Specification Level Interoperability

Jack C. Wiledent
Alexander L. Wolf?
William R. Rosenblatt!
Peri L. Tarrt

COINS Technical Report 89-87
July 1989

tSoftware Development Laboratory
Computer and Information Science Department
University of Massachusetts
Ambherst, Massachusetts 01003

'AT&T Bell Laboratories
600 Mountain Avenue
Murray Hill, New Jersey 07974

This report will appear in
Proceedings of the 12th International
Conference on Software Engineering
Nice, France, March 1990

At the University of Massachusetts, this work was supported in part by the National Science Foundation
(grant CCR~-8704478) with cooperation from the Defense Advanced Research Projects Agency (ARPA Order
No.6104).

Specification Level Interoperability

Jack C. Wileden*

*Computer and Information Science Department

University of Massachusetts
Ambherst, Massachusetts 01003

ABSTRACT

There is an increasing need and desire to develop systems
by combining components that are written in different lan-
guages and/or that are run on different kinds of machines.
Success at this depends in large part on the interoperability
of the components—that is, the ability of the components
to communicate and work together despite their differing
backgrounds. While most previous approaches to interop-
erability have provided support at the representation level,
we are pursuing an approach that provides support at the
specification level. We have developed a model of such sup-
port that consists of four components: 1) a unified type
model, which is a notation for describing the entities to
be shared by interoperating programs; 2) language bind-
ings, which connect the type models of the languages to the
unified type model; 3) underlying implementations, which
realize the types used by the different interoperating pro-
grams; and 4) automated assistance, which eases the task
of combining components into an interoperable whole. In
this paper we discuss the representation level and speci-
fication level approaches to interoperability, describe our
current prototype realization of the specification level ap-
proach and our experience with its use, and outline our
plans for extending both the approach and its realization.

1 Introduction

Support for interoperability is becoming increasingly im-
portant with the advent of more and larger evolving, het-
erogeneous computing systems. By interoperability we
mean the ability of two or more programs to cominuni-
cate or work together despite having been written in dif-
ferent languages or language dialects. Frequently, interop-
erability also implies communication between two or more
different execution domains, which may range from differ-
ent run-time support systems within a single processor to
physically distinct processors within a distributed comput-
ing system.

The need for interoperability arises in many contexts.
Generally, the desire to combine programs written in dif-

Alexander L. Woltt

William R. Rosenblatt® Peri L. Tarr™

TAT&T Bell Laboratories
600 Mountain Avenue
Murray HUill, New Jersey 07974

ferent languages springs from the availability of specific
capabilities in some particular language, processor or ex-
isting program. Thus, for example, the number-crunching
power of a vector processor and the availability of a partic-
ular numerical analysis routine in Fortran might entice a
programmer to attempt interoperation of a Lisp program
running on a workstation and Fortran code running on the
vector processor.

A central issue in supporting interoperability is achiev-
ing type correspondence so that entities, such as data ob-
jects or procedures, used in one program can be shared
by . another program that may be written in a differ-
ent language or running on a different kind of proces-
sor. While most previous approaches to interoperability
have provided support for type correspondence at the rep-
resentation level, we are pursuing an approach that will
snpport correspondences defined at the type specification
level. Representation level interoperability (RLI) provides
a means for overcoming differences in the ways that difter-
ent machines or programming languages implement simple
types. Thus, RLI hides such differences as byte orders,
floating-point precisions or array accessing mechanisms.
Specification level interoperability (SLI) extends RLI by
hiding representation differences for abstract types as well.
For instance, where RLI would hide the byte orders of array
elements used to represent a stack object, SLI would hide
the fact that the stack was represented as an array. Hence,
with SLI, representation of the stack as an array or as a
linked list or both is made irrelevant to the interoperability
of the programs sharing the stack.

Thus, SL! extends RLI in ways that offer several signif-
icant advantages. Most importantly, it increases the de-
gree of information hiding, thereby reducing the extent to
which interoperating programs depend on low-level details
of each others’ data representations. Moreover, it prevents
the misuse of shared data objects (i.e., violations of the
intended abstractions), which could easily occur under the
RLI approach. SLI allows much greater flexibility in im-
plementation approaches and hence more opportunities for
optimization. Finally, SLI increnses the range of languages
and types that can participate in interoperation.

In this paper we present the SLI approach and describe
our prototype realization of that approach. We begin by
discussing our motivating example, namely interoperability
in software environments. We then describe the represen-
tation level and specification level approaches and related
work in this area. Next, we present a model of support for
SLI, a description of our initial prototype, and a report of
some actual experiences with SLI and our prototype. We
conclude with a discussion of our future plans.

2 Interoperability in Environ-
ments

Our work on support for interoperability originated as part
of our research on object management for next generation
software development environments [9, 26]. This research is
being done as part of the Arcadia project [23], a collabora-
tive software environment research program encompassing
groups at several universities and industrial organizations.
The objective of Arcadia is to develop advanced software
environment technology and to demonstrate this technol-
ogy through prototype environments.

Three important goals of next generation software devel-
opment environments, such as those envisioned by Arcadia,
are extensibility, integration and broad scope. In particu-
lar, Arcadia environments are intended to be extensible
in order to support experimental investigation of software
process models and evaluation of novel tools in the context
of a complete environment. At the same time, Arcadia
environments must remain integrated, both externally, to
aid users of the extended functionality, and internally, to
facilitate tool cooperation, environment maintenance and
further extension. Arcadia environments are also intended
to be broad in scope, i.e., to support a wide variety of
development activities, not merely monolingual program
development and execution, and therefore to include many
different kinds of tools and objects.

These goals require that Arcadia environments facilitate
the addition, modification and replacement of any and all
kinds of environment components, which are such things
as tools, management data or process descriptions. This,
in turn, leads us directly to the need for interoperability
support as an important component of the Arcadia object
management infrastructure.

