = 0.2 and
T < £%pax = 10 seconds. The minimum number of messages that have to be transmitted to
achieve this accuracy, assuming an n, = 10, is given by Theorem 1 to be 24. Thus the desired
accuracy (which is 700 times better than the accuracy of synchronization at the resynchroniza-

tion point obtainable with, for example, the algorithm in [4]) is achieved by transmitting just 24

?[1] describes an experiment involving a measurement of 5000 message roundtrip delays between two processes
running on two IBM 4381 processors connected via a channel-to-channel local area network. The observed dynaz
in that experiment was 93.17 millisec, dmin was 4.22 millisec, d was 4.91 millisec, the median round trip delay
was 4.48 millisec and 95% of all observed delays were shorter than 5.2 millisec. These are roundtrip values and
have to be scaled down by a factor of 2 for our purposes.

While the above data are sufficient to compute the probability distribution function of the end-to-end message
delay for some values of d, they are insufficient to compute the standard deviation of the end-to-end delay, which
is an important parameter of our algorithm. However if we approximate the distribution of the end-to-end delays
by a Gaussian distribution, we can obtain an approximate value for ¢4, In a later section, we conjecture that the
distribution of end-to-end delays is approximately Gaussian and present arguments to justify our conjecture.

Note that the maximum deviation from the median for 95% of the cases in the above data is less than 0.36
millisec. It can be shown that, if the probability of the event that a normally distributed random variable differs
from its median by more than 0.36 is 0.05, then the standard deviation of the variable is 0.184. Hence if we
approximate the distribution of the end-to-end delays by a Gaussian distribution that is centered at the median

value of the end-to-end delay quoted above and whose spread is such that the area under the density function

curve within +0.36 millisec of the median point is 0.95, then we can estimate o4 to be 0.184.

13



nvs.p n Vs. ﬂgf

o =1) (p=1x10"°)
P n tmaz n

1.0x 1078 | 24 m‘.lo 10
1.0x10-7 |29 ||l 3.0 10
1.0x10°% [ 33}l 2.0 10
1.0 x 1079 | 38 1.0 24
1.0 x 1071 | 42 ||[| 0.75 43
1.0x 1071 | 47 {|[l 0.50 96

Table 2: Number of synchronization messages versus p and E'g‘;i(ng = 10)

messages over a period of length not exceeding 10 seconds®. A better accuracy and/or a smaller
probability of invalidity would require more messages (Table 2). Note however that there is
an upper limit on n given by Eq. (7). In practice, Eq. (6) also limits the maximum number
of messages that can be transmitted, because, transmission of messages requires instruction
execution. Instruction execution takes a finite amount of time and hence there is a limit on the
number of messages that can be transmitted within a period 7.

An interesting point to note is that if a minimum level of message traffic always exists
between M and S, so that we can assume that at least n messages, apart from the clock
synchronization messages, are sent from M to S in a period 7, then there is no need for special
clock synchronization messages at all. M can stamp each message that it sends to S with the
time on its clock, and these timestamped messages now carry the synchronization information

that S requires.

3This period is the transmission period and is not to be confused with the resynchronization interval, R,yneh,
that arises when this transmission protocol is used to construct a clock synchronization protocol. R,ynca is much

larger than this period, as we show later
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2.3.4 Clock Synchronization

The following property describes the most important characteristic of our clock synchro-

nization algorithm.

Property 4 Our clock synchronization algorithm can guarantee any desired upper bound, Ymaz,

Ymaz > 0, between any two clocks in the system i.e.,
Vi, 7,¢|Li(t) = Lj(t)] < Ymaz

with any desired probability of invalidity, p (0 < p < 1), of the guarantee, as long as the choice
of values for Ymaz, p and 7 is consistent with Eq. (6) and Eq. (7). Here i,j denote processes

and Ly(t) denotes the time on process q’s logical clock at real time t.

Proof: Theorem 2 guarantees that the maximum deviation between the master and a slave
immediately after a resynchronization is no more than €, with a probability of invalidity of
p. The durations between successive resynchronizations at a slave can never exceed Ryymeh +
dmaez — dmin, since the worst case occurs when a slave receives the last synchronization message
with minimum delay (i.e., at time T} + 7 + dm;n, where T; is the time of transmission of the
first synchronization message) in one synchronization cycle and with maximum delay (i.e., at
time T} + Raynch + T + dmaz) in the next cycle and for this case the duration between successive
resynchronizations is given by R,ynch + dmaz — dmin. Thus the maximum deviation (due to
clock drift) that can develop between the clocks of the master and a slave during the interval
between two successive resynchronizations is given by P(Raynch + dmaz — dmin). The maximum

deviation between a slave and the master at any time is therefore given by:

7:::3 = €maz T p(Rsym:h + d'maa: - dmin) (9)

The maximum deviation between any two clocks in the system is given by 2yme=;

Ymaz = 272:'1 = 2(€maz + P(Rsynch + dma:: - dmin)) (10)

15



By choosing suitable €yaz, Rsynch and n, any desired ymq- and p can be guaranteed as long as

the choice does not result in the violation of Eq. (6) or Eq. (7).

Q.E.D.

