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Abstract

We consider a discrete-time queueing system in which a deadline is associated with each arriving
customer. A maximum possible deadline of M is assumed and each customer must begin service
before its deadline expires; otherwise the customer is considered lost and leaves the queue without
receiving service. Customers in the queue are scheduled according to a non-preemptive minimum
lazity scheduling discipline in which that customer whose deadline is closest to expiring is selected
for service. The main result of this paper is 2 numerical algorithm which exactly computes customer
loss for this queueing system with a time complexity of O(M*) for the case case of geometrically
distributed service times and a bulk arrival process in which the number of customers arriving in
a slot with a deadline of 7 slots is also geometrically distributed (for each i,1 < i < M ). We also
demonstrate how this model can be extended to include generally distributed service times and
laxities as well.
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equipment grant from the National Science Foundation, CER-DCR-8500332.



1. Introduction

In real-time computer and communication systems, temporal constraints are placed on the be-
haviour of the agents (e.g., processes or messages) within these systems. Typically, these constraints
require that these agents initiate or complete some task (e-g., a process’ computation or a message’s
transmission) within some deadline. In “hard” real-time systems, the system is engineered in such a
manner that these constraints are never violated. In “soft” real-time systems, these constraints can
occasionally be violated but such violations typically translate into poorer system performance; also
the results of such overly-delayed computations or message transmissions are often of little (or no)
use to the system. Examples of computer systems exhibiting such soft real-time behaviour include
applications in distributed systems for sensor applications and autonomous ma.nufacturizig. In the
communication network domain, real-time constraints often result from the need to bound delays
involved in interactive human voice (and video) communication [17,22,26,5,4] or as a form of overload
protection [8].

In such soft real-time systems, the performance metric of interest is no longer one of the traditional
measures such as average delay or throughput, but rather the fraction of jobs which are not able
to meet their specified time constraints (i.e., the fraction of jobs that are lost.) As a consequence,
an important goal of performance models for these real-time systems is the characterization of this
loss. In this paper, we consider a discrete-time queueing system in which the deadline associated
with each customer (the amount of time from a customer’s arrival until the time at which it must
begin service) is bounded by some maximum possible value, M. We note that adopting a discrete-
time model is particularly appropriate in the communication networks area, given the synchronous
nature of many proposed high-speed network switches currently under design [25,24,6]. Customers
in the queue are scheduled according to a minimum lazity scheduling discipline (11,20,21,2,14], in
which that customer whose deadline is closest to expiring is selected for service; a customer whose
deadline expires is considered lost and is removed from the queue without receiving service. We
analyze the case of geometrically distributed service times and a bulk arrival process in which the
number of customers arriving in a slot with a deadline of i slots is also geometrically distributed
(for each 4,1 < i < M); we also demonstrate how this model can be extended to include generally
distributed service times and laxities as well. The main result of this paper is a numerical algorithm
which exactly computes customer loss for this quéueing system with a time complexity of O(M*).

The analysis of the minimum laxity scheduling policy is of considerable interest since it has
been shown to be optimal (in the sense of minimizing customer loss) over all non-preemptive work-
conserving policies for the continuous-time G/M/¢ + G queue (the last G here indicates that the
deadlines are drawn from some general distribution) and its discrete-time analog [21]; related results
have also appeared in (20,23,2]. To date, almost all performance analyses of queueing systems with
impatient customers have assumed FCFS scheduling [1,8,9,10,13,18,22,26] or some other discipline
which does not explicitly consider the customers’ time constraints; a survey of this work can be found
in [19]). Approzimate analysis of customer loss under the minimum laxity scheduling discipline in
M/M/c+ M systems have appeared in (27,14]. In these approximations, the customer to be served



is chosen from a group of n queued customers, and arriving customers move into the group of n on
an FCFS basis. In contrast, the analysis in this paper is exact and for a more general discrete-time
queueing system. One other related analysis is {11] (extended in [12]), which analyzes an earliest-
due-date (EDD) scheduling rule [4,16], but in a queueing system in which late customers receive

service (i.e., there is no loss).

The remainder of this paper is structured as follows. Section 2 describes the queueing model
considered in this paper and discusses the structure of the minimal laxity sample path to be exploited
in the analysis. Sections 3.1 and 3.2 derive recursive relationships among various random variables
associated with the minimum laxity sample path. These relationships form the basis of the O(M*)
algorithm for computing customer loss, as described in sections 3.3 through 3.5. The derivations in
section 3 assume geometrically distributed service times and geometrically distributed bulk arrivals;
section 4 discusses extensions to this basic model. Finally, section 5 summarizes this paper.