For example, building prototype components for Arca-
dia has frequently led to a need for interoperation between
programs written in different languages. Most often this
has arisen when a tool written in Ada has needed the capa-
bilities available in a utility written in C, such as a window
manager or an object storage manager. The situation illus-
trated by the current prototype of the CEDI, Constrained
Expression Toolset [4], which implements a technique for
analyzing behavioral properties of concurrent software sys-
tems, is slightly more complicated. The prototype toolset,
as shown in Figure 1, consists of a dén’vcr, written in
Ada, that produces constrained expression representations

of concurrent system behavior from system descriptions in
an Ada-like design language called CEDL. The constrained
expressions that it produces are then operated upon by ei-
ther an inequality generator or a behavior generator, both
of which are written in Lisp. The inequalities generated by
the former are input to an integer programming package,
which is written in Fortran.

We expect that such multilingual interoperating sets of
tools will be very common in the coming generation of in-
tegrated, extensible, broad-scope environments like those
envisioned by Arcadia. The need to import existing tools
or utilities will be an especially significant reason for sup-
porting this kind of interoperability.

Interoperation between programs running on different
processors in a distributed computing system is also likely
to be a necessity in the next generation of environments.
Environments, like other complex, multi-faceted software,
will need to exploit the specialized capabilities of powerful
numerical processors, graphics stations, storage servers or
other such hardware in a distributed system. In building
prototype components for Arcadia we have already encoun-
tered several situations where interoperation across multi-
ple machines in a distributed system was necessary. For ex-
ample, the prototype Constrained Expression Toolset can-
not currently be run on any single processor in our com-
puting system because the Ada system needed for running
the deriver and the Lisp system needed for running the in-
equality generator and behavior generator do not coexist
on any of our workstations. In the future we anticipate
even more opportunities for interoperation across differ-
ent processors to arise within Arcadia. For instance, fu-
ture versions of the Constrained Expression Toolset are
expected to use specialized numerical processors for run-
ning the integer programming component.

3 Approaches to Supporting
Interoperability

Any approach to supporting interoperability must address
two aspects of cooperation among programs:

¢ execution model issues: How is the execution of the
interoperating programs coordinated?

¢ type model issues: How are correspondences estab-
lished among the ways interoperating programs ma-
nipulate a given shared entity?

Execution model issnes can become problematic if the
interoperating programs are based on very different under-
lying execution models, such as a dataflow model and a.
logic programming model.' In the vast majority of cases,

'It could be argued that hoth of these examples, as well as
such mechonisms as “active data” or “triggers”, represent inter-
mingling of execution model and dnta model issues. It is possible
that some perspective that separated those components would

make such mechanisms fit more smoothly into the framework
presented here.

In lmeger Programming
equal:ty gc)nerator lne aalition P
(FORTRAN)
i | Deriver Constrained
—
.CEDL Design (Ada) Expression /
Behavior Generator
(LISP) Example Behavto

Figure 1: An Example of Multilingual Interoperability: The CEDL Constrained Expression Toolset Prototype.

however, the interoperating programs are likely to share
some notion of procedure or function call, or some con-
current communication mechanism, such as synchronous
or asynchronous message passing. Thus, most existing ap-
proaches to support for interoperability have been based on
the idea of the remote procedure call (RPC) [7) for coordi-
nating the execution of the interoperating programs. Such
mechanisms are in common use today (e.g., [5, 19, 22, 25)).
Of course, RPC mechanisms involve some type model is-
sues as well (see below).

As indicated earlier, we believe that type model issues
present the more challenging problems with the more inter-
esting range of possibilities. Furthermore, we believe that
there are significant advantages to addressing these issues
at the type specification level rather than only at the type
representation level. In the remainder of this section we
elaborate on this view.

3.1 Representation
ability (RLI)

Most approaches to supporting interoperability have been
based on establishing correspondence of data types at the
representation level. That is, they have been primarily
concerned with how the representations of simple types,
such as integers, floating-point numbers or characters, dif-
fer in different languages or on different processors and
have primarily focused on ways to map between those dif-
ferent representations.

The earliest form of this approach involved interoper-
ation through ASCII representations of data, where the
data were communicated between the “interoperating”
programs via files. This required the programs themselves
to translate the data either into or out of the ASCII rep-
resentation. Of course, languages often provided some au-
tomated support for this processing (e.g., the Fortran for-
mat statement).

The UNIX? operating system supports interoperability
via pipes (untyped byte streams) through which two in-
teroperating programs can communicate. The byte stream
can encode any type of data. So, as long as the inter-

Level Interoper-

32UNIX is o registered trademark of AT&T.

operating programs agree on how to interpret the bytes,
they can share data of any type. Again, this requires the
programs at either end of the pipe to translate the shared
data from its actual type into the byte stream representa-
tion and back again.

The data description components of RPC-based systems
take this idea a step further by allowing data types within
a single, fixed language domain to be passed from process
to process. Not only do RPC mechanisms abstract away
details of the communications protocol (e.g., below the ISO
transport layer), but they can also abstract away represen-
tational discrepancies among machines and within the fixed
language domain (e.g., byte-orderings, floating-point pre-
cisions). Support for this independence of representation
was not totally automated in some earlier efforts (such as
those cited above); the code that translates between phys-
ical representations needed to be written by hand.

More recent RPC mechanisms, such as NCS [3] and
HRPC [6], automate the generation of code that maps the
representations of data types within a program from one
machine to another via an intermediate interface descrip-
tion language such as HP/Apollo’s NIDL [3] or Xerox's
Courier [29]. Although these two systems can only gener-
ate interface code in a single langnage (C in both cases),
their approach seems to lend itself well to supporting ad-
ditional languages without too much extra effort.

