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Abstract

We propose that constructing global spatial organizations from individual token trajec-
tories is a powerful technique for motion and structure interpretation. Recovering 3D
motion and structure from grouped trajectories has many analogies with 3D structure—
from-contours in static imagery, which have not been made explicit in the 3D scene in-
terpretation and motion vision literature. Our proposal is also similar to Stevens’ [25]
idea of strongly suggested geometric groupings in Glass patterns. Additionally, for our
motion model, the grouped trajectories exploit the symmetry inherent in the motion. We
demonstrate our approach through a two-stage process of image description of the motion
of tracked points and their 3D interpretation from the resulting image trajectories. We
solve for the scene motion and structure parameters for a set of 3D points rotating rigidly
around an arbitrary axis. Instead of using individual point correspondences directly, we
fit conic section curves to grouped sets of point correspondences and compute, in closed
form, the 31) motion and structure parameters using the quadratic form matrix represent-
ing each conic. We also present an algorithm to obtain stable and robust conic fits to
spatially proximal grouped point sets constrained locally by similarity of some parameters.
In contrast, the descriptions from individual fits are highly unstable and practically useless
for any 3D interpretation.



1 Introduction

Image motion in dynamic images is an important cue for 3D scene and motion understand-
ing. However, temporally local descriptions of image motion in terms of point displace-
ments have proven to be inadequate for the varied tasks of dynamic image understanding.
We propose here instead that coherent motion and scene structure percepts can be derived
from temporally-extended global geometric structures in the image motion. Our approach
makes the image geometry of motion explicit in terms of token trajectories as a prelude
to scene structure and motion interpretation. Specifically, we study reliable descriptions
of extended- time image trajectories of points and recovery of the 3D motion and struc-
ture for a single rigid rotation using these image trajectories under perspective projection.
Henceforth, we call the set of image correspondences over time for a single point its point
track and a smooth curve fitted to this set its point trajectory. We will demonstrate that
point tracks considered independently provide very weak constraints on the 2D trajectory
and hence on the corresponding 3D trajectories. We therefore argue for the necessity of
grouping individual image trajectories into constrained curve fits exploiting proximity and
similarity in their 2D descriptions and the symmetry of the 3D motion. From these curves
the 3D motion and structure can be accurately represented and recovered.

First, a method for reconstructing in closed form the 3D trajectory of a point rotating
rigidly around a fixed axis given its image trajectory is described. For this method 4o
succeed, a reliable estimate of a substantial portion of the full 360° image path is needed,
since the accuracy of the trajectory fit degrades drastically for small segments. The 3D
structure and motion of a rotating object can be completely recovered in this way, up

to a single unavoidable scale ambiguity, if many points on the object are tracked. Note



that the rotational motion studied here is not limited to one for which the axis of rotation
has to pass through the origin of the camera-centered coordinate system. Hence, it is
possible to recover the object structure when it is moving under off-centered rotation. In
the terminology of two—frame motion descriptions, an off—centered rotation is equivalent
to a rotation around an axis through the origin and a translation and thus contains the
structure information.

We also present a grouping-based trajectory description algorithm which combines fits
to multiple image point tracks based on locally common constraints and leads to good
curve descriptions. Ample demonstrations of the contrast belween poor trajectories for
individual point tracks and good ones obtained from the combined fits are presented. Fur-
thermore, we suggest, without a demonstration yet, that our constraint-based trajectory
fitting along with clustering for the 3D parameters can lead to 3D interpretation of multi-
ply moving objects. Using these combined fits and exploiting the symmetry of rotational
motion, we can in turn make the approximate symmetries inherent in the scene explicit.

For small rotations, motion and structure recovery on the basis of short individual point
tracks fails. We emphasize that this failure is intrinsic, not an artifact of a particular fitting
routine, and that it provides a compelling argument for the necessity of grouping in motion
interpretation. There is also an interesting analogy with the psychophysical literature on
deriving global percepts from geometrical organizations. Qur proposal is similar to Stevens’
[25] idea of strongly suggested geometric groupings in Glass patterns. In the psychophysical
motion literature, our work attempts to give a computational framework to Todd’s [26]
interesting study of perception of global regularities in rigid and non-rigid motion. Motion

interpretation from point displacements grouped into motion contours also has obvious



analogies with 3D structure-from-contours in static imagery — for instance computing the
FOE is comparable to determining the vanishing point in static images.

Although it is particularly easy to envisage the appropriate global organizations for
simple motions like pure translation and rotation, the power of the idea that coherent 3D

percepts arise from global structure seems general and compelling.

2 Comparison To Related Work

The standard two frame approach to the computation of 3D motion and structure requires
minimal assumptions, but does not permit natural descriptions of motions. For instance,
the motion of a purely rotating soccer ball will typically be described in terms of a rotation
around an axis passing through the camera center rather than through that of the ball.
It can be argued that the second, natural description can be constructed from a series of
two-frame rotation and translation computations, but the robustnes;s of this is questionable
when each computed pair is itself obtained through a non-linear constrained optimization.
In our case, it can be argued that the particular natural description of 3D motion emerges
out of the particular organization discovered in the image motion. If groups of image
trajectories are coherently describable as conic curves, then this provides a strong non—
accidental constraint that the underlying 3D motion is a rigid pure rotation and not a more
complex composite motion. Hence the trajectory description process makes the type of
the underlying 3D motion explicit in its more natural form vis-a-vis the two—frame motion
interpretations. For a comprehensive survey of many of the two frame approaches see
Barron |6].