2. Model

We consider a time-slotted queueing system in which each arriving customer (job) has an associ-
ated deadline. If a customer does not enter service before this deadline expires, it is considered lost
and leaves the queue without receiving service. We refer to the lazity of a queued customer as the
amount of remaining time it can spend in the queue before being lost. Note that a customer’s laxity
decreases at the rate of one (slot per slot), as it waits in the queue.

In the basic model, we assume a single server and adopt the following assumptions about the
arrival/laxity process, service time distribution, and scheduling discipline; extensions to the basic
model are discussed in section 5. The unit of time throughout the remainder of the paper is the unit
slot length.

¢ Arrival/Laxity Process: We define M as the maximum possible initial laxity and model
the number of customers that arrive in a slot with an initial laxity of i slots (< M)asa
geometrically distributed random variable with mean ;. All arrivals are assumed to occur at
the very beginning of a slot and an arrival at the beginning of a slot can potentially receive a
full slot’s worth of service during that slot.

The number of arrivals in a slot with a laxity of i is also assumed to be independent from
one slot to the next and also independent of the number of arrivals in a slot with a laxity of
3 J# 1.

e Service Time Distribution: The amount of service required by a customer is geometrically

distributed with mean 1/u. We assume that a job's service time is not known when it enters
service.

¢ Scheduling Discipline: When the server selects a customer for service, that customer with
the smallest laxity is chosen. Scheduling is non-preemptive. If several customers have the same
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Figure 1: Minimum laxity sample path

minimal laxity, 2 minimal laxity customer that has been in the queue the longest is chosen
(although the results presented below hold for other policies for breaking ties as well). This
scheduling policy is variously known as a minimum lazity, shortest deadline first, or shortest
time to extinction policy [20,23,2].

We note that the above model permits the performance of a wide range of real-time slotted systems
to be modeled, including the important case of multiple classes of traffic, each with different (fixed)
deadlines.

Figure 1 shows a sample path of the minimum laxity of all queued customers (i.e., customers
waiting to enter service) as a function of time. Customer arrivals are shown as asterisks and intervals
of time during which there is one customer in the queue (one in service, but none waiting) are
indicated by bold lines along the x-axis. In the following we will define the waiting area busy period
as an interval of time during which there is one or more quened (waiting for service) customers during
a slot. The busy period of the queue as a whole is defined in the standard manner; the queue busy
period may thus contain zero, one, or two or more waiting area busy periods.

The jumps in the minimum laxity at the beginning of a slot in Figure 1 result from either
customer arrivals with a new minimum laxity (in which case the minimum laxity decreases) or
customer departures (in which case the customer with the lowest laxity enters service and hence
the customer with the next smallest laxity becomes the minimum laxity customer, thus resulting in
a non-negative increase in minimum laxity). For example, the customer arriving ¢; with an initial
laxity of 4 finds the server busy (with the customer that entered service at t5) and becomes the
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Figure 2: The laxity of customers generating fundamental cycles

minimum laxity customer. At the beginning of slot ¢, this customer’s laxity has decreased to 3, but
another customer has arrived with a laxity of 2. Note that the second customer arriving at i, (with
a laxity of 6) does not affect the minimum laxity value at ¢;. At 3 the customer in service leaves the
queue and the queued minimum laxity customer (the one that arrived at ¢, with the smaller laxity)
enters service. At this point, the new minimum laxity customer is again the customer that arrived
at t;; note that its laxity has decreased to 2 by the beginning of slot t3. At ¢4 the customer that
entered service at {3 completes, the customer that arrived at t; enters service, and the customer that
arrived with the larger laxity at ¢, becomes the minimum laxity customer - with a laxity of 4 at 4.
Note that at ¢,g, the customer that arrived at t;5 is lost since its laxity becomes zero (assuming it
did not enter service at ¢;5).

Given such system evolution, we are faced with the problem of determining the fraction of cus-
tomers lost due to the fact that they do not enter service before their laxity becomes zero. We
conjecture that any modeling approach based on simply tracking the minimum laxity from one slot
to the next is not viable, since the future evolution of the system will be based on the individual
laxities of all queued customers, not just the minimum laxity customer (and the laxities of all queued
customers can not be recovered from knowing simply the laxity of the minimum laxity customers).
An exact approach based on explicitly tracking the laxity of all queued customers has a prohibitively
large state space of size MM. In [14], the state space is truncated by assuming that the customer
to be served is chosen from a group of n queued customers, and arriving customers move into the
group of n on an FCFS basis.