2.3.5 Comparison

If the Yyqz desired is 4 millisec and the desired probability of invalidity is 1 x 107¢, we can
choose €maz = 1 millisec and p(Raynch + dmez — dmin) = 1 millisec which for p = 2usec/sec,
ng = 10 and o4 = 1 millisec gives an R,ynch of = 500 sec and n = 24 messages. A less tight Ymas
of 6 millisec can be achieved with the same probability of invalidity, the same resynchronization
interval and n = ny, = 10 messages, by choosing €¢me. = 2 millisec and pR,yncn = 1 millisec.
The Ypmez’s in these examples are better than the best ymas of %(dm“ — dpmin) = 50 millisec
achievable with the clock synchronization algorithms described in {2}, [4], [5], [6], [8], [9) and
[10] which have to conform to Eq. (2), and are comparable to the ymq. achievable with the
probabilistic algorithm in [1]. Also, by Property 3 it should be possible to reduce the probability
of invalidity substantially by increasing the number of messages by a small number. This is
illustrated in Table 2. Note that p can be reduced by an order of magnitude by increasing the
number of synchronization messages by just 5.

We are unable to provide any meaningful comparison of the number of messages that the
algorithm in [1] requires against the number that our algorithm requires, to guarantee a specified
Ymaz and p. This is because the data on round trip delays reported in [1] is not sufficient
to determine og accurately. We can, no doubt, try to provide an approximate comparison by
making use of the approximate estimate of 54 that we obtained earlier. However this comparison

would not be very reliable because the number of messages required by our algorithm is quite

. 3 . 2 .
sensitive to the ratio of o4 and é€mer (ne (—‘34—) ). o4 is of the order of a few tenths

€maz

16



of milliseconds and the desired €nqz 1s also of the same order, an error of a few tenths of
milliseconds in estimating o4 will cause a large error in the estimate of the number of messages.
For example, if 04 = 0.184 and if the €,,,, desired is 0.184 millisec, then the number of messages
required by our algorithm to guarantee a p of 1.0 x 102 is 38. If o4 is 0.25 millisec instead, the
number of messages required is 69. Thus we are off from the actual number of messages required
by 31 if we make an error of 0.066 millisec in estimating o4. Note that an overestimation of a4
results in an overestimation of n. Thus our earlier examples actually overestimate the number
of messages required.

If however the ¢,,4, desired is somewhat larger than o4, then small errors in estimating oq
do not cause significant errors in the estimate of n. For example, if we assume n, to be 10, then,
by Theorem 1, n = 10 for all values of €,,0. > 1.94904, and n = 2 for all values of €4, > 4.3604,
if we assume a ng = 2. Thus if a ¢mqz of 1 millisec is desired, and we estimate o4 as 0.184, the
number of messages required remains 10 (assuming n, = 10), even if we have made an error
of 0.3 millisec in estimating o4. If we assume a approximately Gaussian distribution for the
end-to-end delays, then ngy is close to 1. The number of messages required to guarantee an
€maz > 4.3604 millisec and a p = 1.0 x 1072 is then equal to maz(ng, 2) (assuming o4 = 0.184).
This is comparable to the average number of messages (x 2) required by the algorithm in [1]
to guarantee the same €,,,, and p.

An additional point to be noted is that, if a minimum level of message traffic always exists
between M and S, our algorithm requires no synchronization messages at all. For example, if
an Guae of 1 millisec and a probability of invalidity of 1.0 x 10~® are desired, the minimum
traffic level required for operating without any synchronization messages is just 3.8 messages

per second (at least 38 messages in a span of 7 = 10 seconds), even if we assume a o4 of 1.0

milliscc.

17



3. Analysis

In this section we provide a detailed analysis of TTP and the clock synchronization protocol

and establish their properties.

Lemma 1 Let d; and §; respectively denote the end-io-end delay of the ith message and the
deviation between the clocks of S and M when the ith message is reccived al S. The transmission
error € is given by:

€= Ab, - Ad(n) (11)

where Ab, 2 8, - §(n), Ad(n) 2 d(n)-d, §(n) = 15n 6iandd(n) =230, di

i=1

Proof: The ith message is received at S d; time units after it was stamped with the time on

it. When it arrives at S, the clock of S is ahead of the clock of M by §; time units. Hence
Ri=Ti+d; + 6

and

R(n)=T(n)+d(n) +6(n).
The latter equation can be rewritten as
T(n)~ R(n) = - (d(n) +é(n)). (12)

The nth message was sent at time T, on M’s clock and it took d, units of time to arrive at S.
Hence the actual time (Tpct) on M’s clock when the nth message is received by S is equal to the
sum of the time stamped on the message and its delay. Alternatively, T,.: may be obtained by
deducting the deviation (6,) between S and M at the time of arrival of the nth message at S,

from the time of arrival. Hence

Tact:Tn+dn=Rn— 6n (]3)

18



The transmission error is then given by equations (4), (5) and (13) as

€ = Tept — Too

(_Rﬂ - R(”_) + T(Z”)‘*" d) = (Rn — 6n)

= d+6, - (d(n)+&(n)) (from Eq. (12))
(62 = 8(n)) - (d(n) - d)

Aéb, — Ad(n)

I

Q.E.D.

It should be noted that d(n) and Ad(n) are themselves random variables; It is easy to see
that, the expected value of d (n) is the same as the expected value of d while the expected value

of Ad(n) is zero. However the variances of d(n) and Ad(n) are identical and smaller than o3

by a factor n.
o2
V{Ad(n)] =V [d(n)] = f (14)

We have not made use of the assumptions in Eq. (6) or (7) in our analysis so far. We make

use of Eq. (7) in the following lemma to derive an useful approximation for €.

