Learning and Sequential Decision Making?

A. G. Barto
Department of Computer and Information Science
University of Massachusetts, Amherst MA 01003
R. S. Sutton
GTE Laboratories Incorporated
Waltham, MA 02254
C.J. C. H. Watkins
Philips Research Laboratories
Cross Oak Lane, Redhill Surrey, RH1 5HA, England
COINS Technical Report 89-95

YThe authors acknowledge their indebtedness to C. W. Anderson, who has contributed greatly to the development
of the ideas presented here. We also thank S. Bradtke, J. E. Desmond, J. Franklin, J. C. Houk, A. L. Houston, and
E. J. Kehoe for their helpful comments on earlier drafts of this report, and we especially thank J. W. Moore.for his
extremely detailed and helpful criticism. A. G. Barto acknowledges the support of the Air Force Office of Scientific
~ Research, Bolling AFB, through grant AFOSR-87-0030, and the King’s College Rescarch Centre, King’s College

Cambridge, England, where much of this report was written. A version of this report will appear as a chapter in
the forthcoming book ‘Learning and Computational Neuroscience, M. Gabriel and J. W. Moore, editors, The MIT
Press, Cambridge, MA. ;

Learning and Sequential Decision Making!

' A. G. Barto
Department of Computer and Information Science
University of Massachusetts, Amherst MA 01003

R. S. Sutton
GTE Laboratories Incorporated
Waltham, MA 02254

C. J. C. H. Watkins
Philips Research Laboratories
Cross Oak Lane, Redhill Surrey RH1 5HA, England

COINS Technical Report 89-95
September 1989

Abstract—In this report we show how the class of adaptive prediction methods that Sutton called
“temporal difference,” or TD, methods are related to the theory of squential decision making. TD
methods have been used as “adaptive critics” in connectionist learning systems, and have been
proposed as models of animal learning in classical conditioning experiments. Here we relate TD
methods to decision tasks formulated in terms of a stochastic dynamical system whose behavior
unfolds over time under the influence of a decision maker’s actions. Strategies are sought for
selecting actions so as to maximize a measure of long-term payoff gain. Mathematically, tasks
such as this can be formulated as Markovian decision problems, and numerous methods have
been proposed for learning how to solve such problems. We show how a TD method can be
understood as a novel synthesis of concepts from the theory of stochastic dynamic Programming,
which comprises the standard method for solving such tasks when a model of the dynamical system
is available, and the theory of parameter estimation, which provides the appropriate context for
studying learning rules in the form of equations for updating associative strengths in behavioral
models, or connection weights in connectionist networks. Because this report is oriented primarily
toward the non-engineer interested in animal learning, it presents tutorials on stochastic sequential
“decision tasks, stochastic dynamic programming, and parameter estimation.

'The authors acknowledge their indebtedness to C. W. Anderson, who has contributed greatly to the development
of the ideas presented here. We also thank S. Bradtke, J. E. Desmond, J. Franklin, J. C. Houk, A. I. Houston, and
E. J. Kehoe for their helpful comments on earlier drafts of this report, and we especially thank J. W. Moore for his
extremely detailed and helpful criticism. A. G. Barto acknowledges the support of the Air Force Office of Scientific
Research, Bolling AFB, through grant AFOSR-87-0030, and the King’s College Research Centre, King’s College
Cambridge, England, where much of this report was written. A version of this report will appear as a chapter in
the forthcoming book Learning and Computational Neuroscience, M. Gabriel and J. W. Moore, editors, The MIT
Press, Cambridge, MA.