Our approach is based on the fact that the system does nonetheless possess a Markovian structure
which can exploited. This structure is based on what we will term fundamental cycles in the minimum
laxity sample path. We define a fundamental cycle as follows. Consider a customer which upon arrival
finds that either (a) there are no other customers waiting but there is a job in service or (b) there
are other customers waiting with a smaller laxity. A fundamental cycle is defined as the time from
which such a customer first becomes the minimum laxity customer until it either enters service or
leaves the queue due to an expired deadline. Figure 2 shows the fundamental cycles associated with
the minimum laxity sample path of Figure 1; also plotted is the laxity associated with the customers
generating the fundamental cycles. The key property of a fundamental cycle to be exploited is the
fact that conditioned on it beginning more than M slots after the start of a waiting area busy period,
the statistical properties of a fundamental cycle starting at height ¢ are independent of the behavior
of all preceding fundamental cycles. For example, the statistics of the fundamental cycle beginning
at t;; in Figures 1 and 2 are independent of the statistics of the fundamental cycle beginning at ¢s.

The analysis in the following section is based on first finding the expected length of a fundamental
cycle starting a height ¢, computing the expected lengths of the waiting area busy period and queue
busy period, and then computing customer loss.

3. An Algorithm for Computing Customer Loss

3.1 Distinguished Customers

We begin by examining the amount of time that a special type of customer, which we refer to
as a distinguished customer, spends waiting in the queue until either it enters service or its deadline
expires. A distinguished customer is defined as a customer which, when it arrives to the system,
finds the server busy and also finds that it has the (strictly) minimum laxity of all queued customers.
If several customers arrive in a bulk with the same minimal laxity, only one of these customers is
considered a distinguished arrival.

Figure 3 shows a sample path of the minimum laxity of all queued customers (i.e., customers
waiting to enter service) as a function of time; customer arrivals are again shown as asterisks.
Customer 0 arrives at time ¢y with a laxity of ly, finds the server busy, and is queued. Since there
are no other queued customers at time to, this customer is distinguished. In the following slot there
are neither arrivals nor service completions, and hence the minimum laxity of the queued jobs (in
this case the single job) decreases by 1. Customer 1, arriving at time ¢; with a laxity of /;, is not
distinguished, since its laxity is greater than that of customer 0. At t, customer 2 arrives with a
laxity of l,; it is a distinguished arrival since its laxity at time t, is less than that of customers 0
and 1. At time t3, the customer that was already in service at g completes service and the customer
with the minimum laxity (customer 2) enters service. Note that the minimum laxity (over all queued
customers) at time tj is Ij), the laxity of the customer 0. At time £4, customer 2 completes service,
customer 0 enters service, and the minimum laxity is now /] - that of customer 1. Customer 1 finally

enters service at {s.
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Figure 3: The laxity of queued customers as a function of time

Let us define:

X; as a random variable indicating the number of slots between the arrival of a distinguished cus-
tomer with an initial laxity of ¢, and the time at which this distinguished customer either
enters service or leaves the system due to an expired deadline. Note that X; consists of slots
needed to complete the job which is either currently in service or enters service (see below)
when the distinguished customer is first queued, plus any slots needed to serve future arrivals
(occurring before the distinguished customer enters service) which have an initial laxity less
than the current laxity of the distinguished customer.

Xi(k) as the probability of the event X; = k.

4 as the probability that a customer in service completes service at the end of the current slot. Given
geometric service times, the mean service time is 1/u.

m,; as the probability of j (new) arrivals with laxity ! in a slot; for each [, %2y m,; = 1.

ao, a1, @+ as the probabilities of zero, one or two or more arrivals in a slot (regardless of laxity)

respectively.

p) as the probability of no new arrivals with a laxity less than or equal to [ in a slot. P = Hf,._.l Ty o
for I > 0 and py = 1 by definition.

p} as the probability of exactly one new arrival with a laxity less than or equal to [ in a slot.

1
pll = Ej:l LEA! Hi':l;&j 0 forl>1.
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o} as the probability of one or more customers arriving in a slot, with the minimum laxity over all

arriving customers being l. oy = (1 — m0)p)_,, 1 <1< M.

o} as the probability of two or more customers arriving in a slot, with the second smallest laxity
over all arriving customers being . For 1 <1< M,

-1 -1
of = pia(1 =m0 = ma) + (1= 62)(1 = m0) Y _min [ ko
7=1 k=1#3

Given the above definitions, an expression for X;(k) can be easily obtained by conditioning on
the events that can occur at the end of the slot following the slot in which the distinguished customer
arrives:

4Y1(k) = 5k,1 Vk

X0) = 0 Vi

Xi(k) = ppd o8y + ((1— w)pdy + ppl_y) Xica(k - 1)
£ T2, (1 - ok + po2) T2 Yicm(n) Xicaon(k — 1 - n) (1)

1<i<M; 1<k<i

0 otherwise

The first term on the right hand side of equation 1 for X;(k) results from the case in which
the customer in service completes service at the end of the slot and there are no new distinguished



arrivals which begin service. In this case, the distinguished customer enters service and the value of
X; will be 1.