Another problem with two frame approaches is that structure computation is based



only on one displacement measurement for each feature, so that depth recovery may be
erroncons even for correctly determined motion parameters. This problem is ameliorated
for known motion, or motion with a sterco camera arrangement, since then the two frame
depth computation can be incrementally refined [14].

One can also hope to overcome these problems by explicitly posing the 3D interpretation
problem as a multi-frame problem, but this typically requires constraints on the motion,
for instance that motion parameters remain constant over a period of time. Weng et
al. [29], Chellapa et al. [32], Shariat [23] and Pavlin (18] use various forms of motion
constancy over time and solve for the underlying 3D motion and/or structure parameters
using a variety of non-lincar parameter estimation techniques. Sethi et al. [22] find
multiple globally smooth image trajectories but do not impose a model of motion and do
not solve for the 3D parameters. Webb and Aggarwal (28] solve for the parameters of
rotational motion using ellipses, but they are limited to orthographic projection only. Our
solution is for perspective projection. Jaenicke [12] applies Webb and Aggarwal’s method
to radar doppler images. He does constrained fits on trajectories by averaging the common
parameters over individual fits. But this method works only if the individual trajectories
themselves are good which is the case in his examples. In contrast, our common fits do not
rely on the goodness of individual fit parameters at all. Our approach is similar to those
above but potentially applicable to less—constrained motions, since it makes use of spatial
information to supplement temporal correspondences, and thus requires fewer frames and
a shorter period of motion constancy. Moreover, this approach may be an important first
step not only for 3D parameter estimation but also for detecting occlusions/deocclusions

and object segmentation. A related approach to detecting occlusions is that of Baker et



al. [5]. For a survey of various multi-frame approaches see Aggarwal et al. [2].

At the outset, we caution that many of the cited works treat more general models
of motion than the one considered here. However, we hope to generalize it beyond the
demonstration model studied in this paper. It has implications not only for a robust
approach to 3D motion and structure computation, but also for a unified view of 2D
grouping and 3D interpretation.

An innovation of our approach is that we demonstrate the necessity of grouping distinct
point trajectories even for obtaining accurate individual descriptions when the latter alone
are absolutely unreliable. Furthermore, the closed—form solution for perspective projection
is new. We show how linking local image trajec;;ories into global spatial organizations can
lead to good qualitative and quantitative motion percepts. For instance, Fig. 1 depicts
imaged points on two spheres rotating around different axes. The point tracks immediately
suggest geometric organizations (elliptic arcs) similar to Glass patterns (see Stevens [25]).
For rotations, each track of a point is a conic section curve. Our approach envisages
grouping individual point tracks on the basis of smoothly varying relations among the
2D parameters describing these tracks, i.e. based purely on image plane characteristics.
The result can be exploited to provide .powerful constraints on a globally coherent motion
and the underlying 3D structure, as demonstrated in this work. The process of combined
trajectory description across point tracks makes the non-accidental relation of a coherent
underlying 3D motion explicit amongst various trajectories. More complex motions and

grouping relations are under study.
In the next three sections - 3,4 and 5 —~ we formulate and present a closed—form solu-

tion to the 3D estimation problem under rotational motion. Section 6 discusses multiple



solutions and their disambiguation. Our grouping algorithm and its demonstrations on a
real image sequence form the core of section 7. In section 8, we present the 3D estimation
results. Section 9 wraps up this presentation with a summary and discussion of ongoing

and future work.

3 The Problem: A Rotating Rigid Body in Space

We consider the case of a sequence of images of a rotating rigid body in space or the
camera rotating around an arbitrary axis with respect to a fixed environment. Image point
correspondences are assumed given over a period of time, and the camera parameters are
known. The problem to be solved is that of determining the orientation and location of the
rotation axis, and, for each point the location of its 3D trajectory. We assume perspective
projection, and, for simplicity, a square image.

A set of parameters sufficient to define the problem geometry is depicted in Fig. 2 :

b Unat vector in the direction of the rotation azxis.

¢ : Location vector of the rotation azxis, given by the point where the axis
intersects a plane normal to it that passes through the origin.

T : (2,¥,2), Location vector of a 3D point on the body.

d : Location of the center of the circular 3D trajectory of a body point, given by its signeci
distance from the point ¢ and measured positive in the positive z — direction. f
k : Radius of a circular 3D trajectory,k > 0.

f : Focal length of the camera.

&

(X,Y, f), image vector in homogeneous pizel coordinates.



This parameterization allows an easy separation of motion from structure parameters. We
represent a vector as ¥, a unit vector as  and v as the corresponding column vector.
Quantities enclosed in square brackets , e.g. [M], represent matrices.

The rotation axis can be specified using a minimum of four parameters [20]. Two addi-
tional parameters specify each circular trajectory of a body point relative to the rotation
axis. These unknowns can be determined from the images only up to an arbitrary scale
factor, the knowledge of which fixes the values of all parameters. Thus, for n 3D trajecto-
ries, there arc 2n { 3 determinable unknowns. Each image point in each frame gives one
constraint equation assuming that the motion does correspond to the model under con-
sideration, namely rigid rotational motion. The'refore one 3D point imaged in five frames,
two 3D points imaged in four frames, or more than two 3D points all imaged in more than
two frames, provide adequate information for a solution. In order to provide robustness
in the face of noise in image measurements and small model deviations, however, more

information (i.e. more frames) is necessary.