Contents

1

2

Introduction
Sequential Decision Tasks
Solving Sequential Decision Tasks

Mathematical Framework

4.1 SystemsandPolicies,
4.2 Return and Evaluation Function
43 Optimality
Stochastic Dynamic Programming

5.1 Computing State Evaluations for a Given Policy e e e e e
5.2 Computing an Optimal Policy e e e
Parameter Estimation

6.1 Feature Vectors, Decision Rules, and Models
6.2 Parameter Estimation Methods

Learning and Sequential Decision Tasks

7.1 Learning an Evaluation Function . .

Conclusion

11

12
12
13
16

16
17
18

22
24
25

28
29
36

44

1 Introduction

In addition to being studied by life-scientists, learning is studied by engineers and computer
scientists interested in developing useful devices and programs. The study of synthetic learning
has produced an extensive collection of methods and mathematical theories pertaining to such
tasks as pattern classification, prediction, and the adaptive control of dynamical systems. Within
these theories learning is usually formulated as a search conducted in an abstractly defined space,
and a large collection of mathematical concepts can be brought to bear on the problems of
understanding and designing procedures, or algorithms, for enabling a device or program to
improve its performance over time. What is the nature of the correspondence, if any, between
the behavior of an animal in a classical conditioning experiment and the mathematical theories
and computational procedures developed for synthetic learning? Is this behavior trivial from a
computational perspective, or is it complex and subtle? The answers to these questions that
we attempt to justify in this report are that the behavior observed in classical conditioning
experiments is far from being computationally trivial; its strongest ties are to mathematical
theories and computational procedures that are exceedingly useful in practice and surprisingly
complex. By relating the behavior of an animal undergoing classical conditioning to perspectives
developed for understanding synthetic learning systems, we hope to provide a framework that may
lead to increased understanding of animal behavior as well as novel computational procedures for
practical tasks. :

Our analysis is based on the Temporal Difference, or TD, model of classical conditioning
described by Sutton and Barto in refs. [64, 62]. In this report we view the TD model as a
computational method that can be useful in solving engineering problems. Sutton (61] has shown
how computational methods making use of “temporal differences,” including the TD model of
conditioning, are useful for adaptive prediction, and additional publications illustrate how TD
methods can be used as components of synthetic learning systems (e.g., refs. [3, 9, 60]). Here, we
restrict attention to a slightly simplified version of the TD model, which we call the TD procedure
in this report. We show how the TD procedure is related to theoretical principles which serve both
to explain the operation of TD methods and to connect them to existing theories of prediction,
control, and learning. Some of the observations we make are further elaborated by Sutton (61]
and Watkins [67], and some of the connections to existing theory were previously described by
Werbos [68, 69].

We show how a TD method can be understood as the synthesis of concepts from two existing
theoretical frameworks: the theory of stochastic dynamic programming, which addresses sequen-
tial decision tasks in which both short-term and long-term consequences of decisions must be
considered, and the theory of parameter estimation, which provides the appropriate context for
studying learning rules in the form of equations for updating associative strengths in behavioral
models, or connection weights in connectionist networks. Although a clear explanation of how
the relevant theoretical ideas fit together requires a certain amount of mathematical notation,
it is not our purpose to present a mathematically rigorous account of these ideas, and there are
many issues that we do not pursue very deeply or do not discuss at all. Qur goals are to explain
the main ideas clearly and to provide some aid in accessing the wide body of relevant theoretical
literature.!

!Because of its connection to theories and computational methods that are in widespread use in many disciplines,
it is not possible to describe all the literature relevant to the TD procedure. However, we are not aware that methods
are currently in use which combine parameter estimation and dynamic programming in the way they are combined

Drawing precise parallels between behavioral models and computational procedm:es fa.cilita.t?s
the exchange of ideas between researchers studying natural learning and those studymg. synthet{c
learning. Sutton and Barto [63] pointed out that the Rescorla~-Wagner model of t.:la.ssmal condi-
tioning (47] is identical (with some minor caveats) to the equation presentec.i by Widrow and .Hoﬁ'
[72] as a procedure for approximating solutions of systems. of linear equations. ‘As a behavxor.al
model, this equation provides a remarkably simple account of a range of stimulus context effects in
classical conditioning; as a computational procedure, it has proved exceedingly useful in techno-
logical applications, where it is called the LMS (Least Mean Squares) algorithm. This and closely
related algorithms are widely used in the fields of signal processing and pattern classification, and
are currently playing a major role in the emerging field of connectionist modeling (see, for exam-
ple, Anderson and Rosenfeld [4}, Hinton and Anderson (23], McClelland and Rumelhart [37], and
Rumelhart and McClelland [37]). The connection between the experimental and computational
literatures due to the parallel between the Rescorla~Wagner model and the LMS algorithm has
allowed a fruitful exchange between researchers having widely differing ranges of expertise. In
this report we hope to expand this basis for exchange by extending the parallels pointed out by
Sutton and Barto [63]. Within the framework adopted here, the Rescorla-Wagner model—and
hence also the LMS algorithm—appears as a specialization of the TD procedure.