Several systems, such as MLP [12], Q {18], Horus [11],
and Matchmaker [14]), have taken the additional step of
providing RPC-based support for mixed-language pro-
gramming. For example, MLP defines a Universal Type
System (UTS) for describing objects that are passed among
programs in various language domains. UTS builds up
types from primitives such as “integer” and “float” via con-
structors such as “array” and “record” in a manner similar
to what would be done in a language like Pascal. It com-
municates data among language domains by providing a
small set of standard routines that must be implemented
for each language. Programmers use these routines within
their code to do translation from their language domains
to UTS and vice versa. MLP was not designed with a par-
ticular set of languages in mind and, therefore, it appears
to be applicable to a fairly wide variety of languages. The
same is true of Horus and Matchmaker.

Q, on the other hand, is designed specifically to support
interoperation between C and Ada programs across a het-
erogeneous network. It is an explicit extension of Sun’s
XDR/RPC, an existing RPC mechanism that only sup-
ports C data types. Like MLP, Q also uses a “construc-
tive”, representation level approach to building up the val-
nes that are transmitted between programs. Another, sim-
ilar attempt at multilingual interoperability is the Mercury
project [16], which is designed to support interoperability
among the C, Lisp and Argus [17] language domains.

Representation level support for interoperability is both
useful and necessary. In our view, however, it has several
shortcomings. Chief among these is the fact that RLI is
only applicable to low-level simple types (e.g., integers) or
compound simple types (e.g., arrays of integers). In partic-
ular, RLI does not support abstract types, such as “stack”
or “abstract syntax tree”. This not only makes RLI awk-
ward to use in conjunction with modern languages having
rich and extensible typing mechanisms (Ada, C++4-, CLOS,
etc.), but also leads to low-level dependencies on type rep-
resentations between interoperating programs. For exam-
ple, if two programs employ an RLI approach to sharing a
stack data object, then both programs would be forced to
use the same representation of the stack, such as an array
with an integer index pointing to the “top” item, or as a
linked list of records of a particular form.

Furthermore, RLI limits the flexibility and extensibil-
ity available in interoperating systems. Its reliance on
isomorphism of low-level structures inhibits interoperation
through similar but not identical types of entities and elimi-
nates any possibility of using different underlying represen-
tations for different instances of the same type, thus fore-
closing opportunities for optimization of representations.

3.2 Specification Level Interoperabil-
ity (SLI)

Specification level interoperability overcomes the short-
comings associated with representation level interoperabil-
ity. Rather than focusing on the mapping between different
representations of a type, SLI focuses on support for com-
mon definitions of a type’s properties. The SLI approach
thereby attains the benefits of abstraction and information
hiding for interoperating programs, encouraging the use of
entity descriptions (i.e., type definitions) that promote the
overall organization of a software system. By raising the
level of cooperation from isomorphism of representation
to equivalence of overlapping properties of shared types,
SL1 eliminates low-level dependencies among interoperat-
ing programs, enables interoperation through similar but
not identical entity types, and permits differing repreésen-
tations for different instances of a type, thus allowing for
optimized representations. Of course, SLI depends upon

RLI mechanisms, essentially subsuming RLI in those cases

involving simple types.
One possible approach to achieving specification level
interoperability would be to impose a single type model

on all the languages in which interoperating programs are
to be written. Since the type definitions of all entities
to be shared by all interoperating programs would then,
necessarily, be directly comparable, establishing the nec-
essary type correspondences would be straightforward. Of
course, such an approach is tantamount to imposing a sin-
gle programming language on the implementors of all po-
tentially interoperating programs. Herlihy and Liskov [13]
have taken this approach using the CLU language, though
they suggest that it can be used with any language that
supports abstract data types. Emerald [8] is a language
that supports multiple representations of objects across
different machines, but again the assumption is that all
interoperating programs are written in the same langunage,
namely Emerald.

A similar, although somewhat restricted, approach is to
enhance the type model of a langnage with interoperabil-
ity support for some subset of entity types. For example,
our work on PGraphite [27] is aimed at extending the Ada
type model to better support persistent, attributed, di-
rected graph objects that can be shared by multiple Ada
programs. IDL [1] is a similar tool primarily oriented to-
ward attributed, directed graph objects in C. The advan-
tage provided by both PGraphite and IDL is that of a
high degree of automation; PGraphite, for example, au-
tomatically generates implementations of graph abstract
data types from declarative specifications. Such support
is not available with the single-language approaches typ-
ified by CLU and Emerald, in which programmers must
manually develop implementation code for any ADT they
define.

A third approach is to support a restricted set of en-
tity types, but for several languages, not just one. This
approach is exemplified by embedded relational database
query languages (e.g., [21]), where the supported set of en-
tity types include “relation” and “tuple” in addition to sim-
ple types, such as “integer” and “character”. When query
language embeddings are defined for several programming
languages, database objects can be shared among different
language domains.

The approaches described above, if sufficiently refined
and extended, could eventually lead to an “ideal” type
model for programming languages, at least for particular
application areas. While research into such a type model is
a worthwhile enterprise, it is unlikely to produce an accept-
able and general solution to the interoperability problem
soon (if ever). Hence, we are pursuing a somewhat differ-
ent approach to SLI. In the following sections we elaborate
on our approach, describe our initial prototype realization
of it and relate our experience in using it.

4 A Model of Support for SLI

Under our approach, support for specification level inter-
operability is based on four components:

1. A Unified Type Model (UTM): A UTM is a nota-

tion for describing the types of entities that are to be
shared by interoperating programs. UTM type defi-
nitions supplement but do not replace the type defini-
tions for the shared entities that are expressed in the
language(s) in which the interoperating programs are
written. A UTM must be a unified model, in the sense
that it is sufficient for describing those properties of
an entity’s type that are relevant from the perspec-
tive of any of the interoperating programs that share
instances of that type. Hence, a UTM should be ca-
pable of expressing high-level, abstract descriptions
of the properties of a broad range of types, but need
not adhere too closely to the syntax or type definition
style of any particular programming language.