4 Formulation

An outline of our approach to the problem described above is as follows :

e An expression giving explicitly the perspective projection onto the image plane of a

circular trajectory in space is derived. This projection is a general conic section.

e Conditions determining the type of the conic section of the pro jection are specified.

e Using a general conic fit algorithm, the sequence of image points identified with the

motion of a single body point is fit to a conic scction. This requires at least five



frames for each body point. The conic section is represented as a quadratic form in

the homogeneous image coordinates.

e The 3D trajectory of the point is then solved for in closed form in terms of the conic

section fit to the ii;nage data, up to an apparent cight -fold ambiguity.

e Six of the eight possible solutions can be rejected by invoking the scene-in—front--of-

image criterion, or because they duplicate physically the other solutions.

¢ The remaining twofold ambiguity can be resolved by requiring that different 3D

trajectories share the same axis of rotation.

e Finally, we obtain a best--fit for the axis of rotation by combining information from

all 3D points.

We first derive an expression for the image plane projection of a circular trajectory in
space parameterized as depicted in Fig. 2. It is evident that our parameterization obeys

the following conditions :

(7 — &) — dib) - (7} — &) — dib) = k? (1)

7i-b=d; (2)

o>
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I

[

éh=0 (3)
The index 7 specifies the particular 3D point on the rigid body; we will drop it in the

following treatment where there is no ambiguity in doing so.

The perspective equation in homogeneous coordinates is :
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From Equation (2) , using similar triangles, one obtains :

L

—R 5
Bi (5)

(The degenerate case where d = R-b = 0 causes no difficulty and is discussed later.)

Substituting Equation (5) into Equation (1) and rearranging terms, we get :

2 . D. =
_.d. R~R—2d€f+6'-é'—dz—k2=0 (6)
(R-b)2 R-b

After multiplication through by (R - b)?, this can be rewritten in terms of a symmetric

quadratic form matrix. In boldface notation :
RT| d*(1) - d| cb” - beT |+ (cTe - d? - k?)[bbT] |R =0 (7)

This equation represents a general conic in X and Y, the image plane coordinates. The
linear and constant terms in the standard form of a conic [17) are included in this expression

since R is in homogeneous form and includes a constant term. Thus, given a circle as the

3D trajectory of a point, the expected image pro jection is determined by the matrix :
(M.opy] | d2[1]  d[cbT + beT] + (cTc - d* - k*)[bbT] | (8)

The image will be an cllipse if the full circular 3D trajectory lies on the positive z side
of the xy plane, i.e. if all points on this circle have positive z component. The image will
be a hyperbolic arc when the 3D circle intersects the xy—plane in exactly two points. The
four possible directions of approach to these intersections determine the four asymptotes
in the image planc. Finally, when the 3D circle is tangent to the xy-plane, the imaged

arc is a section of a parabola. Again, the two possible directions of approach towards the



tangent point generate the two paths which become unbounded in the image. In the latter
two cases, the image trace — i.e. the image projection of a 3D trajectory — is not closed.
In the first case of an ellipse, the image trace may be either a closed curve - a complete
ellipse - or an open partial ellipse.

Equation (7) specifies the imaged conic section corresponding to a 3D circle. Below,
we show how starting from a conic section in the image plane, one can recover the 3D
circle of which it is the projection, up to a scale ambiguity. Thus, given our model of rigid
rotational motion, if it is possible to describe reliably a point’s image track over time as
a conic section trajectory, its 3D circular trajectory can also be determined. In a realistic
scenario where only a small part of a single point;’s track may be available, the conic section
fits tend to be locally accurate but globally erroneous. However, we will show that by doing
spatio-temporal groupings across multiple point tracks, good globally correct image conics

can he described and hence fairly correct 3D parameters exiracted.

5 Solution

An arbitrary conic section in the image plane can be specified by a quadratic form as in
Equation (7), with a symmetric 3-by-3 matrix [Mcom]. The matrix [Meom) is derived from
the image data by a best fit. The corresponding 3D circle is determined by computing
the values of the 3D parameters d, k, c, b that yield a matrix [M..p] specifying the same
conic section as [Mcom]. Note that any scalqr multiple of the matrix [M..p| specifies the

_same image curve, so that the 3D parameters can only be recovered up to a multiplicative

ambiguity. This is the scale ambiguity mentioned earlier: only the ratios dp, kn, ¢, and b
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are recoverable, where

dp = i kn= = G=

— — cTe, =1 9
H H n )

(We are assuming here that the rotation axis does not pass through the origin, i.e. that ¢
is not the zero vector. This case is easily distinguished from the image data, and will be
treated separately.)

Since the absolute magnitudes of the 3D parameters can not be determined, we rescale
[M.zp] by the magnitude squared of the location vector ¢. The rescaled matrix can be

written in terms of the recoverable ratios :

[A"lemlrl - ' drzlll o (lnlcan + bc:] + (1 - d|21 - k:)[bbT] ] (10)

The ratios are computed from the image data by requiring that [Me,) is equal to
[Meom| up to a scale factor, which can also be found. We use our grouping algorithm to
determine [Mom|. For cach point, the resulting best fit conic section to the path of its
image projections is specified and represented by a matrix [Meom]-

5.1 Axis Through Origin

We first consider the simpler case where the rotation axis passes through the origin. Then

the expected conic form matrix is :
[Mezp) = [ 1] - (4 + k?)[60T] | (11)
As above, we normalize this by d, assuming it is non-zero, and write the matrix in terms

of the ratio k/d which is recoverable. (The solution for the special case when d is zero

11



follows trivially from the non-zero case.) The normalized matrix is :

k2 o
(Meapl = o] [1] = (14 5)[bb7] (12)
(L

We have included a scale factor a to represenl explicitly the multiplicalive ambiguity
discussed above.