The relationship between the TD procedure and dynamic programming outlined in this re-
port also has the potential for fostering communication between animal learning theorists and

in the TD procedure, although there has been much research on related problems (Ross [51] and Dreyfus and
Law [15] provide good expositions of dynamic programming, and Footnotes § and 6 provide references to some
of the related engineering research on the adaptive control of Markov processes). To the best of our knowledge,
the earliest example of a TD procedure is a technique used by Samuel in a checker-playing program in the late
nineteen—fifties (64, 55]. Samuel’s program used the difference between the evaluation of a board configuration and
the evaluation of a likely future board configuration to modify the equation used to evaluate moves. The evaluation
equation was adjusted so that its value when applied to the current board configuration came to reflect the utility
of configurations that were likely to arise later in the game. Using this method, it was possible to “assign credit” to
moves that were instrumental in setting the stage for later moves that directly captured opponent pieces. Minsky
[40, 41) discussed the credit assignment problem and methods similar Samuel’s in terms of connectionist networks
and animal learning. Mendel and McLaren [38) discussed similar methods in the context of control problems,
and the learning method of Witten [77], presented in the context of Markov decision problems, is closely related
to the method we describe here. Werbos [68] independently suggested a class of methods clogely related to the
TD procedure and was the first, to the best of our knowledge, to explicitly relate them to dynamic programming.
Werbos calls these “heuristic dynamic programming” methods. A similar connection was made recently by Watkins
[67], who uses the term “incremental dynamic programming.”

In his PhD dissertation [60], Sutton developed an algorithm, calling it the “adaptive heuristic critic” algorithm,
that is closely related to Samuel’s method but extended, improved, and abstracted away from the domain of game
playing. This work began with the interest of Sutton and Barto in classical conditioning and the exploration
of Klopf’s idea of “generalized reinforcement” [27, 28], which emphasized the importance of sequentiality in 2
neuronal model of learning. The adaptive heuristic critic algorithm was used (although in slightly different form)
in the reinforcement-learning pole balancer of Barto, Sutton, and Anderson [9), where it was incorporated into a
neuron-like unit called the “adaptive critic element.” This system, which was inspired by the “Boxes” system of
Michie and Chambers [39), was further studied by Selfridge, Sutton, and Barto [57] and Anderson (2, 3). Since -
then, Sutton [61] has extended the theory and has proved a number of theoretical results. His results suggest that
TD procedures can have advantages over other methods for adaptive prediction.

A number of other researchers have independently developed and experimented with methods that use TD
principles or closely related ones. The “bucket brigade” algorithm of Holland [24] is closely related to the TD
procedure as discussed by Sutton [61] and Liepins, Hilliard, and Palmer [32). Booker’s [11] learning system employs
a TD procedure, as does Hampson’s [22] proposed learning system, which is very similar to the one we discuss
here. Other related procedures have been proposed as models of classical conditioning in publications cited in
refs. [64, 62].