Lemma 2 Let §g denote the deviation between the clocks of S and M at the start of transmission

of msgy, 87 denote the increase in deviation between the clocks between the times of transmission
of msg, and msg;, and §¢ denote the increase in deviation during the time it takes msg; to
reach S afier it has been transmilted (i.e., the increase in deviation during the message delay
d; of msg;). Under the assumption that Eq. (7) holds good, € can be approzimated as

€= A§l - Ad(n) (15)
where A§7, = 6% - &, (n) and &, (n) = L T, 67.

i=1%

Proof: The quantity §; represents the amount by which the clock of S is ahead of the clock of

M when the ith message arrives at S. It can be decomposed into three components, viz., the
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deviation between the clocks of § and M at the start of transmission of msg, ( éo), the increase
in deviation between the clocks of S and M between the times of transmission of msg; and msg;
(67), and 82, the increase in deviation during the time it takes message msg; to reach S after it

has been transmitted (6¢). Thus
CG=bp+ 8T +6 (1<i<n)
Hence

_ 1 n _ 1 n
§(n) = -;1-26,-=60+57(n)+;1-26f
=1 i=1

Therefore

_ FloN_ g7 F d_lx~ca
Aﬁn_én-é(n)—ﬁn—éf(n)+5n-;%51- (16)

Each 6¢ can be written as §¢ = p;d;, where j; < p is the average drift rate during the end-to-end

delay of message msg;. Eq. (16) can then be rewritten as,

Dby = = by () 4 fndn = = 3 b (17)

1=1
1t follows from Lemma 1 that

€ = A5n—A¢.:l-('n)

.. ) 13, 13 -
= 5n—61(n)+pndy.—;Zpg-di—zzdﬁd

1=1 i=1
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In the third step above, we made use of Eq. (7) and neglected g; and % in comparison to 1.

Q.E.D.

Note that € may be written as the sum of several independent random variables. We make

use of this fact later. We look at some useful properties of € now.

Property 1 The magnitude of the average transmission error (€) is negligible compared to the

mazimum transmission error, i.e.,

|E (]| < €maz-
Proof: The average transmission error € is given by E [¢]. By Lemma 2,

[E[e]l = |E[Af] - Ad(n)]|

|E [AS,]]

il

B (&7 - & (n)]]

Note that §7 - §, (n) < p7 since the maximum possible clock drift during an interval 7 is given

by p7. Hence

|E [€]| < pT K K€maz < €maz

The second inequality above follows from Eq. (6).
Q.E.D.

Lemma 3 If pr < 24, the variance of the transmission error V [€] is given by

\Vn

Vi]= Zni (18)
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Proof: The variance of the transmission error V" [¢] is given by
Vi =VI[60 -8 (n)- Ady) = V [6 = 8, (n)] + V [Ad,] .

We have, by Eq. (14),

a

(S X

V(ady] =

3|

Also, since §] - 5, (n) < pT,
V [6’— l E 6-’] < p27'2.
n 1 —

2
Since pr < £, p*1? can be neglected in comparison to Z'f The result follows.

Q.E.D.

We show later that the condition pr < % holds good whenever Eq. (6) holds good, and hence

can be dropped from the statement of this and other theorems.

It should be noted that if only one message is sent (which we refer to as our baseline case),
the average transmission error is again zero, but the variance remains approximately equal to the
variance of the message delay o3. The variance is an important property because the probability
that € exceeds a given €y, (the probability of invalidity) decreases with decreasing variance.

An upper bound (not the least upper bound) on this probability is given by Tchebysheff’s

inequality,
V e
P“e—'e'l 2 em.a:z:] S 62[ ]>
which by Property 1 and Lemma 3 reduces to
2
94
P (lel 2 emaz] < —

mazx

Thus by transmitting n messages, we have reduced this probability by at least a factor of n,

compared to the baseline case. We have emphasized “at least” because, Tchebysheff’s inequality
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holds generally for any probability distribution and the upper bound that it provides may be
conservative for specific probability distributions. This statement is especially true of the
Gaussian distribution which is of particular interest to us since the distribution of ¢ tends to

becomes Gaussian for large n. This is proved in the following theorem.
Property 2 If p7 K€ %, the probability distribution of the transmission error (¢) approaches

. . . . - (72 .
the Gaussian distribution N (e, <4}, as the number of messages n increases.

=~
]
o]
O
"ﬁ
[~
—_—
=
S—
o
z
o
=
o
a
-
[¢)
»n
4
—~
R
2 Lu

______ ) as n becomes large, by the central limit theorem. Hence
Ad(n) = d(n) - d approaches the Normal distribution N(O,l:d). ¢ being the sum of Ad(n)
and the independent random variables that constitute 67 — &, (n), itself approaches the normal
distribution N(E[¢],V'i¢]) as n becomes large.

Q.E.D.

This result can be rewritten as follows. Let G, (¢) denote the probability distribution

function of ¢, ® (¢) denote the Gaussian probability distribution function given by & (¢) 2

2
ﬁ; Jf e i7dtand o £ Z4&. Then for all n > n,,

|G () ‘1’(6)

where £ > 0 can be made arbitrarily small by choosing ny large enough. As mentioned in an

earlier section, we refer to ng, the minimum value of n for N (€, 02) to approximate Gn(¢) with
an accuracy { as the Gaussian cutoff. If d itself has an approximately Gaussian distribution,
then the Ganssian cutoll would be close to L. If the distribution of d is not close to Gaussian,
then n, would be larger and can be determined by experiment. In a simulation study of the

relationship between ngy and £, in which we assumed an uniform distribution for d and 7 = 0,
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we found that an n, > 5 results in an error due to approximation of less than 5% within the
first standard deviation, less than 3% between the first and second standard deviations and less
than 0.5% beyond the second standard deviation. Thus an n, > 5 (say ng = 10, to be safe)
would be sufficient (probably more than sufficient) to approximate the distribution of ¢ by a
Gaussian distribution with a good accuracy, even when the distribution of d is uniform (i.c.,
not close to Gaussian). But we conjecture that the distribution of d would be approximately
Gaussian and hence a smaller n, would suffice. Our conjecture is based on the fact that the

end-to-end message delay d itself is the sum of several independent random delays [5}:

1. Send time: the variable time required by the sender to assemble and send a synchroniza-

tion message

2. Access-iime: the variable access time of the sender to the communication medium, de-

pending on the access strategy.