The second case is when the distinguished customer is again the minimum laxity customer at the
beginning of the following slot and does not enter service; this is shown in figure 4a. This event can
occur if either the customer in service does not complete and there are no new distinguished arrivals,
or if the customer in service does complete and there is exactly one new distinguished arrival (which
itself enters service); these events occur with probabilities (1 — z)p?_, and up}_,, respectively. In
these cases, since the distinguished customer has already waited one slot, the probability that it
leaves the waiting area k slots after its arrival is the same as if it had arrived in the subsequent slot,

with an initial laxity of ¢ — 1, and left the waiting area after & — 1 slots.

In the third case, a new minimum laxity customer is present at the beginning of the next slot.
This can happen if the job in service does not complete but a new distinguished customer with a laxity
of m < ¢ — 1 arrives (this occurs with probability (1 — g)o,,). In this case the original distinguished
customer will not leave the waiting area until the job in service, the new distinguished customer, and
all future arrivals which have an initial laxity smaller than the laxity of the original distinguished
customer all leave the queue. This is shown in figure 4b. In this example, the distinguished customer
arriving at t3 goes into service at t; (at which point the undistinguished customer arriving at i,
becomes the minimum laxity customer), the arrival at ¢4 goes into service at g (at which point the
original distinguished customer is again the minimum laxity customer) and the original distinguished

customer goes into service at t7.

If the job in service does complete at the end of the slot and two or more new customers arrive
with an initial Jaxity less than the laxity of the original distinguished customer (this occurs with
probability pom;), a new minimal laxity customer will again be present during the slot. The arriving
customer with the smallest laxity enters service, and the newly arriving customer with the second
smallest laxity behaves as a distinguished arrival. The original distinguished customer will not leave
the waiting area until the new distinguished customer as well as all future arrivals which have a
smaller laxity leave the waiting area. This is shown in figure 4c. The distinguished customer arriving
at tg goes into service at i;5, the arrival at g with the minimum laxity enters service immediately

and the distinguished arrival at tg (with an initial laxity of j) goes into service at ;7.

The Y;_1,m(n) term in equation 1 and the random variable Y; ; in figure 4 are defined as follows.

Y;; Suppose that at the beginning of a slot (before new arrivals are considered) customer w is the
minimum laxity customer, with a laxity of i. Suppose further that when new arrivals in this
slot are considered, the minimum laxity decreases from 7 to j (i.e., there is a distinguished
arrival with a laxity of j, e.g., as at times t3 and {9 in figure 4). We define Y} ; as the number
of slots that elapse until customer w again becomes the minimum laxity customer.

Y; ;(k) is defined as the probability that ¥; ; = k.

The structure of equation 1 suggests a recursive procedure to compute X;(x) in terms of X;_;(x), 7 >



i— 4
Minimum J
laxity i
of all J
queued i
customers

Figure 5: A sample path for Zij

1 and ¥;_;,.(*). In the following section, we discuss the calculation of Y;_; .(*). We note that as a
result of the double summation in equation 1, the complexity of computing X;(k) for a given i and
k is O(M?), where M is the maximum possible laxity. Hence the overall complexity of computing
Xi(k) for all i and k is O(M*).

3.2 Computing Y; ;(k)

Before deriving an expression for Y; ;(k), we will need to to derive an expression for one other
related quantity. Suppose that at the beginning of some slot ¢;, all customers with a current laxity
of i (if any) would be the minimum laxity customers and that these customers may have arrived in
any of the j slots preceding t;, where j includes the current slot beginning at ¢, (i.e., j = 1 is the
case in which only arrivals at the beginning of the current slot are considered). As shown in figure
5, these customers must have arrived at the beginning of a slot with an initial laxity falling along
the boldface line of slope -1 in the closed interval [to,t;,]. We define:

Z;i Given that the minimum laxity customers have a laxity of ¢ and given that these customers may
have arrived in any of the preceding j slots (where the current slot is counted in j), Z7 is the
number of future consecutive slots for which the minimum laxity over all queued customers
(including future arrivals) is (a) non-zero during the slot and (b) at the beginning of the wth
slot in the future, this minimum laxity is less than or equal to i — w. In graphical terms (see



figure 5), the minimum laxity must be bounded above by a diagonal line of slope —1 beginning
at height 7. For example, the dotted line beginning at height 7 at slot ¢; (and ending at t,3) is

the diagonal line associated with Zij at time t,.
ZI(k) The probability that Z7 = k.
Given these definitions, we have for i > 1:

. Titj=1,028 7 (B) + (1 = Tigjor0) Ty Xe(n)ZPH (k-n) 1<j<M-it 1
Zi(k) = 0<k<i (2)
0 otherwise

and Z3(0) =1, Z9(0) =1, and Z%(k|k # 0) = 0 by definition.