Language Bindings: Given 2 UTM and a particular
programming language, there must be a way to relate
the relevant parts of a type definition as given in the
language to a definition as given in the UTM. Each
such mapping between a UTM and a particular lan-
guage is referred to as a language binding. Note that
not all aspects of a UTM must be mappable to a given
language, but only those that are, or could be, rele-
vant to programs in that language. Hence, a set of dif-
ferent bindings could be defined for a given language,
each providing mappings for only those UTM aspects
relevant to a particular interoperating program writ-
ten in that language.

. Underlying Implementations: The combination of a

UTM type definition and a language binding induces
an interface through which an interoperating program
wiitten in that language can manipulate instances of
that entity type. Underneath the interface will be one
or more representations for data objects and code to
implement procedures, such as the procedures (i.e.,
operations) that the interface provides for manipu-
lating the data objects. A major benefit of the SLI
approach is that all such details of implementation
are hidden from the interoperating programs by the
interface. This permits experimentation with alter-
native implementations, “rapid prototyping” devel-
opment styles in which “quick and dirty” implemen-
tations can later be improved without affecting the
interoperating program, or even heterogeneous repre-
sentations for the same type so that different instances
can be optimized for different kinds of manipulations
(e.g., navigational access vs. associative access to dif-
ferent collections of data of some particular kind).

. Automated Assistance: Although SLI can be bene-

ficially employed using entirely manual methods, its
value is greatly increased through automated sup-
port. In particular, someone creating a UTM defini-
tion would be greatly aided by a library of pre-existing
UTM type definitions, language bindings and underly-
ing implementations, plus a browser for exploring that
library. An automatic generation tool would also be

valuable. Such a tool would, for example, take a UTM
type definition, plus specifications for the desired lan-
guage binding and underlying implementation (possi-
bly indicated interactively through a selection capa-

bility in the browser), and generate the corresponding
interface.

Following is a scenario that illustrates how we envision
a full-scale realization of the model being used. The next
scction describes our initial prototype, which provides a
subset of the capabilities listed above.

Suppose that a newly developed program is to be inte-
grated with an existing set of programs. The implementor
of the new program might begin by determining which ob-
jects used by which programs in the existing set would need
to be shared with the new program. In the case of objects
that are already shared among the existing programs or
whose sharing had been anticipated by their developers,
UTM definitions for their types might be found by brows-
ing the type definition library. In other cases, new type
definitions might be created using the UTM notation, pos-
sibly by finding and modifying or extending existing def-
initions from the library. In a similar fashion, the imple-
mentor would find or create appropriate language bindings
for the language(s) in which the program is to be imple-
mented, and find or create suitable implementations. Us-
ing the automatic generation tool, the implementor would
then produce the necessary interface in the implementation
language selected for the program, plus any representation
and code needed to effect the implementation of object
instances. The representation and code could be as sim-
ple as RPCs to operations that were part of the existing
implementations of the object types in the existing set of
programs. In such a case, the automatic generation tool
could produce them completely given only the specification
stating that this was the desired implementation.

Much more complex situations could also be supported,
such as the definition of a completely new implementa-
tion with corresponding modifications to the pre-existing
programs’ interfaces to objects of this type or creation of
bi-directional translation linkages between the two imple-
mentations. In such situations, the automatic generation
tool’s role would be more limited, but the role of the li-
brary and browser in aiding future implementors wishing
to interoperate with objects of this type would be corre-
spondingly more important.

5 An Initial Prototype Realiza-
tion of SLI

To demonstrate the feasibility of SLI and to support exper-
imentation with the model of SLI presented in Section 4,
we have developed an initial prototype realization of the
model that provides a subset of its capabilities. This pro-
totype realization consists of a first approximation to a uni-
fied type model, called UTM-0, bindings for the Lisp and

Ada programming languages, one implementation strat-
egy, and the UTM-0 automated generator shown in Fig-
ure 2. The automated generator accepts type definitions
in the UTM-0 notation, plus binding and implementation
information, and produces a standard interface specifica-
tion (SIS) and a corresponding implementation for each of
the entities described in the UTM-0 input. By “standard”
we mean that, for a given target programming language,
the UTM-0 automated generator will always produce the
same interface specification from the same U'TM-0 input.
In fact, the Lisp and Ada SISs that are generated from a
given UTM-0 description are essentially identical, differing
only in the syntax used to express them. The implemen-
tations attached to those SISs by the automated generator
may vary widely, depending upon the implementation in-
formation that was provided with the UTM-0 definitions.
The implementations, of course, are completely invisible to
the interoperating programs, which need only be concerned
with the SISs.

In this section, we describe each of the components of our
initial prototype realization of SLI. We illustrate the use of
these components through an example in which we applied
the UTM-0 automated generator to achieve interoperabil-
ity between some of the components of the Constrained
Expression Toolset described in Section 2.

5.1 Definition of UTM-0

UTM-0 consists of a set of type definition primitives, a set
of “special” types, and some semantics for manipulation of
instances of types. We present a brief overview of UTM-0
here (a more detailed description can be found in [28]) and
an example of its use in Section 5.2.

The type definition primitives of UTM-0 are hased on
the approach used in the OROS type model [20] and are
similar to those found in other recently proposed type
models (e.g., {2, 10, 24, 30]). Like OROS, UTM-0 dis-
tinguishes three basic classes of types: object types, re-
lationship types and operation types. Intuitively, object
types are used to describe things whose state is their most
interesting property, operation types are used to describe
things that manipulate or transform other things, and re-
lationship types are used to describe things that represent
connections among other things. UTM-0 uses the word
“entity” to encompass all things; thus object types, rela-
tionship types and operation types are all also entity types.