behavioral eco.logists. . Dynamic programming has been used exfensively in behavioral ecology
for the analysis of animal behavior (see, for example, Krebs, Kacelnik, and Taylor [29], Hous-
ton, Clark, McNamara, and Mangel [25), and Mangel and Clark (36]). In these studies dynamic

programming is used to determine decision strategies meeting certain definitions of optimality

to which animal behavior is compared. Behavioral ecologists do not suggest that the animals
themselves perform dynamic programming—indeed, most of the forms of behavior studied are
regarded as being innate, and dynamic programming would appear to provide a poor model of
learning. In a sense that will be made clear in what follows, dynamic programming methods work
backwards from the end of a decision task to its beginning, calculating information pertinent
to decision making at each stage based on information previously calculated from that stage to
the task’s end. As a result of this back-to-front processing, it is difficult to see how dynamic
programming can be related to learning processes that operate in real-time as a system interacts
with its environment. However, we show how the TD procedure can accomplish much the same
result as a dynamic programming method by repeated forward passes through a decision task,
that is, through repeated trials, instead of explicit back-to~front computation. This relationship
of the TD procedure to dynamic programming suggests a range of research questions involving
links between animal behavior in carefully controlled learning experiments and the less restricted
forms of behavior studied by behavioral ecologists.

This report is organized into three major parts. The first part, consisting of Sections 2 and 5,
presents the basic ideas of stochastic dynamic programming. Section 2 describes, in both informal
and mathematical terms, a general class of tasks known as stochastic sequential decision tasks to
which the methods of stochastic dynamic programming apply, and Section 5 describes some of
these methods. This material is tutorial in nature and is based on the formulation of Ross [51].
The second major part of the report, consisting of Section 6, is a tutorial on parameter estimation
based on the view taken in the field of adaptive control as described by Goodwin and Sin [20].
Some of this material also appears in Barto [5]. The report’s third major part, consisting of Section
7, shows how the TD procedure emerges as a synthesis of the ideas from dynamic programming
and parameter estimation covered in the first two parts of the report. Here we also show how
the TD procedure can be used in conjunction with another procedure and applied to stochastic
sequential decision tasks to produce an analog of instrumental learning. The combination of these
two procedures corresponds to the use of the “adaptive critic element” and the “associative search
element” in the pole balancer of Barto, Sutton, and Anderson [9]. The framework of stochastic
sequential decision theory helps explain the interaction of these two procedures and suggests other
learning methods for this and related tasks. We conclude with a discussion of what the theoretical
basis of the TD procedure suggests about animal learning and some of the directions that can be
taken in extending this approach. '

2 Sequential Decision Tasks

Animals face many situations in which they have to make sequences of actions to bring about
circumstances favorable for their survival. We are interested in tasks in which the consequences of
an action can emerge at a multitude of times after the action is taken, and we shall be concerned
with strategies for selecting actions based on both their short- and long-term consequences. Tasks
of this kind can be formulated in terms of a dynamical system whose behavior unfolds over time
under the influence of a decision maker’s actions. Modeling the behavior of such a system is greatly
simplified by the concept of state. The state of a system at a particular time is a description of

red

the condition of the system at that time that it is sufficient to determine all a.spfacts of the future
behavior of the system when combined with knowledge of the system’s futu.re input. Wha.te\ter
happened to the system in the past that is relevant to its future behavior is .summed up in its
current state—future behavior does not depend on how the system arrived at its current state, a
property sometimes called “path-independence” of the system description. The concept of state
is also useful in describing systems which operate according to probabilistic rules. In this case,
the system state together with future input determine the probabilities of all aspects of the future
behavior of the system independently of how the state was reached. This is the Markov property
of a stochastic dynamical system.

Consider a decision making agent, which we simply call an agent, facing the following task.
The agent interacts with a system in such a way that at the beginning of each of a series of discrete
time periods, it observes the system and is able to determine the system state at that time. Based
on the observed state, the agent performs an action, thereby causing the system to deliver to the
agent a ‘payoff’, which we think of as a number whose value depends on the system state, the
agent’s action, and possibly random disturbances. The system then makes a transition to a
new state determined by its current state, the agent’s action, and possibly random disturbances.
Upon observing the new state, the agent performs another action, receives another payoff, and
the system changes state again. This cycle of state—observation, action, payoff, and state-change
repeats for a sequence of time periods. The agent’s task, described mathematically in Section 4,
is to select the actions that maximize the total, or cumulative, amount of payoff it receives over
time. This is more difficult than merely trying to maximize each individual payoff. Some actions
may be useful in producing a high immediate payoff, but these same actions may cause the system
to enter states from which later high payoffs are unlikely or impossible. Hence performing these
actions would result in less total amount of payoff than might be possible otherwise. Conversely,
some actions may produce low payoff in the short-term but are necessary to set the stage for
greater payoff in the future. The agent’s decision making method must somehow account for both
the short— and the long—term consequences of actions.