3. Propagation delay: the variable propagation delay of the message depending on distance

and channel.

4. Receive time: the variable time required to switch contexts and schedule the receiving

process to run at the receiving node and the time to process the message.

Hence by the central limit theorem the distribution of d itself is likely to be somewhat Gaussian.
We next prove a theorem that provides an analytical expression for computing the number

of synchronization messages required.

Theorem 1 The minimum number of messages required to guarantiee a marimum devialion of
€maz With a probability of invalidity of p is given by nmin = max(ng,n.), provided pr L %
Here,

‘T 612110.3

(19)
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and erfc™1(p) is the inverse of the complementary error function defined as erfc(u) L1 erf (u),

where

erf(u) = —\72_; A e’y!dy.

Proof: For a normally distributed random variable X, with distribution N (X’ ,o*f\-), the prob-

ability that X lies within €nq, of its mean py is given by

+X 3 1?(z_x)2
'Y €maz o
P {IA - P:\'l < ema:l:] = —€mazrX T—zﬁaxe x dz
1 (=5 :
— €maz L4
- 2fx « ;270;‘»6 X dz (20)

:%r foﬁ; eV dy

erf (g2c)

The following approximation is valid by Property 1:

r “‘ - Ei‘” < (1na:r."1 =P [""'maz + E[‘] < € < €maz + Elf]] ~P [ld < €mn:z-]

2
For n > ny we can approximate Gn(¢) by N(€ %). Hence by Eq. (20) and the above approxi-

mations, we have

Ple] < €maz) = erf (.\/ﬁi)

V204

and therefore

P (€] > €maz) = erfc (_\{_1_1\/__;:_:,.) (21)

To guarantee a maximum deviation of €., With a probability of invalidity p, we must have

p “(' - (muri . P, i.C.,

erfc (l/z_l—im") <p

2U'd -
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which when solved for n yields the n, of Eq. (19). Since n > n, for the Gaussian approximation

to be accurate, npy,, = max(ng,n).

Q.E.D.

Notice that if at least n,,i, messages are transmitted then the condition p7 < \—':% can be

rewritten as 7 € \/ierf:::rw tmaz  This condition holds good whenever Fq. (6), holds good, if

(r) #

we define k to be less than or equal to —J_RTIC-,(—-. However, since we have made use of the
P

)

assumption that & < 1 in proving Property 1, we must make sure that the £ that we define

satisfies the assumption x < 1 also. Hence we define « as follows:

K = min (1 S — ) (22)

" V2erfe (p)

With s thus defined, we may drop the condition p7 < % from Property 2 and Theorem 1.

We prove next that the probability of invalidity decreases exponentially or better with the

number of messages. We first establish the following lemma that simplifies the proof.

Lemma 4 The probability that the magnitude of the transmission error, ¢, ezceeds (naz 1S

_2
bounded by the function |/22¢&2— ie.,

—c2

2 20g
P [le] > €maz] < \/; ge

€maz

where o = %

Proof: By Property 2, ¢ is distributed N (€, o). Therefore

P “fl > emaz] x P “6 - E’ > (m.a:n}
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9 o0 2
= Wor: / e 27dt
WO Jemaz

2 [ 2
\/;/%ue 7 dy (23)

Let

fe

Q)2 [TeFay (24)

A bound can be derived [15] for Q (z) as follows. For z > 0,

Q(z) = f,”l(ye";) dy

2

= _%e 2 dylz ooc ks
2

_ ) P we_xj_

= ;e 7T - [Fidy

The second term in the last equation is always positive. Hence

[X]

2

Q)< e 7 (25)

From equations (23), (24) and (25), it follows that

—(2
2 €maz 2 ge 200

P“é! > Cma:] = \/;Q ( ":: ) < \/;_E_
maz

Q.E.D.

Property 3 For a given €,,,2, the probability of invalidity, p, decreases exponentially or better
with the number of imessages, i.c., theve exists a bounding function for p of the form ae’ ™8 such

that the magnitude of a does not incrcase with n and B > 0 is independent of n, i.e.,

p=Plle > €mos] < ae™™
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Proof: By Lemma 4,

:_".12 az

2 oqe ‘T4
P lel > €maz] < \/; d -~ ae™™

—
\/n(mu:r

Q.E.D.

Note that the coefficient a is a decreasing function of n (o :/l-;‘ ). Thus the coefficient is also

responsible for a decrease, albeit a weak one, in the probability of invalidity with increasing n.
The next theorem is the basis of our claim that our algorithm is exempt from the bounds
imposed by Eq. (2). TTP provides a way of determining the time on a remote clock with any

desired accuracy in spite of variable message delays.

Theorem 2 Our transmission proiocol can guaranlee any desired mazimuin iransmission er-
7OT, €maz > 0, with any desired probability of invalidity p (0 < p - 1 ), as long as the choice of

values for €maz, p and T is consistent with Eg. (6) and Eq. (7).