Using UTM-0, types are defined in terms of a set of
properties and in terms of their relationships to other types
(intertype relationships). The properties of a type are the
operations that can be applied to its instances, relation-
ships in which its instances can participate, and possibly a
signature.” The intertype relationships include inheritance

3The signature of a relationship type describes the number,
types and modes of the entities connected by an instance of the
relationship, while the signature of an operation type describes
the number, types and modes of paramcters to the operation.
Object types do not have signatures in UTM-0.

of properties, explicit differentiation of properties relative
to those other types, and subtyping. Types defined using
UTM-0 have names and can be parameterized.

UTM-0 supports multiple inheritance, with the parents
field of a type definition listing the inherited types. The
UTM.0 rules for inheritance are fairly simple. They are as
follows: if type T lists type P as a parent, T inherits P’s
parents (recursively) and all of P’s associated operations
and relationships. If P has a signature, it is prepended to
T’s signature (if any). If there is a naming conflict among
multiple parents, the parent listed first prevails. The UTM-
0 model also supports the concept of subtyping, whereby
if type S is a subtype of T (S conforms to T), an instance
of type S can be used wherever an instance of T is called
for. The UTM-0 subtyping rules, which are based on those
of OROS, are detailed in [28].

‘The remainder of the UTM-0 definition consists of defi-
nitions of some special types, criteria for type equivalence,
and semantics for instance manipulation.

The most important special types in UTM-0 are the
four primitive types in terms of which all other types are
defined, namely entity, object, relationship and operation.
Their definitions, in turn, involve some further operation
and relationship types. Since they are used in defining the
primitive types, these types are also considered “special”
and are referred to as primitive operation and primitive
relationship types. The final category of special types is
the simple object types, which can include such commonly
used object types as integer, character and real. Just as the
primitive operations are subtypes of operation, the simple
object types are subtypes of object. Simple object types
differ from all others in that they have more limited se-
mantics.

UTM-0 defines a fairly simple semantics for manipula-
tion of instances of types. A variable of a simple object
type holds a value (e.g., the integer 17), while variables of
other entity types hold pointers to the entities themselves.
Semantics for assignment and entity equivalence follow di-
rectly from this dichotomy. Assignment for simple objects
is done by copying their values, while assignment for other
entities is done by copying pointers. Similarly, equivalence
among simple objects implies equal values, while among
other entities it implies equal pointers.

Finally, the UTM-0 definition includes a library of useful
type definitions. This “standard library” includes simple
object types such as integer, character and real. It also in-
cludes several parametric types that define commonly-used
aggregates, such as array[T], relation[T] and sequence[T].
Hence UTM-0 provides a superset of the tvpe definition
capabilities available in an RLI type description language
such as NIDL or Courier. :

5.2 UTM-0 Example

The Constrained Expression Toolset is a collection of tools
that must interoperate to perform their individual tasks,
As discussed in Section 2, the deriver component, which

UTM-0 Automated Generator

Underlying
Implementation

Information Ada

Standard Interface
Specification (SIS)
(Ada or LISP)

Implementation
corresponding to
the SIS

Figure 2: The UTM-0 Automated Generator.

is written in Ada, accepts a CEDL description of a con-
current system and produces a constrained expression rep-
resentation of the system in the form of a tree (a con-
strained expression abstract syntax tree, hereafter abbrevi-
ated CEAST). The behavior generator and inequality gen-
erator components are written in Common Lisp, and each
of these tools uses the information stored in the CEAST.
Because the CEAST is an Ada object, however, it had
been impossible for the Lisp tools to manipulate the tree
directly.

Originally, as an interim solution, another Ada tool was
written to translate the CEAST into an ASCII represen-
tation of a Lisp S-expression encoding of the tree, which
was written to a file. The Lisp tools then read the file
and manipulated the S-expression. As an experiment in
applying the SLI approach, we decided to use our initial
prototype realization of SLI to generate a replacement for
the interim solution. The first step in this process was to
create the appropriate UTM-0 description for the CEAST.
Part of that UTM-0 description appears in Figure 3.

The description contains definitions of two object types:
Node, which describes properties of graph nodes in gen-
eral, and CEAST_Node, which describes the properties of
the specific kinds of nodes that appear in CEAST graphs.
Note that CEAST_Node inherits from Node, so that the
operations that apply to Node objects (creation, deletion,
and determining what kind a node is) plus the additional
operations that apply to nodes of type CEAST_Node (for
manipulating the specific kinds of attributes that this kind
of node contains) all apply to CEAST_Node objects. Also
included in the UTM-0 description of CEAST nodes are

definitions of the various operation types that are part of
these two object type definitions.

5.3 The Language Bindings

As mentioned in Section 4, there must be at least one lan-
guage binding for each programming language in which
interoperating programs are written. Each language bind-
ing maps UTM definitions to syntactic constructs within a
particular language. This essentially comes down to deter-
mining which language constructs correspond most closely
with object, operation, and relationship type definitions.
We have defined two language bindings for our prototype
so far: one for Ada and one for Common Lisp.

Because Ada is so supportive of abstract type defini-
tions, it was relatively easy to produce an Ada language
binding. We define all object and relationship types to
be private types. Operation types are represented as ei-
ther procedure or function declarations, depending on how
the user specifies the code that implements them. Since
object and relationship types are declared to be private,
their representations are completely hidden from the user,
which makes providing low-level representational optimiza-
tions transparent. Figure 4 illustrates how the Ada binding
applies to the UTM-0 description of the CEAST example.