The eigenvalue-eigenvector pairs for this matrix are :

k
A= —oe(-c—i)2 =a A=u n,=b n,=mn, n,;="mn, (13)

where n, and n3 are any two independent vectors in a plane normal to b. Note that two
eigenvalues are identical and the third one is of a different sign and magnitude. In the
more general case where the rotation axis does not intersect the origin this redundancy of
the eigenvalues will not occur.

In order to recover the 3D parameters of the trajectory from the image data, we compute
the eigenvalues of the matrix [Mom] derived from the conic fit algorithm. If two of the
eigenvalues are same and third one is different in magnitude and of opposite sign, this
implies that the sequence derives from a point rotaling around an axis passing through the
origin. Let the eigenvalues of [Mcom] be Ay, and Az = X3, Since [Meom] = [Mesp| (after
adjustment of the scale factor a), these eigenvalues can be identified with the eigenvalues

of [M.zp) calculated above. Then,

k
a =M (or A3) &-:i —— (14)

and b is the unit eigenvector for A;. Without loss of generality, b can be forced to lie in

the hemisphere of positive z directions. Then a unique sign for k can be determined by
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invoking the fact that the imaged 3D trajectory must lie in front of the camera. For the
more general case, the resolution of this type of sign ambiguity will be discussed at length.
Hence, for this case there is a unique, closed—form solution for the circular trajectory

in space given [M_om|, the conic section fit to the image point sequence.

5.2 Generic Case: Rotation Axis Not Through Origin

As in the special case above, we determine the 3D trajectory of a body point by identifying
the eigenvalues of [M..,| computed in terms of the 3D parameters with those of the image-
derived matrix {Mcon|. For convenience, we rewrite [M,.,] with an explicit factor a as in

the previous section and drop the subscript indicating ratios :
|Mzp| = a| d?|1] - d|eb” + beT| + (1 — d? — k?)[bbT] | (15)

We first derive the eigenvalues of this matrix. As b and ¢ are orthogonal, a rotated

coordinate system can be chosen in which :
b ==1001] ¢=1[010] (16)

[t is a standard result of linear algebra that the eigenvalues of a matrix remain the same and
can be computed in an arbitrary rotated coordinate system. After substituting Equation

(16) into Kquation (15), [Al.,] has the simple form in this rotated system :

d 0 0
M, =c|l0 & -d
0 —d 1-k?

The three cigenvalues of this matrix are :

M = ad (17)

13



A2

5 (L4 =)+ (1+d - k22 + 4d2k? ) (18)

ds = %((1+d2_k2)— J (1+d2 — k2)2 + 4d2k2 ) (19)
For o positive, A; and ), are positive and )A; is negative, except in the degenerate case when
d = 0, corresponding to an image trajectory that is a degenerate conic, i.e. a straight line
segment. We always choose to have a positive, and thus, for consistency, normalize the
computed matrix [Mom] similarly so that only one of its eigenvalues is negative and two
are positive. Hence the negative eigenvalue of [M,,m,| can be uniquely identified with A;.
Also, the larger of the two positive eigenvalues of [Mcom| can be uniquely identified with
Az, which one can show is always larger than A; except possibly in the degenerate case.
The three eigenvalues of [M_om) can therefore be assigned unambiguously to A1, A; and
A3, corresponding to Equations (17), (18) and (19), respectively, and the 3D parameters d,
k and o can be solved for in terms of these eigenvalues. Let v, = A;/A; and 72 = A3/ .

Then :

1 A
k* = -y17.d? o = o

2
d ol

Tt -mr -1

(20)

Thus d and k are specified up to a sign ambiguity in d. We discuss the sign ambiguities of

our solution in the next section.
b and c can also be obtained as follows. It is evident from Equation (15) that one of

the eigenvectors of [M,,,p| is a vector n, normal to the plane formed by b and c. Since n,

satisfies :
[Mezpt, = a d®n, = An, (21)

it is associated with the eigenvector A; . The other two eigenvectors n, and n, with

14



associated eigenvalues A, and A3, respectively, must span the plane formed by b and c,

since all the eigenvectors are mutually orthogonal. Therefore :

¢ = cosf ny +sin 0 g b=sinf A, — cos @ fs (22)
Further,
[Meomle = [Megple = ad’c—adb = Aycosf n, + A3sinf ng (23)

[Meom|b = [Megplb == - adc+ al - k*)b = Aysind n, — Azcosf n, (24)

Substituting Equation (22) into (23) and (24), one obtains :

tana_adz—/\z_ ad ad Az —a(l —k?)

ad  M-ad  a(l-k?)-A ad

(25)

Thus, tan @ can be computed in closed form in terms of the image parameters up to the
sign ambiguity in d. It follows that b and ¢ can also be obtained in closed form up to sign
ambiguities, by solving for the eigenvectors n, and nj of the image conic form matrix,
which are identified unambiguously by their respective eigenvalues.

[lence, apart from the sign ambiguities, all the 3D parameters of the trajectory can be
uniquely computed in terms of the eigenvalues and eigenvectors of [Meom], the computed

image conic form matrix.