Proof: For a given €., and p, we can determine 7, as defined in Theorem 1. I nmin
satisfies Eq. (7), then the desired maximum transmission error and probability of invalidity are
guaranteed by Theorem 1, as long as at least nmi, messages are transmitted within a period T
that does not violate Eq. (6).

Q.E.D.

Note that for a given €mqz, the smallest p that can be guaranteed is determined by Eq. (7).

p = erfc (Cm°z1/-rl—€>
o4 2

For a given €mqz, We can decrease p by increasing the number of messages transmitted. However

Solving Eq. (8) for p, we have

since Eq. (7) should not be violated, p cannot be reduced indefinitely. Assuming a typical value
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of 107 for p, the largest number of messages that can be transmitted without violating Eq. (8)

is of the order of Ttl)—p = 105. If a €nqz Of 1 millisec is desired, then the smallest probability of

invalidity that can be achieved is of the order of erfc (102-%) which is extremely small due to the
nature of the erfc function.

In a similar manner, for a given probability of invalidity (p), we can decrease the maximum
transmission error, €mqz by increasing the number of messages. Again due to Eq. (7), there
is a limit on the smallest €,,4, that can be guaranteed. For typical values (that we have been
assuming in our examples) of the other parameters, we can see from Eq. (8) that emez >
103 millisec.

We restate the following property which represents the most important characteristic of our
clock synchronization algorithm, for completeness. We had stated and proved this property in

Section 2.3

Property 4 Our clock synchronization algorithm can guarantee any desired upper bound, Ymez,

Tmez > 0, between any two clocks in the system, i.e.,
Vi,jvt |Lt(t) - LJ(t)| S Ymaz

with any desired probabilily of invalidity, p (0 < p < 1), of the guarantee, as long as the choice
of values for €mqz, p and T is consislent with Eq. (6) and Eq. (7). Here i,j denote processes

and Lg(t) denotes the logical time on process g’s clock at real time t.

It should be pointed out that the remarks that we made after Theorem 2 regarding the
lower bound on €4z apply t0 Ymaz also; i.e., there is a lower bound on Ymqa- (for a given p) and
a lower bound on p (for a given Ymqz) imposed by Eq. (7). The bound on Ymac is still much

lower than that imposed by Eq. (2) as the examples in Section 2.3 should convince.
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4. Discussion

4.1 Transmission of Time

We had illustrated in an example in Section 2.3 that 7 is of the order of several seconds for
typical values of the other parameters. When the transmission period is so large, it is possible
to separate successive message transmissions by a reasonable interval, if that is necessary to
ensure the independence of the end-to-end message delays of successive messages. Also it is
possible to relax the assumption that the mean and variance of the ¢nd-to-end message delay
be unvarying. We can allow occasional transient communication traffic bursts that might result
in temporarily establishing a new probability distribution with a different mean and variance,
during the period that they last, provided the bursts do not last for too long. If a traffic burst is
allowed to last for a maximum of W milliseconds after which the probability distribution returns
to the steady state distribution, then by sending messages at intervals separated by a duration
greater than W, one can ensure that most of the messages delays conform to their steady state
probability distribution (provided the traffic bursts are not very frequent). It should be noted
however, that separation of successive messages by an interval limits the number of messages
that can be transmitted within the interval 7, and by a reasoning similar to that used in the

remarks following Theorem 2 the lower bound on ¢4, is increased as a consequence.

Maximum Wait Period

In our protocol, we have implicitly assumed that all the n messages sent by M are received
by S when it estimates the time on M’s clock. What if some of the messages are lost? What if
a dmer does not exist? How long does S wait before it starts the estimation process?

We can schedule the transmission such that, it starts sufficiently ahead of the time at which
resynchronization must be done, and such that the nth message can afford an end-to-end delay

of upto 7} time units. The estimation process is started when n messages have been received
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or when the time for resynchronization has arrived, whichever is earlier. If the latter event
occurs first, then there will be fewer than n messages to make the estimate and the accuracy
and probability of validity correspondingly deteriorate. In order to ensure that this does not

occur, 7T is chosen such that
Pld,>Tij<m (0<m <1)

where 7, is the desired probability that this undesirable event does not occur.
Alternatively, an extra n, messages may be transmitted over and above the original n
messages. The number n, is chosen so that, the probability that more than n, of the transmitted

messages don’t arrive within time, is smaller than a desired bound (7), i.e.,
P[Ev(n:)] < m; (0<n<1)

where Ev(n.) denotes the event that n, or more messages have missed the deadline.

4.2 Clock Synchronization

We have assumed in Eq. (10) that the distribution of the end-to-end message delay between
the master process and every slave process is the same. It is possible to extend it to the case
where the distributions are different for different slave processes, but we do not consider it

further here.

We have assumed that processes can have performance or omission faults. Performace faults
which cause a process to respond slowly are automatically handled as long as the resultant end-
to-end message delays conform to the assumed probability distribution. Omission faults which
arise when a process crashes do not affect the performance of the algorithm, as long as the
process that crashed is not the master process; if it is a slave process that has crashed, then
the clucks of running processes still remain mutually synchronized.

We have addressed the problem of handling master process failures in Appendix A, where

we discuss two schemes to improve the fault-tolerance of the clock synchronization algorithm
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proposed in this paper. The two schemes are adaptations to suit our algorithun, of schemes
proposed in [1] to handle master node failures. The first scheme is based on passive redundancy
and can handle only one kind of fault, namely master node failure. The second scheme is based
on active redundancy and can handle more general classes of faults. This scheme requires
multiple master processes each of which is synchronized with a common external reference of

time. The reader is referred to Appendix A for further details regarding these schemes.