Equation 2 may be interpreted as follows. With probability ;. ;_1,0 none of the currently queued
customers with a (minimal) laxity of i arrived j slots in the past. Conditioned on this event, the
probability that Z,j = k is simply Zf_l(k), the probability that Z;-"—l = k. If there is a queued
customer with a (minimal) laxity of ¢ which arrived j slots in the past, this customer leaves the
waiting area n slots in the future (i.e., X; = n) with probability X;(n). At this future point in time,
we must have the event Z/*™ = k —n in order for the original event Zi = k to occur. Figure 5 shows
the case that X; = 4 (i.e., the oldest minimal laxity customer goes into service at ¢, and Zg_'_*',f = 6,
yielding the event Z7 = 10).

For a given i, assuming that X;(k) are known for all k, equation 2 provides a recursive formulation
for computing Z;" (k). Due to the single summation, the complexity of computing Z,-j (k) for all ¢,
and k is O(M*?).

We are now finally in the position to derive an expression for Y; j(k). Recall that Y;;(k) is the
probability that Y;; = k, where Y;; is the number of slots that elapse until a customer that has a
minimal laxity of ¢ (before new arrivals in a slot are considered) again becomes the minimum laxity
customer, given that when new arrivals in the slot are considered, the customer is no longer the
minimal laxity customer (i.e., there is a distinguished arrival with laxity j < ). Informally, Y;;
corresponds to the number of slots strictly below the dotted lines in figures 4a, 4b, and 6.

Consider first Figure 6a. In this case, the laxity of the new minimum laxity arrived customer at
to is one slot less than the previous minimum laxity and

Yiioi(k) = Sk Xia(n) 2 (k—n) 3<i<M; 1<k<I-1
o j 0 otherwise (3)
Y21(k) = 6ka

Consider next figure 6b, in which the initial drop in laxity is greater than 1, from a laxity of 7 to

a laxity of m. In this case, the number of consecutive slots for which the minimum laxity is below
the upper dotted diagonal line is the sum of the number of consecutive slots strictly below the lower

10
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dotted diagonal line (which is given by Y;_ ,,), plus the number of subsequent consecutive slots that

the laxity remains on or below the lower d.iagbna.l line. This latter quantity is given by Z?*! ., where

t-n-1?

n is value of Y;_; ;. We thus have:

Y; m(k) = v Yioam(n)Z25 1 (k—n) 3<i<M;1<m<i-2;1<k< i-: 1 (4)
' 0 otherwise

Equations 3 and 4 provide a recursive formulation for computing Y; (k). Due to the single

summation, the complexity of computing Y; (k) for all i,m and k is O(M*).

3.3 Computing the queueing time of a Distinguished Customer

Thus far, we have derived expressions for X;(k), Z{ (k) and Y m(k). We now summarize how

these quantities can be computed in a simple recursive manner.

¢ Initialization. Compute X;(j) Vj using equation 1. Compute Z{ (0) and Zi" (1) V5 using
equation 2.
e For each 7 < M.
— Compute X;(k) Vk < i using X;(*) and Yj.(x),7 < ¢ via equation 1.

— Compute Yim(k) m=i-1, k <i-1using Z}_,(k) via equation 3.

11
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— Compute Y;m(k), m <i—1,k <i-1using Z7(x) and ¥;.(x), j < i—1 via equation 4.

— Compute Z;-i(lc) Ve <4, < M-i+1 using Z?'l(*),JY;(*), and Z3(*),? < i via equation
2.

The computed quantities Zg (k) will be used in the following section to compute the expected length
of the busy period.

3.4 The Expected Length of the Waiting Area Busy Period.

In computing the expected length of the waiting area busy period it will be helpful to consider
Figure 7. Assume that a waiting area busy period begins at time o and recall our definition of a
fundamental cycle from section 2. We note that any fundamental cycle starting at height ¢ in region
B of this figure (i.e., to the right of the diagonal line from (0, M) to (M, 0)) was started by a customer
which may have arrived in any of the previous M — i + 1 slots (where, as before, the current slot in
which the fundamental cycle begins is included in the M — ¢ + 1 slots). For example, a fundamental
cycle beginning at (23, 8) could have resulted from an arrival at t, with a laxity of 8, at t, — 1 with a
laxity of 9, at t; — 2 with a laxity of 10, at ¢, — 3 with a laxity of 11, or at ¢, — 4 with a laxity of 12.
On the other hand, a fundamental cycle beginning in region A at some time #; at height i could only
have been started due to an arrival in the previous (t; — to) + 1 slots, since by definition the waiting
area busy period began at ¢y and thus all arrivals before ¢y have already left the waiting area. For
example, the fundamental cycle beginning at (¢;,8) could only have resulted from an arrival at t,
with a laxity of 8, at t; — 1 with a laxity of 9, or ¢y with a laxity of 10.