The total amount of payoff received by the agent over many time periods depends on the
number of time periods over which this total is determined, the sequences of actions and states
that occur over these time periods, and the outcomes of whatever random factors influence the
payoffs and state transitions. The number of time periods over which the total amount of payoff
is determined is called the horizon of the decision task. If the horizon is finite, the total amount
of payoff is simply the sum of the individual payoffs received at each time period until the task’s
horizon is reached. In the horizon is infinite, however, this sum may not be finite, a difficulty
remedied by introducing a discount factor that allows payoffs to be weighted according to when
they occur. In this case, what we mean by the total amount of payoff over an infinite number
of time periods is a weighted sum of the infinite number of individual payoffs received, where
the weights decrease with increasing temporal remoteness of the payoffs (we define this precisely
in Section 4). If the discount factor is chosen appropriately, then this weighted sum will always
have a finite value despite its dependence on an infinite number of payoffs. Sutton and Barto (62]
refer to this as imminence weighting. In this report, we restrict attention to infinite horizon tasks
where a discount factor is used in determining the relevant measure of the total amount of payoff.

Describing a decision task in terms of system states permits a relatively simple statement of
how action and state sequences determine the total amount of payoff an agent receives. Suppose
the agent uses a rule to select actions depending on system state. This rule, called the agent’s
decision policy, or simply its policy, associates an action with each system state. The agent’s

;:::g:sui:n i;t;;::(ilnignats::t:aii the action associated with tl.xa.t state by the policy. If no random

\ _ sk, then the sequences of actions and states depend only on the
agent’s policy and the system state at the beginning of the task, i.e., the task’s initial state,
Consequently,. the total amount of payoff received until the task’s horizon is reached (where the
total amount is determined by discounting if the task has an infinite horizon) also depends only
on the agent’s policy and the task’s initial state. By a policy’s return for a given system state we
mean the total amount of payoff the agent receives until the task’s horizon is reached, assuming
the task’s initial state is the given state and the agent uses the given policy. For infinite horizon
tasks where a discount factor is used, a policy’s return for a state is the weighted sum (where
the weights depend on the discount factor) of the payoffs the agent would receive over an infinite
number of time periods for the given initial state if the agent were to use the given policy to
select an infinite sequence of actions.? Thus, when no random factors are involved in a sequential
decision task, the payoff for a system state depends on a single action of the agent, but the return
for a state depends on the consequences of the agent’s decisions as specified by its policy for the
duration of the task.

When a decision task involves random factors, a policy’s return for each system state is a
random variable. In this case, one can define the ezpected return for each policy and system state.
For the infinite horizon case with discounting, which is our concern here, the expected return
for a policy and system state is the mathematical expectation, or mean, of the random variable
giving the return for that policy and state. The expected return depends on the distribution
functions of all the random factors influencing the task and can be thought of as the average of
an infinite number of instances of the decision task, where the agent uses the same policy and
the system starts in the same initial state in each instance. As formulated here, the objective of
a sequential decision task is defined in terms of expected return: The objective is to find a policy
that maximizes the expected return for all possible initial system states. Such a policy is called
an optimal policy. '

Although we discuss tasks requiring maximizing expected return, this class includes as special
cases tasks in which the objective is to obtain any payoff at all. For example, suppose that for all
but one system state the payoffs received by the agent are zero no matter what action the agent
selects. Also suppose that the task ends when a nonzero payoff is obtained. One can think of the
- state from which nonzero payoff is available as the goal state. In this case, a policy’s return for
each initial state is zero unless its use by the agent brings about the goal state. Hence, in this
case, selecting actions to maximize return is the same as selecting actions that cause the system
to enter the goal state. If a discount factor is used, it turns out that the return is maximized by
selecting actions that bring about the goal state in the fewest time periods. Tasks such as this,
in which the objective is to reach a designated goal, are included in the theory we describe, and
the example used throughout this report is an instance of this type of task.