5. Conclusion

We presented a new time transmission protocol that can achieve very small transmission
errors, and described a probabilistic clock synchronization algorithm that incorporates this
protocol. The clock synchronization algorithm presented, which is not subject to the bounds
imposed by Eq. (2), was shown to perform much better than the algorithms that are constrained
to obey Eq. (2). We also showed that the probability of invalidity of the guarantee on Ymaz
that the algorithm provides, drops exponentially (or better) with the number of synchronization
messages transmitted.

There are a number of aspects of the algorithm that can be improved through further
research. We have assumed steady mean and variance for the end-to-end message delays.
While this may be a fairly realistic assumption for process control systems in steady state,
other systems may be characterized by probability distributions that can change with time.

A meta-level process that keeps track of the current probability distribution (specifically, the

current d and oq4 since these are the only quantities of interest to us) would be necessary to
handle dynamic systems characterized by changing probability distributions. Another area of
research is in the improvement of the fault-tolerance of the algorithm by identifying new schemes
to handle process and clock failures. A third area of research would be to identify how the time

transmission protocol presented here can be used with the algorithms in (2], [4], (5], (6], [8], [9)]

32

(€3

e



and [10] to overcome the limitations imposed by Eq. (2). Finally, it would be interesting to
identify other kinds of probabilistic algorithms and to determine the theoretical and practical

bounds on the ¥mqe that can be guaranteed by probabilistic clock synchronization algorithms.
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APPENDICES

A. Fault Tolerance

The master/slave clock synchronization algorithm that we proposed in this paper is crit-

ically dependent on the proper functioning of the master? node. We describe schemes based
on passive and active redundancy to provide fault-tolerance to our master/slave clock synchro-

nization algorithm. These schemes are adaptations of schemes proposed by Cristian, to suit

our algorithm.

A.1 Schemel

The first scheme that we examine is based on passive redundancy, in the sense that though
any of the nodes in the system can potentially serve as the master node, only one node actually
does so at any instant of time. The other nodes are inf effect back-up nodes that are called in
to serve as master nodes when required. This scheme is similar to the Ranked Master Group
scheme proposed in [1] except that none of the clocks are required to be synchronized with an

external reference of time.

The scheme assumes that the nodes in the system are ordered into a deputation order.
At any instant of time, the highest ranking functional node in the deputation order serves as
the master node. When the node currently serving as the master node fails, the next highest

ranking functional node takes over as the new master.

*We refer to a node that runs a master synchronization process as a master node and a node that runs a slave

synchronization process as a slave node.
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A.1.1 Analysis

The underlying master/slave clock synchronization algorithm guarantees that for any node
N; in the system,

|Li = Ln| < Y™ (26)

where Ly, for any p, denotes the local time at node N, and Ny, is the node that is currently

serving as the master node. It is clear that as long as the current master node is functional, for

any two nodes N; and N,

ILi = Ljl = |(Li = Lm) = (Lj = Lm)|
< i = Ll +|Lj = L]
= 27me (27)

However when the node that is currently serving as the master node fails, there is a gap of

length Ticconsig between the instant of failure and the time at which all the nodes have got

synchronized to the new master node. During this period, the clock of any node can drift
ma

by an additional amount equal to pT,econsig- Hence the bound 47%% in Eq. (26) will have to

be replaced by the value y?3% + p reconfigr Where TT000 .. is the assumed upper bound on

Trecontig-

The time Tiecongig consists of the time it takes for the new master node to learn about the
failure and the time it takes for it to get all the other nodes to synchronize with it. Suppose it
takes a maximum of Ty,; units of time for information about the failure of a node to reach all
other nodes, and a time Tyesynch for the new master node to transmit its time to all the other

maxr —
nodes, then T722% .- = Tns + Treaynch.-
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A.1.2 Discussion

The scheme described so far handles only one kind of fault, namely master node failure.
The scheme assumes that nodes are fail-safe, i.e., if they are faulty they do not affect the rest of
the system. Thus there is the implicit assumption that the master node cannot transmit incor-
rect synchronization messages. Another assumption made is that the communication channel
between the master and a slave does not corrupt or lose messages and that it conforms to the
assumptions made about end-to-end message delays by the underlying clock synchronization
algorithm. These assumptions are necessary for Eq. (26) to be valid. Thus this scheme is

limited in the kinds of faults it can handle.

In this scheme, since the number of master nodes is always one, the costs incurred are the
same as the costs incurred by the underlying master/slave clock synchronization algorithm. No
additional price is paid for the fault-tolerance provided.

In the next section, we describe a scheme that is less limited in the kinds of faults it can

tolerate.

A.2 Scheme II

The second scheme is based on active redundancy, in the sense that there are multiple
nodes that concurrently function as master nodes. It is an adaptation of the Active Master Set
architecture proposed in [1]. We have extended it to provide fault-tolerance at join time, i.e.,
when a slave node first joins the system.