Let us define

B,-j as the expected length of the remainder of a waiting area busy period, measured from the

12



beginning of a fundamental cycle of starting height i that begins j slots after the beginning of
a waiting area busy period. Note that for alli > M, Bij s independent of j; we shall refer
thus to these values simply by BM.

Vi,m as follows. Suppose a fundamental cycle ends at some height n < [ at the end of a slot. Then
Vi;m is the probability that there are no queued customers at the beginning of the following
slot with a current laxity of ! which arrived within the previous m slots, where the current slot
is included in m.

j=l

I Mirtme 1SISM, 1<m<M-1+1
tm = 0 otherwise

7,5k as the probability that a fundamental cycle which ends with a minimum laxity of ¢ is followed
by another fundamental cycle which begins with a laxity of j, j > i, given that all customers
which are still in the waiting area must have arrived in the previous k slots. The current slot
is included in k.

mip=d (ViR Hhame 0SiSM -1 i+1<i<M, 1SkSM-j+1
Wy 0 otherwise

Wi (k) as the conditional value of ZI(k) given that the length of Zg is non-zero. From equation 2
we have W’ij(k) = Sk _, Xi(n)Z**I(k - n). Note that all values of Wf(k) can be computed in
a total of O(M*) time. !

Given the above, the following relationship holds for { BM }Vi.

i M
BM = S WM k) (k4 3 mickm—aa BY) (®)

k=1 i=1
Equation 5 results from the fact that the remainder of a waiting area busy period begins first with
a fundamental cycle (starting at height ¢) of some length k. Once the fundamental cycle is over, the
waiting area busy period will either be over, or another fundamental cycle of some starting height
J will begin. 7;_x j M—j+1 is simply the probability that a subsequent fundamental cycle begins at
height j. Equation 5 can be rewritten in the more convenient form:

1 M 1
BM =S WM (k)k+ S BM (Z m—k,j,M—j+1W;M"’+l(k)) (6)
k=1 i=1 k=1

Equation 6 is M simultaneous linear equations and hence can be solved in O(M?3) time using a
method such as Gauss elimination [7].

For a fundamental cycle beginning in the region [to,to + M], we have B}i = BM for all i and
J 2 M —i-1. Using similar arguments as above, for a fundamental cycle which might itself be
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Figure 8: Waiting area busy periods (B,,) and the queue busy period

followed by a fundamental cycle beginning below the diagonal line in Figure 1, (i.e., for all i < M
and j < M —i-1 we have:

)

M
Bl =) W/TUk)k+ Y MikiminGeke1,m—1-1) B in(+k M)y (7)

k=1 l=i~k+1

Due to the recursive structure of equation 7, it can be solved for all 7 and j by backwards substitution
in O(M*) time.

3.5 The Expected Length of the Queue Busy Period

Given the results of the previous section, we are now in a position to describe the complete
procedure for computing customer loss. Recall that as shown in Figure 8, each busy period of the
queue as a whole, B,, consists of zero or more “waiting area busy periods”, B,,, connected by
intervals of time in which there is but one customer in the queue; these latter periods of time are
labeled W, and W; in Figure 8. In this section, we show how the expected lengths of Wy, W, and
Bua can be computed and, in turn, how E[B,] can be computed. E[B,} will be used to compute the
expected customer loss.

Given the assumptions in section 2, each queue busy period contains one interval of type W,
(see Figure 8), which ends the queue’s busy period. Each busy period of the queue will also contain
zero or more pairs of intervals consisting of W, and B,,,, where the W, is an interval of time during
which there is exactly one customer in the queue (the job in service), followed by a waiting area busy
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Event name | Event Outcome Probability
E, job finishes, 0 arrivals W ends, idle period follows | pag

E, job finishes, 1 arrival W continues pog

E; job finishes, 2* arrivals B, starts 7.2

E, job continues, 0 arrivals | W continues (1-p)ao
Eg job continues, 1 arrival B, starts (1-p)a
Eg Jjob continues, 2+ arrivals | B, starts (1= p)ay:

Table 1: Outcome of subsequent slot during a interval of queue length 1 (W)

period. Due to the independence of the service and arrival processes, the termination of a W interval
by either the start of a new waiting area busy period (in the case of W3) or the start of a queue idle
period is independent from one W interval to the next. Hence, the number of such pairs of intervals
in a queue busy period is geometrically distributed. Thus, each queue busy period consists of one
interval of length W plus a geometrically distributed number of intervals of length Wa + By, and
the expected length of the busy period is given by:

E[Bq] = E(Wi + 3" b(1 - BJ{(E[Ws] + BlBual)i = EWi] + = 2(BIW:) + E(Buc))  (8)

i=0

where b is the to-be-determined parameter of the modified geometric distribution for the number of
Wa, Bya pairs. We now proceed to calculate E[W,], E[W,), b and E[B,.).