6 Multiple Solutions

There are two solutions for d in Equation (20). For each of these, there are four solutions

for b and ¢ from the four sets of signed values of n, and n; in Equation (22). These eight

15



solutions can be written as two sets of four, each corresponding to the same k :

Sy = ‘{{blacladl}: {"bla"'chdl}'l {bii_'ch '”"l}$ { bl!clv'd"f}}

Sy = {{b2,02,d1}, {—bzr“cz,dl}, {bz,"“czr“dl}, {"(’2,C2s"d1}}

The ambiguity within each set of four is evident, since the different signed values [or the
parameters all lead to the same computed conic form matrix in Equation (15). To see
the relation between the; two sets of solutions S; and S, refer to Fig. 3. Reflecting each
of {b;,c;} in S; across any one of the eigenvectors, n, or ms, leads to a corresponding
solution in the other set. Fig. 3 depicts one of these reflections across ns. The result
of this reflection again yields a conic form matrix with the same sets of eigenvalues and
eigenvectors. Hence, given the measured image conic form matrix, these eight indeed are
solutions. Within the constraints of Equation (3), these are the only possible solutions
because they exhaust all options in the representation of the given conic form matrix in
terms of its eigencomponents, which in turn is a complete representation.

The apparent eight—-fold ambiguity found aboveis not real. Since {b,c,d} and {-b,c, —d}
represent the same point along the rotation axis, four of the above solutions simply du-
plicate physically the other four. This ambiguity can be eliminated by our convention
that the vector b always lies in the positive z—component hemisphere. This leaves two
remaining solutions in each set. We next impose the constraint that a 3D point must lie
in front of the image plane in order to be imaged. [11]. From Equation 5, this implies that
8= % must be positive. If the parameter pair {b,d} salisfies this constraint, then the
alternate set {—b,d} cannot. Thus, two more solutions are eliminated, one from each set.
The remaining two solutions, one from each set, cannot be disambiguated from the image

trace of one point alone. This is similar to the well known ambiguity of two—frame motion
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computation for a planar set of points ( see [16]).

However, multiple image trajectories of 3D points rotating rigidly around a common
axis can be used to resolve this ambiguity. The true solution for the axis will be common
to all the points, while the second, incorrect solutions will be unique for each 3D point.
The true solution is therefore easily picked out. The reason for the mismatch among the
incorrect solutions is that, as illustrated in Fig. 4, the eigenvectors n, and nj of the
matrix [M,,m| are different for each 3D point except when the axis b passes through the
origin, which anyway can be handled differently as shown earlier. These vectors span the
plane formed by the true b and c. Hence, the b and c solutions common to all 3D points
make different angles with their respective spanning eigenvectors. As the second incorrect
solutions are obtained by reflecling the true b and ¢ across an eigenvector, clearly these
solutions will be different for each 3D point. This is shown for two points in Fig. 4. Hence,
ihe correct solution can be identificd by combining information obtained from several
image trajectories assuming they have already been segmented as a single rigid motion.
In the presence of noise, the algorithm’s ability to discriminate the true solution among
the solutions for multiple trajectories will be limited by the similarity in their structure

parameters.

7 Grouping Algorithm and Experiments

The goal of our grouping algorithm is twofold - to obtain reliable conic fits to individual
image point tracks and [urther to make the similarities or dissimilarities across point
trajectories explicit. Robust fits to point tracks leads to good estimation of 3D parameters.

Explicit description of similarities across point trajectorics gives us the potential Lo group

17



&aﬁous trajectories into a single object motion, to detect outliers and possibly detect
multiple object motions.

Our algorithm is based on doing constrained conic fits to a set of point tracks instead of
individual fits. We observe that locally in space the projection can be well approximated
by a weak perspective. We also assume that point tracks proximal in the image plane are
proximal in the scene too. Any errors due to this assumption can be weeded out by the
combined fit algorithm. Under these general assumptions, conic fits to proximal image
trajectories are constrained to have three of their five parameters the same — they should
possess the same orientation and eccentricity and their centers should be collinear. Thus
for a given set of proximal point tracks, we solv.e for the three common parameters across
the set and two individual parameters for each trajectory.

There are two steps to the grouping. The first step, the linking stage, chooses a set
of point tracks which are locally proximal and similar. Similarity is defined locally by a
common direction of motion and approximately the same curvatures. For the demonstra-
tions in this paper, we do this step manually. We are experimenting with automating the
linking stage currently.

The second step is the incremental combined fit step. The linking step simply limits
the problem size presented to the second step and hence reduces the time complexity of the
fitting step. The goal of the constrained combined step is to find the maximal set within
the input set of point tracks which can be described by good conic fits. A new point track is
added each time and a combined fit tried. We also require that the combined fit not result
in an unacceptably high fit error to any single trajectory. The error variance obtained

through fitting conic sections to individual point tracks is used as a datum to compare the
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fit errors resulting from combined fit for each trajectory. The rationale behind this is that
although the parameters of individual fits are bad, the variance of fit error indicates how
well the underlying data can be described by the chosen model of motion. The instability
in the fit parameters is due to extrapolating a point track beyond its tracked length.
However, the fit errors resulting out of the independent fit algorithm are small. So the fit
error for each point track obtained from the combined fit parameters should be within a
small factor (we choose 3 for the experiments here) of this error. We accept a combined fit
only if all the participating trajectories satisfy this criterion. This process of assimilating
new point tracks is repeated until no more can be added. Note that at every new fit step,
all the previously accepted point tracks particiﬁate afresh with the new one. Linking thus
becomes important in reducing the problem set to be tried in the fitting stage.