The scheme requires that the master nodes be externally synchronized to an external ref-
erence of time such as the Universal Time Coordinated (UTC) time signals broadcast by the
WWYV radio station of the National Bureau of Standards. Thus the local clock L., at each

master node N,, satisfies the following condition:

|Lm - eztl S Tme> (28)
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where C.;: is the external time reference used. It follows that, for any two master nodes N,

and N,

ILp - qu I(Lp - Cezt) - (Lq - Cczt)'

IN

!Lp - Ceztl + |Lq - Ceztl

= 2Yme- (29)

In this scheme, it is possible that different slave nodes are synchronized to different master

nodes at a given time. Hence for any two nodes N; and N,

|Li - Lj| |(Li = Lp) - (LJ' - Lq) + (Lp - Lq)l

IA

|Li = Lp| + |Lj ~ Lgl + |Lp = L]

2(Yme™ + Tme)s (30)

where nodes N, and N, are the current masters of N; and N; respectively. The Iasf step above
follows from Eqs. (26) and (29).

In this scheme, at the end of each resynchronization interval each slave node N, receives
synchronization messages from each master node N,,. The node N, then makes estimates Ct*t
of the lacal clocks at each master node Ny, on the basis of these synchronization messages (this
estimation is part of the master/slave clock synchronization algorithm used by the nodes). N,
applies a test to each of these estimates to determine if the estimate is acceptable and uses the
first acceptable estimate to resynchronize its local clock.

We next explain the test of acceplability. If everything is fine, i.e., if there is no faulty
behaviour on the part of any component, then the estimate C2* of the clock at master node

N,,» made by slave node N, satisfies the following condition:

l'a o C:,:t! S 7::‘0.: + 27mc + €maz- (31)
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Here €,,45 is the maximurm transmission error (the error in estimating the master clock) guaran-
teed by the underlying time transmission protocol. The term 29, is present because N, could
have synchronized with a different master node during the previous resynchronization interval
and two master nodes can be out of synchrony by as much as 294, units. Eq. (31) is referred
to as the test of acceptability.

If an estimate is not acceptable, i.e., it does not satisfy the test of acceptability, then it
means that some of the assumptions made by the clock synchronization algorithm have been

violated. The assumptions made by the clock synchronization algorithm could be violated, for

instance, if
1. the clock at the master node has become faulty, or
2. the master node has transmitted incorrect synchronization messages, or

3. the channel connecting the master node and the slave node has lost or corrupted messages,

or

4. the assumptions made about the end-to-end delays of messages does not hold good.

In any case, if an estimate violates Eq. (31) and if that estimate is used to adjust the local
clock for resynchronization, then the functional nodes in the system can no longer be guaranteed
to remain synchronized, i.e., Eq. (30) may not always be satisfied. Hence such an estimate is
termed unacceptable and is not used to adjust the local clock.

Note that the test of acceptability cannot be applied when a slave node joins the system,
i.e., when it is synchronized to a master for the first time. Prior to the first synchronization,
the local clock at the slave node can have an arbitrary value and Eq. (31) may not be satisfied

even if there are no faults in the system. The problem of masking faults when a slave joins the

system is addressed in Section A.2.2.

38



A.2.1 Discussion

This scheme tolerates any combination of faults in the system as long as a slave node is
able to obtain an acceptable estimate of the clock of at least one master node. However since
there are multiple (say p) master nodes, each resynchronization requires p times as many
synchronization messages as the basic master/slave algorithm that makes use of only a single
master node. The scheme also incurs additional costs due to the special hardware receiver units

required for external synchronization with the UTC signals.

A.2.2 Fault-Tolerance at Join Time

In this section, we consider the problem of tolerating faults that could cause incorrect
estimates to be made at the point of time when a slave node first joins the system. At the time
of joining, the estimate of the clock at a master node made by a slave node could be incorrect or
unusable due to any of the factors listed earlier as possible causes for the violation of Eq. (31).
However since the clock at the slave node can have an arbitrary value at join time, it is not
possible to use Eq. (31) to determine whether an estimate made of the clock at a master node is
correct or not. However if we make the assumption that a majority of the estimates of master
node clocks made by a slave node at join time will be correct , then we can use the scheme
described below to ensure that the clock at a joining node will be synchronized with the clocks
at the other nodes in spite of faults in the system.

We define
A -1

where p is the number of master nodes. At join time, each slave node N; receives synchronization
messages from each of the master nodes and estimates the clock values at the master nodes.

Each slave node then sets its clock L; as follows.

L; = oneof ({est (i, k), f+1<k<pu-f})
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where the function oneof takes a set of real numbers as its argument and returns some randomly
chosen element from this set as its value and the function est (i, k) returns the kth element in
the ascending ordering of the set of estimates of master node clocks made by slave node N;. 1f
a slave node does not hear from some master node before it sets its clock, it uses an arbitrary
value as the estimate of that master node clock. Note that L; corresponds to the estimate {or

one of the two estimates) that remains (remain) after discarding the largest f and smallest f
estimates.

In the next subsection, we show that if a majority of the estimates obtained by a joining
node are correct, then the node is synchronized to all the other nodes that have already joined

the system.

A.2.3 Analysis

Let C;; denote the estimate made by slave node N; of the clock at master node N; at join

time. If there is no faulty behaviour on the part of any component, then the underlying time

transmission protocol guarantees that
|Ci; — Lj| < émaz,
where €pmq. is the maximum transmission error. Also, Eq. (28) holds good. Hence

|Ci; = Ceatl = |(Ci; = Lj) + (L = Ceat)|

IN

|Cij - LJI + |LJ - Ce:l:tl

= €maz + Tme- (32)

In the context of join, we define an estimate C;; to be correct if if it satisfies Eq. (32).