Our language binding for Common Lisp is similar to the
Ada binding. We define object and relationship types with
the predefined function deftype, and use defun to imple-
ment all operation types. Figure 5 illustrates how the Lisp
binding applies to the UTM.-0 description of the CEAST
example. Because abstract data typing is not a part of the

object type Node |] is
operations:
Kind : KindOperation;
Create : CreateNodeOperation;
Delete : DeleteNodeOperation;

end

operation type CreateNodeOperation is
signature: .
(TheKind : tnt String;
TheNode: out Node)
end

object type CEAST Node is
parents:
Node
operations:
GetSymbolAttribute :
GetSymbolAttributeOperation;
PutSymbolAttribute :
PutSymbolAttributeOperation;
GetSequenceOfCETermsAttribute :
GetSequenceOfCETermsAttributeOperation;
PutSequenceOfCE TermsAttribute :
PutSequenceOfCE TermsAttributeOperation;
end

operation type GetSymbolAttributeOperation is
signature:
(TheNode : in Node;
TheAttributeName : in String;
TheValue : out Symbol)
end

operation type PutSymbolAttributeOperation is

signature:
(TheNode : out Node;
TheAttributeName : in String;
TheValue : in Symbol)
end

Figure 3: Part of the UTM-0 Description of CEAST.

Common Lisp language definition, however, it is not possi-
ble to achieve the same degree of enforced encapsulation as
in Ada. With disciplined use of a Lisp SIS, it is neverthe-
less possible to obtain the same degree of representational
independence. We believe that CLOS (15] provides better
support for the definition of abstract types, and it is likely
that we will implement a CLOS binding in the near future.

Of course, both the Ada and the Lisp bindings include
bindings for the simple object types as well. Our initial
prototype realization uses the obvious bindings for the in-

teger and character simple object types, which are all that -

are needed for our first set of experimental applications,
Future prototypes will include a more thorough treatment
of bindings for simple object types, integrating more of the

-= This interface was generated by the UTM-0
-- Automated Generator Version 1.0.

-~ Input file: /u/oread/tarr/UTM/ceast.utm
-~ Date: JULY 5, 1989
-~ Time: 03:48:42

package CEAST Definitions is

type CEAST Node is private;
type Symbol is private;

type NodeKindName iS new String;
type AttributeName is new String;

function Create (TheKind : NodeKindName)

return CEAST Node;
procedure Delete (TheNode : in out CEAST Node);
function Kind (TheNode : CEAST Node)

return NodeKindName;

function GetSymbolAttribute
(TheNode : CEAST .Node;
TheAttributeName : AttributeName)
return Symbol;

procedure PutSymbolAttribute
(TheNode : in CEAST_Node;
TheAttributeName : in AttributeName;
TheValue : in Symbol);

private

end CEAST Definitions;

Figure 4: Part of the Ada Standard Interface Specifi-
cation (SIS) for CEAST.

features found in existing RLI type definition mechanisms.

5.4 Generating the SISs and Corre-
sponding Implementations

Using the straightforward mapping rules implied by each
language binding, it is not difficult to generate a standard
interface specification to the entities specified in a UTM-
0 description. However, it is considerably more difficult
to generate the actual implementations of those entities
(i.e., the underlying representations of object and relation-
ship types, and the code that implements operation types).
In our initial prototype realization, entities may be imple-
mented in one of two ways: with user-specified source code,
or by interfacing to an existing SIS for the entity that has
already been processed by the UTM-0 automated genera-

$800 0 U000 Ee000s0unretnrecertaretesstrtncerersssstesnnncesnsan
W A T T T T T T I T T

it This interface was generated by the UTM-0
i+ Automated Generator Version 1.0.

i Input file: /u/oread/tarr/UTM/ceast.utm
i+ Date: JULY 5, 1989
i3 Time: 03:51:33

(deftype CEAST Node 'FOREIGN-REFERENCE)

i Representation-level interface declarations:

i Entity Declarations:

(defun Create (TheKind)
(call-out Ada-Create TheKind))

(defun Delete (TheNode)
(call-out Ada-Delete TheNode))

(defun Kind (TheNode)
(call-out Ada-Kind TheNode))

(defun GetSymbolAttribute
(TheNode TheAttributeName)
(call-out
Ada-GetSymbolAttribute TheNode TheAttributeName))
(defun PutSymbolAttribute
(TheNode TheAttributeName TheValue)
(call-out
Ada-PutSymbolAttribute TheNode TheAttributeName
TheValue))

Figure 5: Part of the Lisp Standard Interface Specifi-
cation (SIS) for CEAST.

tor.

In the former situation, producing an implementation
corresponding to a given SIS is a relatively simple pro-
cess. The UTM-0 automated generator contains an addi-
tional language recognizer component for each of the rel-
evant implementation languages, which is used to parse
user-supplied implementations and turn them into a stan-
dard internal representation. The parsed implementations
are then used, along with the output of the language bind-
ing component, by the Janguage code generator to produce
the SIS and its corresponding implementation.

Figure 6a illustrates this case. To produce the Ada SIS
and corresponding implementation for the CEAST type,
we provided the UTM-0 automated generator with the
UTM-0 description of the CEAST type and an Ada pack-
age body that implemented the types and operations spec-
ified in that description. The package body itself had been
previously generated from a declarative description of the
CEAST graph type using our PGraphite tool {27]. The

automated generator then produced the approprinte Ada
SIS (Figure 4) and an implementation of that SIS using
the package body that we had provided.

Generating a corresponding implementation for a given
SIS when entities that it defines are to be implemented by
existing SISs is handled somewhat differently. When the
existing SIS is written in the same language as the one
being generated, it is not difficult to “import” the exist-
ing definitions and make the appropriate operation calls.
The real advantage of the automated generator, however,
becomes apparent when the existing SIS is written in a
different language, since this is when serious type corre-
spondence issues arise.

Figure 6b illustrates this case. To produce the Lisp SIS
and corresponding implementation for the CEAST type,
we provided the UTM-0 automated generator with the
UTM-0 description of the CEAST type and a specifica-
tion of the correspondence between various parts of the
UTM-0 description and parts of the Ada SIS. Although
we created the specification of the correspondence manu-
ally, a more powerful automated generator with a library
capability certainly could have automated the creation of
this information. The UTM-0 antomated generator then
produced the appropriate Lisp SIS (Figure 5) and an im-
plementation of that SIS consisting of calls to the opera-
tions provided in the Ada SIS (using the call-out function
supported in several implementations of Common Lisp).