For the purposes of combined fit, we parameterize conic sections to explicitly represent
the common and different parameters. The collinearity of centers and common orientation
is represented by a line parameterized by p and 6. Eccentricity is the third common
parameter. The two distinct parameters are [;, the location of the conic center along the
common line and ¢;, the location of a focus from the center along a perpendicular direction.
Fig. 5 depicts this parameterization. The error measure we choose to minimize based on
this parameterization uses the constraint that a conic section is the locus of points the ratio
of whose distances from a fixed point, the focus, and a line, the directrix, is a constant

equal to its eccentricity.

fi=PF! - PD? =0 (26)

where PF; is the distance of a point from a focus and PD; its distance from the corre-
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sponding directrix. In terms of our parameterization,
PF? = (z; - cicosf - pcosf + l;sin8)? + (y; - c;sinf — psin @ — I; cos 8) (27)

PD} = ((p+ ci/e®) ~ (i cos 8 + y; sin §))? (28)

where (x;,y;) are the image point coordinates. We minimize,
Zfiz(piavezalisci) (29)

over all the point tracks in the current set under consideration. We use an implementation
of the BFGS-DFP quasi-Newton [30] optimization method for this fit problem. The initial
guess for the very first combined fit comes from the individual fits and once a combined
fit is found to the first subset, its parameters serve as initial guess.

An outline of our algorithm follows. Given a linked set of point tracks,

Step 1: Sort in decreasing order the arc lengths obtained by pongonal approximations
of the point tracks. (Longer arcs constrain the fits better).

Step 2: Fit conics to each point track independently and record the error variance.
(Done in two stages — Closed form fit first using Bookstein’s algorithm [8] and then a fit
minimizing square of a first order distance approximation using the first as initial guess.)
[See Appendix].

Step 3: Set NTRY = 4 and CYCLE = 1 for the first NTRY point sets. (Try first four
initially).

Step 4: Try a combined fit on the first NTRY point sets.

Step 5: If the fit method did not converge OR the fit errors for each point track are

above the allowed range compared with the individually recorded errors, GO TO Step 7.
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Step 6: If fit successful,
Step 6a: If no more points left, EXIT.
Step 6b: Else, CYCLE++, NTRY++. Set CYCLE flag for NTRY points. GO
TO Step 4.

Step 7: If this was the last point, EXIT with maximal set one less than the full one.

Step 8: Get the next untried point track which should have CYCLE flag less than the
current one. Swap it with the last point and GO TO Step 4.

Step 9: If all points have been tried for this CYCLE. EXIT with NTRY-1 points
combined.

We first describe our experiments with groubing. Fig. 6 and 7 show 256-by-256 image
frames 1 and 10, respectively, of a chequered box which was rotated around an arbitrarily
chosen fixed body axis using a cartesian robot arm. Rotation between each frame was
approximately 4°. The object was imaged, using a 16mm. focal length lens ‘on a CCD
camera with FOV approximately 24°, at a distance of approximately 60cm. Corner points
defined as intersections of pairs of lines were tracked over the sequence using the robust
linc-tracking system of Williams and Hanson [31]. This system incorporates the straight-
line detection algorithm of Boldt and Weiss [7] and dense displacement fields computed
between two successive frames using an algorithm by Anandan [4]. Detected straight lines
are projected into successive frames using the displacement field, and a directed—acyclic-
graph (DAG) of line correspondences over time is constructed. Line intersections are then
tracked through this DAG representation. Figs. 8 and 9 show the sampled displacement
field between frame 1 and 2 and a sample of tracked line segments, respectively.

In Fig. 10 are shown resulting sample sets of tracked points. This figure motivates our
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idea of Glass—pattern like organizations present in the geometric structure of image molion.
The displacement fields beiween any two frames fail to make the perception of rotational
motion clear but the extended-time point trajectories and similarities across them makes
this percept compelling. Fig. 11 shows the result of describing a few individual tracks
through fitted conics. Although the tracks represent nearly 80 degrees (20 frames) of the
3D circular arc, still the image conics fail to make explicit the common motion geometry
across different point sets. The individual fits are very good though. However, the next
four Figures 12-15 show the results of our constrained fit algorithm on six groups of point
sets. In each group, the number of participating point sets varies from seven to eleven. The
combined fits show a dramatic improvement in the individual fits and more importantly,
these make explicit the global percept of a common structure among these traces. All the
point sets are shown for each group but only a few fitted curves are shown to avoid clutter.
In all the groups, only one or two point sets got left out in the combined fit process. The
motion and structure of these different points can now be quantitatively estimated with
good accuracy. (The results are detailed in the next section.)

We emphasize that the poor results obtained by fitting to individual tracks are not
a failure of our fitting routine but inherent in the problem. Fitting a conic to a partial,
slightly noisy arc is extremely sensitive to the noise. To human view, widely difterent
ellipses are indistinguishably good fits along the arc itself. Moreover, the difficulties of
individual fitting worsen as the viewing time is 'reduced and the tracked arcs become
smaller. Qur grouping algorithm exploits the locally common constraint across distributed
trajectories which constrains the combined fit well even when the participating trajectories

poorly constrain individually.
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An effective motion understanding system should successfully interpret even a rotation
of only a few degrees of arc. In the extreme case, as Todd [26] suggests, human vision
systems may be capable of this interpretation, based on the capture of compelling grouping
relations, even from a two-frame span of data. Clearly, for such short viewing spans, it is
difficult to interpret the motion from individual point traces. Even for the simplest case of
pure rotation studied in this paper, it appears that spatial grouping is essential for making
the percept of motion explicit even without 3D reconstruction. Additionally, it does lead

to reliable estimation of 3D motion and structure too.