There are numerous examples of sequential decision tasks, many of which have great practical
significance. The task of finding the least—cost route from one place to another is perhaps the
most generic example. Choice points along a route correspond to the states of the system, actions
determine what place is reached next, and the magnitude of the payoff received in response
to an action is inversely related to the cost of the path travelled (so that by maximizing the
total amount of payoff, one minimizes total path cost). More complex tasks involving resource

30Othe formulations of sequential decision tasks result from different definitions of a policy’s return. One for-
mulation that is commonly studied defines a policy’s return as the average amount of payoff per-time-step over a
task’s duration. Ross [51] also discusses this formulation.

Som

allocation, investment, gambling, and foraging for food are also examples of sequential decision
tasks. Most of the planning and problem-solving tasks studied by artificial intelligence researchers
are sequential decision tasks. Other examples are studied by control engineers, such as the problem
of placing a spacecraft into a desired orbit using the least amount of fuel. In some sequential
decision tasks, the distinction between the agent and the system underlying the decision task
may not be as clear-cut as our discussion would lead one to believe. For example, in a foraging
model in behavioral ecology, the state of the system may be the forager’s energy reserves [36], a
quantity apparently describing an aspect of the agent itself instead an external system. It can be
misleading to identify an agent with an entire organism.

We use a simple route—finding task to illustrate the concepts and methods described in this
report. We emphasize that this is merely an example and that these concepts and methods are
applicable to tasks that are much more complex than this route—finding task.

An Ezample—Figure 1 shows a grid representing a region of space. Each intersection of the grid
lines is a ‘location’, and the region contains a C-shaped barrier and a goal location. For the
8-by—-12 grid shown, there are 96 locations. Two locations are adjacent if they are connected by a
grid line that does not pass through any other locations. A path is a set of line segments tracing
a route through the region, where each segment connects two adjacent locations in the region.
The length of a path is the number of distinct line segments it contains. The task we consider is
to find, for each location, a path to the goal that begins at the given location, does not cross the
barrier, and is has the smallest possible length. Each such shortest path is an optimal path.

This task can be formulated as a sequential decision task by considering an agent which
can move from its current location to an adjacent location in each time period. The spatial
environment defines the system underlying the decision task. For each time period the state
of the system is the current location of the agent, and the state at the next time period—the
new location of the agent—is determined by the the current location of the agent and the action
chosen. We let the agent choose any one of the four actions North (N), South (S), East (E), and
West (W) at each time period. The effect of an action depends on the current system state, i.e.,
the current location of the agent. For most locations, the action causes the agent to move to the
location adjacent to its current location in the direction indicated by the action. However, for
locations from which a move is blocked by a barrier or would take the agent out of bounds, the
effect of any ‘disallowed’ action is to leave the agent’s location unchanged. If the agent is located
at the goal, it stays there no matter what action it performs. Thus, the set of actions available
to the agent is always the same, but actions can have differing consequences depending on the
agent’s location.?

A policy in this example is a rule that assigns an action to each location. One could think of
a policy as one of the many possible patterns of placing a sign post (indicating N, S, E, or W) at
each location which the agent is compelled to follow. The objective of the task is to form a policy,
i.e., to place a pattern of 96 sign posts, that directs the agent from each location to the goal in
the fewest possible time periods, i.e., along an optimal path. To formulate this as the problem
of finding a policy that maximizes expected return, we effectively punish the agent every time
period in which it is not at the goal. The agent always receives a payoff of —1 unless the agent is
located at the goal, in which case it receives a payoff of zero for any action. Therefore, the sum

INote that an action in a sequential decision task is not the same as a component of the agent’s observable
behavior. Observable behavior is a joint consequence of the agent’s action and the state of the system underlying
the decision task.