To complete our SLI experiment, we modified the exist-
ing behavior and inequality generators to manipulate the
CEAST through the Lisp standard interface, instead of
through S-expressions. The resulting system configuration
is shown in Figure 6c. It is important to note that the be-
havior and inequality generators never “know” that they
are manipulating an Ada object, nor that they are call-
ing Ada operations. The underlying implementations are
hidden from the tools, having been completely abstracted
away by the SIS. This allows us the freedom to experiment
with a wide variety of different implementation schemes.

At present, we employ only the implementation strategy
illustrated by this example, wherein object and relationship
types that do not exist locally are implemented as “foreign
references” to the types defined in the SIS where they are
locally defined, and operation types are implemented as
foreign operation calls. We felt that this strategy was a
good one for experimentation, since it simplifies the prob-
lem of determining type correspondences. However, a large
number of possible alternative implementations exist, in-
cluding ones that would make use of RPC/XDR, NCS,
HRPC or Q. We recognize that our current implementa-
tion strategy forces an inter-language call to be made upon
each and every object/relationship/operation type access,
and this will probably be too expensive a solution for many
applications. For example, if a Lisp tool manipulates an
Ada binary search tree, our implementation strategy would
force an Ada operation call every time the Lisp tool wanted
to either examine or set values of attributes of nodes in the
tree. In some cases it might be more efficient, for example,

UTM-0 Description
of CEAST
UTM-0
o s Automated
Ada Binding
Generator
(Ada Binding)
R |
Underlying
(a)
UTM-0 Description
of CEAST
UTM-0
LISP Binding Automated
Information Generator
(LISP Binding)
Underlying
Implementation
Information
(LISP to Ada impl.
correspondence)
(b)

LISP Side

LISP Implementation
of CEAST SIS
{calls Ada SIS)

cscsavepenccans

Behavior
Generator

Inequality
Generator

Ada SIS to CEAST

Ada SIS to CEAST

Ada Implementation
of CEAST SIS
(as Ada package)

LISP SIS to CEAST

LISP Implementation
of CEAST SIS

(as calls to Ada package)

Ada Side

Ada Implementation
of CEAST SIS
(uses PGraphite-generated
implementation)

Deriver

Creates/iManipulates

(<)

Figure 6: Using UTM-0 to Achieve Interoperability with the Constrained Expression Toolset.

to copy the information from the Ada object to a local Lisp
object, which the Lisp tool would then access. We have
begun exploring ways to let the user select alternative, op-
timiged implementations, but in any event, the alternative
selected would be hidden from the tool.

6 Conclusion

Specification level interoperability provides a high-level,
representation-independent approach to combining soft-
ware components that are written in different languages
or that are run on different machines. At the very least,
SLI can serve as a basis for the disciplined and orderly mar-
shaling of interoperable components. If fully realized and
properly used, SLI can be a type-safe, extensible mecha-
nism offering some automated assistance in solving an im-
portant problem.

Our experiences with an initial prototype are extremely
encouraging. SLI has helped us solve some very real prob-
lems that we faced in constructing a large system made up
of diverse components. Our realization of the SLI approach
still leaves a great deal of room for improvement and exten-
sion, but it has already become clear that this work should
yield an important enabling technology for integrated, ex-
tensible, broad-scope environments in particular and large,
evolving, heterogeneous software systems in general.

Our plans call for the formulation of several additional
language bindings. We are currently working on bindings
for C, C++, and Prolog. C++ in particular should exer-
cise the UTM notions of inheritance and subtyping. We
are also looking into the development of a library of UTM
definitions, language bindings, and underlying implemen-
tations, together with a browser for that library. Having
a library and browser should make it easier to rapidly pull
together the pieces needed to effect the interoperability of
a given collection of components.

Acknowledgements

We appreciate the contributions made by Michel Bosco,
Lori Clarke, Dennis Heimbigner, Philip Johnson, Eliot
Moss, Leon Osterweil, and Stan Sutton to the work de-
scribed here. We also appreciate the comments and sug-
gestions provided by our other colleagues in the Arcadia
consortium. Susan Avery, George Avrunin, John Burnett,
Ugo Buy and Laura Dillon all contributed to the design and
implementation of the Constrained Expression Toolset. Fi-
nally, we would like to thank Alexander Wise for his invalu-
able assistance in producing figures.

At the University of Massachusetts, this work was sup-
ported in part by the National Science Foundation (CCR-
87-04478) with cooperation from the Defense Advanced
Research Projects Agency (ARPA order 6104).

References

(1] Special Issue on the Interface Description Language
IDL. ACM SIGPLAN Notices, 22(11), November
1987.

(2] T. Andrews and C. Harris. Combining Language and
Database Advances in an Object-Oriented Develop-
ment Environment. In OOPSLA Conference Proceed-
ings, pages 430--440, October 1987. Published as ACM
SIGPLAN Notices, vol. 22, no. 12, December 1987.

(3] Apollo Computer Inc., Chelmsford, MA. Network
Computing System: A Technical Overview, 1989.

[4] G.S. Avrunin, L.K. Dillon, and J.C. Wileden. Experi-
ments in Automated Analysis of Concurrent Software
Systems. In Proc. ACM Software Testing, Analysis
and Verification Symposium, December 1989, To ap-
pear.

[5] E. Balkovich, S. Lerman, and R.P. Parmelee. Com-
puting in Higher Education: The Athena Experi-
ence. Communications of the ACM, 28(11):1214-
1224, November 1985.

[6] B.N. Bershad, D.T. Ching, E.D. Lazowska, J. Sanislo,
and M. Schwartz. A Remote Procedure Call Facil-
ity for Interconnecting Heterogeneous Computer Sys-
tems. IEEE Transactions on Software Engineering,
SE-13(8):880-894, August 1987.