8 3D Estimation Results

Results on both simulated and the box image data are reported here. In our simulation,
we generated image point data for four 3D points rotating rigidly around an axis with
direction (b) [L, I, I] and location (¢) |7, 10,45]. We imaged the four points for 50 frarnes
with a 4 degree rotation between successive frames. A focal length of 160 pixels and image
size of 256-by-256 were chosen for the camera model. We obtained four conic sections, one
for each of the points, by fitting conic arcs to their discrete correspondences. Each of these
was represented as a 3-by-3 conic form matrix M.,,,. In one experiment, no noise was
added to the image point coordinates while in the second, we added (—1,1) pixel uniform
noise before fitting the conics. We report the true and computed 3D parameters in Table 1
for both. In this table and the next, the true axis direction and location are given at the
top. For cach point, the two compnted solutions for the rotation axis are shown in the
body of the table at left, the correct one first. The correct solutions stand out as predicted

since they are commmon to all points, in both the noisy and noise-free cases. At right are

23



shown the true and computed normalized structure parameters. All computed parameters
agree well with the actual ones.

For the box image, we show the results of estimating the axis location and orientation,
and the structure parameters for eight points. In Table 2, detailed results for a sample
set of eight out of the forty trajectories obtained are shown. For cach point trajectory,
the angular error between the b and ¢ vectors and the percentage errors in the d; and k;
parameters are shown. We use ellipses generated by our grouping algorithm for each of
these sample points within their respective groups. The eight traces chosen are marked in
Figs. 12-15. Table 2 shows the results for these eight traces. The ground truth for this
image was obtained using a pose estimation algorithm developed by Kumar [13]. These
estimated parameters are labelled as ¢rue in the table. Our results match well with the
estimated ground truth. Here again, the wrong solution [or each point is evident except
for points 1, 4, 5 and 7 which are coplanar. Hence, for these the second solution too is the
same.

To get a final estimate of the 3D motion parameters, we do clustering on the unit
sphere of all the pairs of b and ¢ vector estimates obtained from each point set using an
algorithm by Collins.et al. [9]. Altogether this amounts to 40 pairs of vectors each for b
and c. The clustering gets rid of the spurious solutions across all points. The final estimate
is obtained by a least—squares fit to the clustered estimates using the largest eigenvalue-
eigenvector pair of the sum matrix of the dyadic product matrices of each of the vectors.

These estimates along with the angular errors are also shown below Table 2.
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9 Comparisons with Two—frame Algorithms

For the sake of comparison, we ran the two;frame motion algorithms of Horn [11] and
Adiv [1] on pairs of frames from the box sequence. Both these algorithms have been shown
to work fairly well in a variety of motion situations within the limi’ts of the assumptions
of each. Horn’s algorithm employs a widely used error measure [10], [27) for the problem
within an elegant optimization framework. He uses the constraint that the view-ray for a
point in frame one, the corresponding ray in frame 2 and the translation vector should be

coplanar as shown in Fig. 16. Formally,

fi=b o(r, x m) =0 (30)
where,
b : The translation unit vector in frame 2 coordinates.
v, : Frame | ray for point i rotated into the frame 2 coordinates.
ri, Frame 2 ray for point 1.

(31)

Horn minimizes 3°; f over all the available point correspondences in two frames with the
constraint that b is a unit vector. This is performed iteratively starting with an initial
guess for the rotation and translation. At every step of the minimization, each f; is
linearized around the current estimate using Rodriguez’ formula for rotations. This is
similar to finding the Jacobian of the system [23] relating each f; with incremental steps
in the unknown parameters, three each for rotation and translation. Step changes in these

are found by inverting thesc system of equations along with the constraint equation on b

25



which itself is linearized. This is carried on till convergence. Horn’s experiments and our
own, with simulated data have shown that this method works reliably under most motion
and imaging situations.

However, as noted by Horn himself and in Spetsakis et al. [24], the above measure can
give biased solutions for translation when the field-of-view (FOV) is small. Specifically, for
small FOV, because all the viewed rays lie within a small bundle around the optical axis, |
the z-axis, a translation vector with a high z—component nearly always minimizes the error
irrespective of the actual translation. We observe this behavior in pairs of frames for our
box sequence as reported later here. Our experiments show that Horn’s algorithm finds the
biased solution as the global minimum and the éorrect one as a local minimum, especially
when the image displacements are small. When the displacements become relatively large,
the error measure for the correct solution becomes lower than that for the biased one.
However, this difference still remains small enough to be a problem for any automated
algorithm to pick out the correct solution.

Adiv [1] in his algorithm assumes that rotations are small to the extent that the rotation

matrix can be approximated by its first order expansion. That is,

1 —w, wy
R = w, 1 —Wy is the approximate rotation matrix. Further,
X’__X = a = —wz.‘l}_}: +wy(f+xTz)_sz+Tz!:Tg.\' (32)
VoY = 8 = (i ) 45 X 4 DAY )

where,

(X,Y), (X',Y') : Point coordinates in frames 1 and 2, respectively.
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a, B : Displacements in X and Y over two frames.
(T, T,,T.) : The translation vector.

f : Focal length. (34)
Adiv minimizes
N N
STWik [(Qieas — @) + (Bisneas — Bi)’) (35)
=1

where a;,,., and f,.., are the measured image displacements. He first eliminates the
depth, z, out of this error. ‘Then using a sampling on the unit sphere for translations,
he computes the rotation vector for each of the sampled translation vectors. The pair
of rotation and translation vectors leading to a globally minimum error is found as the
solution.

Two observations can be made for Adiv’s formulation. Firstly, it cannot handle large
rotations. Secondly, his search method is sensitive to the quantization of the unit sphere
of translations. In order to get a good performance, we ran his algorithm as three passes
of a coarse-to—fine search.