Computing E[W))

Table 1 enumerates the probability of the various possible states of the queue during a slot, given
that the queue was in a W, or W, interval at the end of the previous slot. Given that the current
slot occurs in a W) interval, the only possible outcomes for the subsequent slot are E;, E5 and E,,
with event E, terminating the W} interval. Hence, the probability that W; terminates at the end of
the current slot is given by:

Ko Hao

T pag +pay +(1- p)ag | g + pey

wy

and W, (%), the probability that W} is of length i, is geometrically distributed with parameter w,:

Wy (3) = wi (1 — wy )"} (9)
and hence
E[W] = wil (10)

Computing E[W),]
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Similarly, given that the current slot occurs in a W, interval, the possible outcomes for the
subsequent slot are E,, F3, E4, E5 and Eg, with events E3, E5 or Eg terminating the W, interval.
Hence, the probability that W, terminates at the end of the current slot is given by:

_ pazs + (1 - p)(1 - ao)
1 - pag

and Wy(7), the probability that W, is of length i, is geometrically distributed with parameter w:
Wa (i) = wp(1 — wy)™™? (11)

and hence

EWa] = — - (12)

Computing b

Consider Table 1 again. Given that the queue is in an interval of time in which the queue length
is one, this interval is followed by a waiting area busy period if events E3, E5 or Eg terminate the
interval. If event E, terminates the interval, an idle period will follow. Thus, the value of b (the
parameter of the geometrically distributed number of W5, B,,, interval pairs occurring during a queue
busy cycle) is given by

b= f20
Boo + pags + (1 - p)(1 - ao)

(13)

Computing E[B,,]

Finally, in order to calculate E[B,,], we condition on the laxity of the minimum laxity customer
that begins the waiting area busy period and use the values of B? from the previous section. Let us
define h as the starting height (in laxity) of the waiting area busy period. For E[By,], we have

M
= Z BYP(h = ). (14)
=1
Note that events E3, E5 and Eg in Table 1 result in the start of a waiting area busy period. Hence,

P(h=1) = P(h=i|Es) i b

Begs +(1-p)(1- sy T

(1)
P(h =i|E;5 or Eg)(1 - P +2‘1°_"’;)(1_a05).
From first principles,
Pih = ilE = (L= Tio —mia) T (1 - 6(M,d)m, M
(h=ilEs) = 07— po—— H Tj0 T—— mio(l— ] wi0) (16)

I=1 j=i+1
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1
1—00

i-1
P(h = i|Es or Eg) = (1 = mi0) [] 70 (17)
I=1

The expected length of the busy period of the queue can now be computed via equation 8, using
equations 10 through 17.

3.6 From the Busy Period to Customer Loss

Given E[B,], we can now exploit the regenerative structure of the queueing system to compute
the probability that the server is busy. The probability that the idle period of the queue is of length
t is given by I(%) = (ao)i~!(1 — @) and hence the expected length of the idle period, E[I] is given
by E[I] = 1/(1 — ap). The probability that the server is idle, PO is thus given by

E[I]

:OErF) "

The probability that a job is lost can now be computed using flow conservation arguments. Recall
that A is the mean arrival rate to the queue (including both lost and successfully served customers)
and that p is the service rate of the queue. The rate at which customers are successfully accepted to
the server is given by A(1 — P,,,,) and the rate at which customers leave the queue having received
service is g(1 — P0). Hence, by flow conservation, the probability of customer loss is:

Ploss =1 = §(1 ~ P0) (19)

4. Extensions to the Basic Model
In this section we briefly sketch how the basic algorithm of section 3 can be extended to the cases
of general service times, a generally distributed number of arrivals with a laxity of (1 < i< M) in

a slot, and multiple-server queues.

General Service Times

In order to account for general service time distributions, the basic recursions for Xi(k), Zi (k)
and Y; (k) (equations 1, 2 and 4, respectively) could be modified to explicitly track the amount of
service already received by the customer in service. This adds yet another “dimension” to each of the
associated random variables and hence increases the complexity of computing the distributions of the
random variables. If the maximum service time is bounded by some value, S, then the complexity
of computing Zg”, where s now indicates the amount of service already received by the customer in
service, increases to O(SM*). If s is potentially infinite, the range of s could be truncated at some
appropriate value.
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Even with this increase in complexity, however, an exact calculation of the loss does not seem
possible. This is due to the fact that in order to compute the expected length of the W; intervals in
Figure 8, the amount of service time already received by the customer in service at the beginning
of a W; interval (and hence at the end of a B,, period) must be known. This is often easy to
compute; note that for waiting area busy periods which end with the minimum laxity customer
entering service (e.g., the waiting area busy periods ending at ¢, and t, in Figure 8), the amount of
service time accrued by the customer in service is known to be zero at the start of a W; interval.
However, in cases where the waiting area busy period ends as the result of the loss of the single
queued minimum laxity customer (e.g., the waiting area busy period ending at tg), the amount of
accrued service time for the job in service is not known. One possible approzimation would be to
assume such events are rare and that each W; period thus always begins with a new customer entering
service. In this case, the remainder of the analysis would proceed along the same lines as in section
3.5.