[7) A.D. Birrell and B.J. Nelson. Implementing Remote
Procedure Calls. ACM Transactions on Computer
Systems, 2(1):39-59, February 1984.

[8] A. Black, N. Hutchinson, E. Jul, and H. Levy. Object
Structure in the Emerald System. Technical Report
86-04-03, University of Washington, Department of
Computer Science, April 1986.

[9] L.A. Clarke, J.C. Wileden, and A.L. Wolf. Object
Management Support for Software Development En-
vironments. In Proc. 1987 Appin Workshop on Per-
sistent Object Stores, pages 363-381, July 1987.

[10] A. Dearle, R. Connor, F. Brown, and R. Morrison.
Napier88—A Database Programming Language? In
Proc. 2nd International Workshop on Database Pro-
gramming Languages, pages 213-229, June 1989.

[11] P.B. Gibbons. A Stub Generator for Multilanguage
RPC in Heterogeneous Environments. IEEE Trans-
actions of Software Engineering, SE-13(1):77-87, Jan-
uary 1987.

(12] R. Hayes, S.W. Manweiler, and R.D. Schlichting. A
Simple System for Constructing Distributed, Mixed-
language Programs. Software—Practice and Experi-
ence, 18(7):641-660, July 1988.

[13] M. Herlihy and B. Liskov. A Value Transmission
Mecthod for Abstract Data Types. ACM Transactions

on Programming Languages and Systems, 4(4):527-
551, October 1982.

(14]

(15}

(16]

(17

18]

{19)

(20)

21)

(22]

(23]

(24])

(25]

M.B. Jones, R.F. Rashid, and M.R. Thompson.
Matchmaker: An Interface Specification Language for
Distributed Processing. In Proc. 12th ACM Sympo-
sium on Principles of Programming Languages, Jan-
uary 1985.

S.E. Keene. Object-Oriented Programming in Com-
mon LISP: A Programmer’s Guide to CLOS. Addison-
Wesley, 1989.

B. Liskov, T. Bloom, D. Gifford, R. Scheifler, and
W. Weihl. Communication in the Mercury System.
Programming Methodology Group Memo 59-1, Labo-
ratory for Computer Science, Massachusetts Institute
of Technology, Cambridge, Massachusetts, April 1988.

B. Liskov and R. Scheifler. Guardians and Actions:
Linguistic Support for Robust, Distributed Programs.
ACM Transactions on Programming Languages and
Systems, 5(3):381-404, July 1983.

M. Maybee and S.D. Sykes. Q: Towards a Multi-
lingual Interprocess Communications Model. Techni-
cal report, University of Colorado, Boulder, Colorado,
February 1989.

J.H. Morris, M. Satyanarayanan, M.H. Conner, J.H.
Howard, D.S.H. Resenthal, and F.D. Smith. An-
drew: A Distributed Personal Computing Environ-
ment. Communications of the ACM, 29(3):184-201,
March 1986.

W.R. Rosenblatt, J.C. Wileden, and A.L. Wolf.
OROS: Toward A Type Model for Software Devel-
opment Environments. In OOPSLA Conference Pro-
ceedings, pages 297-304, October 1989. Published
as ACM SIGPLAN Notices, vol. 24, no. 10, October
1989.

M. Stonebraker, E. Wong, P. Kreps, and G. Held. The
Design and Implementation of Ingres. ACM Transac-
tions on Database Systems, 1(3):189-222, September
1976.

Sun Microsystems, Inc., Mountain View, CA. Exter-
nal Data Representation Reference Manual, January
1985.

R.N. Taylor, F.C. Belz, L.A. Clarke, L.J. Osterweil,
R.W. Selby, J.C. Wileden, A.L. Wolf, and M. Young.
Foundations for the Arcadia Environment Architec-
ture. In Proc. 3rd ACM SIGSOFT/SIGPLAN Sym-
posium on Practical Sofiware Development Environ-
ments, pages 1-13, December 1988. Published as
ACM SIGPLAN Notices, vol. 24, no. 2, February
1989.

D. Vines and T. King. Gaia: An Object-Oriented
Framework for an Ada Environment. In Proc.- 3rd
International IEEE Conference on Ada Applications
and Environments, pages 81-92, May 1988.

B. Walker, G. Popek, R. English, C. Kline, and
G. Thiel. The LOCUS Distributed Operating System.

In Proc. 9th ACM Symposium on Operating System
Principles, pages 49-70, October 1983.

(26)

{27

(28]

[29)

30}

1.C. Wileden and A.L. Wolf. Object Management
Technology for Environments: Experiences, Oppor-
tunities and Risks. In Proc. International Workshop
on Environments, September 1989. to appear.

1.C. Wileden, A.L. Wolf, C.D. Fisher, and P.L. Tarr.
PGraphite: An Experiment in Persistent Typed Ob-
ject Management for Environments. In Proc. 3rd
ACM SIGSOFT/SIGPLAN Symposium on Practical
Software Development Environments, pages 130-142,
December 1988. Published as ACM SIGPLAN No-
tices, vol. 24, no. 2, February 1989.

J.C. Wileden, A.L. Wolf, W.R. Rosenblatt, and -
P.L. Tart. UTM-0: Initial Proposal for a Unified
Type Model for Arcadia Environments. Arcadia De-
sign Document UM-89-01, Department of Computer
and Information Science, University of Massachusetts,
Ambherst, Massachusetts, February 1989.

Xerox Corp., Palo Alto, California. Courier: The Re-
mote Procedure Call Protocol, Technical Report XSIS
038112, December 1981.

S.B. Zdonik and P. Wegner. Language and Methodol-
ogy for Object-Oriented Database Environments. In
Proc. 19th Annual Hawaii International Conference
on System Sciences, pages 378-387, 1986.