We report results on the box sequence for Horn’s, Adiv’s and our own algorithms.
Results shown are for frames 1 to 7 for Horn and Adiv and for the whole sequence for our
own algorithm. Note that in our algorithm, the actual number of frames used for each point
varies {rom 9 to 20. We show comparisons of computations of motion and depth for Horn
and Adiv separately on a two-frame basis and between all three on a multi~frame basis.
Note again that motion and depth parameters computed from Kumar’s pose are used :as
ground truth for these comparisons too. First we discuss the two—frame computations

by Horn and Adiv’s algorithms. In Table 3 are shown the 3D motion parameter results
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for six pairs of frames. The pairs always involve the first frame. This ensures that over
time, the length of displacement vectors in the image increases which makes the depth
compulalions less sensitive to noise. As is evident from the comparisons, the errors in
computation of rotation axis and translation vector for Adiv increase as the rotation angle
increases. However, the rotation angle does not seem to be as sensitive to this. Tables 4,5
and 6 show a comparison of two-frame depth computations for a selected set of 13 points
between Horn and Adiv’s algorithms. One observes that for frames 1-2, 1-3 and 1-4, when
the image displacements are small, the errors in depth are high - 5-10%. But for frames
1-5, 1--6 and 1-7 these errors remain below 5%. Surprisingly this is true even for Adiv’s
algorithm which gave increasingly incorrect motlion parametlers as the rotation angles were
increased. We do not have a concrete explanation for this yet. However, we conjecture
that a phenomena similar to the one observed by Dutta et al. {19] for the special case of
frontal plane might be responsible for this more general case too.

We wish to emphasize here that for frames 1-2 and 1-3, for Horn’s algorithm, we
chose the solution closer to the ground truth for our comparisons although this was a local
minimum for the underlying error measure as shown in Table 9. The solutions returned
as the global minimum are totally wrong with respect to the ground truth as is expected.
The wrong solutions do show the bias for an alignment with the z-axis as predicted even
when the motion in our case had a very small z-component [See table 3 also]. Secondly, we
ran the two-frame algorithms between consecutive frames instead of using the first frame
always as the datum. But the results, especially the depth results were consistently very
erroneous.

In Tables 7 and 8 we show comparisons with our multi-frame algorithm. To be fair

28



to the two-frame algorithms, we found the least-squares fits to their motion and depth
computations over the 6 pairs used. We also converted the rotation and translations
returned by these to the axis location and axis direction parameterization used by us. For
depth computations, this simply implies that we averaged the depths returned in frame
1 for each point over the 6 pairs. Table 7 depicts the comparison of 1;:10tion parameters.
Horn’s and our own algorithms have similar higher errors for the axis direction than Adiv’s,
whereas the latter has a higher error for the axis location compared to the much smaller
errors for the other two. We show the comparisons of depth computations in Table 8.
The averaged depths from Adiv and Horn and the trajectory based depths from our own
algorithm are all within 0-5% errors. Horn’s e;.lgorithm performs somewhat better than
the other two for depth results.

In summary, we wish to state that for the restricted model of motion considered in
this work, under imaging with a small FOV camera, our algorithm returns 3D parameters
which are atleast as good as two proven two—frame methods, the latter being applied with
some favorable conditions. However, our approach stands out in one distinct way in that
it directly describes the underlying 3D motion in its natural form, that is a pure rotation.
In the two—frame approaches, this description has to be derived by fitting a model to the
rotations and translations computed for each interval. This process can be unstable espe-
cially when the underlying two-frame computations themselves are unreliable due to some
of the inherent ambiguities or biases associated with the algorithms. Furthermore, we con-
jecture that the insensitivity to small FOV in our case is the result of computations based
on an extended-time image measurements and the smoothing resulting from imposing a

smooth model of motion within and across image trajectories. Whether this can be said of
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more general motions and other imaging situations has to wait for more extensive analysis
and experimentation. We wish to emphasize that the results discussed above are only for
one image sequence. A lot more experimentation should be carried out to evaluate the

strengths and weaknesses inherent in various algorithms.

10 Conclusions

We have presented and demonstrated a method for recovering in closed form the 3D struc-
ture and motion of a rigid body, based on fits to the image trajectories of selected body
points assuming a particular model of motion, namely pure rotational motion. The paths
traced by the 3D point projections in the image are first fit to conic sections, x"vhich are
represented by quadratic form matrices. The eigenvalues and eigenvectors of these matri-
ces are related to the parameters of the 3D trajectories, this relationship is inverted and
the 3D trajectories solved for. Hence we obtain a complete recovery of the body structure
and motion up to a single scale ambiguity. We gave a discussion and complete analysis of
multiple solutions and their disambiguation, discussed the effects of noise, and described
the results of experiments with real and synthetic images.

We also demonstrated the importance of global spatial groupings of individual token
displacements in motion interpretation. For pure rotation, since full conic section curves are
significantly underdetermined by any small sub-arcs, we argued that organizing trajectories
into global curves can give improved results over simply combining the very uncertain
motion interpretations based on short, individual point displacement trajectories. We
presented an algorithm for grouping locally constrained trajectories into combined fits

thus making their similarities explicit while obtaining reliable curve descriptions. We also
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noted the relationship of this idea to psychophysical results on global organization, and
proposed grouping as a general and powerful approach to motion interpretation.

We are developing techniques to automate the process of linking described above. We
also want to experiment further with our grouping algorithm on multiple moving objects.
In particular, the output parameters of combined fits could be used to do clustering in
the image plane to delineate multiple motions. We wish to extend this notion of generic

model-based extended-time motion geometries to more general models of motion.
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