Lemma 5 If a majority of the estimates in a joining slave node N; are correct, then the esti-

mates est (i,k), f+1 < k < p— f, are correct.
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Proof: Suppose some estimate est (i,k),f+ 1 < k < p — f is not correct, then

|e5t (i$ k) - Ceztl > €maz + Tme-

But then either all of the estimates est(i,p),1 < p < k are incorrect or all of the estimates
est(i,g),k < ¢ < p are incorrect, since these sets of estimates are respectively less than (or
equal to) and greater than (or equal to) est (i, k). In either case the number of incorrect es-
timates must be at least f + 1, since [{p: 1< p<k} > fand [{g:k<g< u} > f. This

contradicts the fact that a majority of the estimates are correct.

Q.E.D.

Lemma 6 The clock in a joining node is within Tme: + 2Tme Of external time until the first

resynchronization.

By Lemma 5, the estimate chosen to set the local clock at the slave node is correct and hence
by Eq. (32) the local clock is within €54z + Yme Of external time. The maximum drift, within
the current resynchronization interval of the slave clock with respect to the master clock with
which it is synchronized is given by v™%% — ¢,... by the definition of ymez (Eq. 9). Hence the

tmes

maximum drift, during the current resynchronization interval, with respect to external time is
mayr

equal 10 773" ~ Gnaz + Yme. Hence the local clock is within (€pqz + Yme )+ (V3% - €maz +Tme) =

Tms. + 2¥me of external time throughout the current resynchronization interval.
me 7

Q.E.D.

Lemma 7 The clock at a node that has just joined will be within 2y™°* 4 3v,,, of the clock
at any node that has gone through at least one resynchronization, and within 2(77%% + 2v,,.)
of the clock at any node that has joined but has not yet completed its first resynchronization

inlerval.
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After the first resynchronization interval after join, a slave clock is within ye® + Yme of
external time since the clock synchronization algorithm guarantees that the local clock will be
within ™% of the master clock and Eq. (28) guarantees that the master clock will be within

Yme of external time. The result follows from this observation and Lemma 6.

Q.E.D.

Thus the maximum skew, between clocks in the system, that can be guara.nte'ed has a slightly
higher value before the instant when all the nodes have completed their first resynchronization
intervals, than after.

A point to be noted is that the test of acceptability used at the first resynchronization
point after join (i.e., at the end of the first resynchronization interval) will be different from
Eq. (31) which is used at subsequent resynchronization points. This is because the maximum
skew between the clocks at a slave node N, and a master node N, at the end of the first

resynchronization interval can be greater than y™%% + 24,,,. The maximum skew is given by

|La - Lml

l(La - Cc::t) - (Lm - Cc::t)l

IA

ILa - Ceztl + le - Cc::tl

max

Tms T 2Yme + Yme

Tms. + 3Yme-

The third step above makes use of Lemma (6).

Hence the following condition has to be used instead of Eq. (32) at the first resynchronization

point for testing acceptability.

maz

S Yms T 3Tme *+ €maz-

L, - Cet
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B. Notation

A2 B: A s defined as B

A~ B: A is of the form B

A ~ B: A is of the order of B

Cezt: external time reference

Cest: estimate of clock at master node Ny,. d: end-to-end message delay

d: expected value of d

dmaz: upper bound on the ené-to-end message delay

dmin: lower bound on the end-to-end message delay

d;: end-to-end delay for the ith message

d(n): average of d computed using n samples

bo: deviation between the clocks of S and M at the start of transmission of message msg;
6;: deviation between the clocks of S and M, when the ith message from M is received by S.
67: increase in deviation between the clocks of S and M between the times of transmission of

msg; and msg;

8¢: increasc in deviation during the message delay d; of msg;

& (n): average deviation between the clocks of S and M over n message receipts

8. (n): average increase in deviation prior to transmission

Ad(n): deviation of the average of d computed using n samples from the average computed
using an infinite number of samples.

Aé§,: deviation of §, from &,

e: base of the natural logarithms

erf(z): error function

erfc(z): complementary error function

est(z, k): defined in Section A.2.2
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E|X]: expected value of random variable X
71, 72: probability bounds

¢: transmission error

€mez: desired maximum transmission error

G probability distribution of the transmission error

Ymaz: guaranteed maximum deviation between any two clocks in the system

Yme: maximum deviation between master clock and the external reference of time
Tms: deviation between the master clock and a slave clock

ymez: maximum deviation between the master clock and any slave clock in the system
HC, HC;: hardware clocks

k: a parameter (dependent on p) that determines 7

L;: logical clock of process i

M: sender

u: number of master nodes

msg;: ith synchronization message

n: number of synchronization messages

ng: Gaussian cutoff

n,: number of extra messages needed to compensate for delayed messages
N: number of clock synchronization processes in the system

N(m, k?): standard normal distribution with mean m and variance k?

p: probability of invalidity

P [event]: probability of the event occuring

«: ratio of the circumference of a circle to its diameter

® (z): Gaussian probability distribution function corresponding to N (0,0?)
Q(z): defined in Lemma 4

R;: time of receipt of the ith message according to the receiver’s clock
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R(n): average of the message receipt times
Rsynen: resynchronization interval

p: relative clock drift rate

Pa: absolute clock drift rate

pi: average relative clock drift rate during the end-to-end delay of message msg;

S: receiver

o: %

o4: standard deviation of the end-to-end message delay

t,ty: time instants |

T;: time stamped on the ith message

T;: latency available for the nth message

T (n): average of the times stamped on the n messages received

7: duration of message transmission measured on the sender’s clock
U: half time-out period in Cristian’s algorithm

V [X]: variance of random variable X

W: maximum duration of a transient traffic burst

z,y,t: integration variables
X: expected value of the random variable X

§: error bound
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