Generally Distributed Number of Bulk Arrivals

In the case of a generally distributed number of arrivals in a slot with an initial laxity of i, the
basic recursions for X;(k), (equation 1) remain unchanged. The recursion for Z7(k), equation 2,
would have to be modified to explicitly track b, the number of customers that arrived in the same
bulk (i.e., in the same slot and with the same initial laxity) as the current minimum laxity customer
and that have already received service. In this case, equation 2 becomes

b "'?+j—1,ozzj-1'o(k) + (1= mPyi10) Tho X,-(n)Z?_"’,f"b“(k -n) 1<j<M-it]
Z"(k) = 0<k<:
0 otherwise
(20)
and Z§%(0) = 1, Z9%(0) = 1, and Z}*(k|k # 0) = 0 for all b by definition. Here xf,;_, 4 is the
probability that there are no additional arrivals in the same bulk as the current minimum laxity
customer, given that b customers arriving in this same bulk have already been served.

The basic recursion (equation 4) for Y; ,,(k) then becomes:

k . nt+1,1 g . . _— .
Yim(k) = { OEn=1 Yicim(n)Z2 5 (k-n) 3<i<M;1<m<i-2;1<k<i-1 1)

otherwise

Note that when there are more than M arrivals in the same bulk, at most M of these customers
will ever receive service, and hence the range of b values can be truncated at M. Once the values

of Zg"’(k) have been computed, the analysis in sections 3.4 and 3.5 proceeds as before (using only
different values of v;,,). Note that while the introduction of b does not require any additional

summations besides those already in equations 2 and 4, values of Z;’"b(lc) must be computed for all
values of 6,0 < b < M. The complexity of computing the loss thus increases to O(M?).
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Multiple Server Queues

In the case of an N-server queue, the basic recursions for X;(k), Z{ (k) and Y; (k) (equations 1, 2
and 4, respectively) remain unchanged except for the replacement of u by N u (assuming geometrically
distributed service times); hence E[B,] can be computed in O(M*) time. Note that during a By
period (see Figure 8), there are always N customers in service and jobs are thus leaving the server
(after having successfully met their deadline constraint) at a rate of Npu.

The calculation of the loss is not straightforward, however, and we only outline the procedure
here. The primary complications arise from the fact that, in the case of multiple servers, the steady
state distribution of the number of customers queued during the W; periods of the queue busy period
must be known if we are to use the flow conservation approach towards computing loss. Conditioned
on the system being in a W; period, these steady state probabilities are the same as the occupancy
probabilities for the GI/Geom/N/N, a system analyzed in (3] and pp. 271 in [15]. Note that the
assumption of a geometrically distributed number of arrivals with the same laxity in a slot (for all
possible laxities) generally gives rise to a non-geometric number of overall arrivals in a slot and hence
the GI/Geom /N /N queue must be analyzed.

Once the expected length of the busy period of the GI/Geom/N/N queue and the expected
amount of time the queue spends in a waiting area busy period during a busy period have becn
computed, the steady occupancy probabilities during a queue busy period, p;, i =1,..., N, N* can
be calculated (where Py is the probability that there are more than N customers in the queue). The
rate at which customers leave the queue during a queue busy period after having successfully been
served is given by £ = Npy+ —~ N, ip;. The unconditional rate at which customers successfully leave
the queue is then £ Py, where Pg is given by equation 18. The customer loss can then be computed
by flow conservation arguments, as in section 3.3.

5. Conclusion

In this paper we have presented an algorithm which exactly computes customer loss for a discrete-
time queueing system having customers with real-time constraints. The time complexity of the
algorithm is O(M*) (where M is the largest possible laxity of a customer) for the case of geometrically
distributed service times and a bulk arrival process in which the number of customers arriving in a
slot with a deadline of 7 slots is also geometrically distributed. We also discussed how this model
might be extended to include multiple servers and generally distributed service times and laxities as
well.

A number of important related problems still remain. Perhaps most importantly, the approach
presented in this paper can not be used to compute customer loss when deadlines are to the end of
service (except for the case of constant service times) since the service time distribution of successfully
served customers is no longer the same as that of arriving customers (and hence the flow conservation
approach of section 3.5 can not be used). Two other (even more challenging) open problems are that
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of computing the waiting time distribution of successfully served customers and the laxity distribution

of queued customers.
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