Goal Barrier

\

N

A)

Figure 1: Plan view of a spatial environment for the route-finding example. The
intersections of the lines are possible locations for the agent. The C-shape
is a barrier, and the goal location is indicated.

of payoffs over a path from a starting location to the goal, i.e, the return produced over the path,
is the negative of the number of time periods taken to reach the goal (assuming no discounting).
Selecting actions to maximize return therefore minimizes the number of time periods taken to
reach the goal. An optimal policy directs the agent an along optimal path from each location.

In what follows, we discuss several versions of this task that differ in terms of the amount of
knowledge we assume for the agent. Although all of these tasks are relatively easy instances of the
tasks encompassed by the theory, some of the sources of additional complexity can be appreciated
clearly using the route—finding example. For example, the payoff received for a move need not
always be —1 but can instead reflect the distance of a path, the degree of difficulty encountered
in traversing it, etc. Additionally, the payoffs and the state transitions need not be deterministic.
Actions may only influence the probabilities that specific places are reached. Finally, additional
complexity, which we do not address at all in what follows, occurs if the agent does not have
access to complete state information, a situation that would appear in the route-finding example
when the agent is unable to distinguish all possible locations.

Before discussing solution methods for sequential decision tasks, we make several observations
about the theoretical framework implied by this class of tasks. All of these observations are
reminders that it can be misleading to take the abstractions involved in this framework too
literally.

o Discrete time—What do the discrete time periods of a decision task mean in terms of real
time? In the kinds of discrete—time models to which we restrict attention, these time periods
are called time steps and are merely computational instants that may correspond to instants
of real time separated by some interval, or to separate collections of events, such as trials. In
modeling conditioning behavior, for example, a time step may represent some small interval
of real time, as in the TD model presented by Sutton and Barto [64, 62]. Alternatively,

each time step might be an entire conditioning trial, as in a trial-level model such as the
Rescorla-Wagner model [47]. In the discussion to follow, a time step merely refers to a time
period of an abstract sequential decision task.

Recetving payoff—The framework described above is sometimes interpreted to mean that
payoff is delivered to the agent as if there were a single sensory pathway dedicated to this
function. If one identifies the agent with an entire animal—which can be misleading as we
emphasized above—this view suggests that an animal has a single sensory input dedicated
to the function of receiving all primary reinforcement, which is obviously not the case. It
is better to think of the payoff at each time period as a concise way of summarizing the
affective significance of the immediate consequences of performing an action. Because the
immediate payoff and the system’s next state are both functions of the current action and
system state, it is a special case to regard each payoff simply as a function of the system’s
current state. One can think of this function as being computed by the agent itself and not
by the system underlying the decision task.

Complete state information—The assumption is made that at each time step a complete
description of the state of the system underlying the task is available to the agent. Clearly,
this is a strong assumption. Although the consequences of weakening this assumption are
theoretically significant and relevant to the study of natural learning, they are complex
and beyond the scope of the present report. However, it is important to keep in mind
the following two observations. First, one need not think of the current system state as
something that must be read directly from the agent’s sense organs. More generally, the
state of the system can be provided through the aid of complex world models and memories
of past sensations and behavior. The theory requires the availability of state information,
but it is not sensitive to how this information is obtained. Second, knowing the current state
of the system underlying a decision task is not the same as knowing beforehand how the
system will behave in response to actions; that is, it is not the same as having an accurate
model of the decision task.

Optimality—The objective of a decision task considered here is to find an optimal decision
policy—a policy that maximizes the expectation of the discounted sum of future payoffs.
Some theories of animal behavior invoking optimality principles are “molar” optimality
theories which propose that behavior can be understood in terms of optimization, but they
do not specify mechanistic computational procedures by which the conditions of optimality
can be achieved. “Molecular” optimization theories, on the other hand, specify procedures
that operate from moment-to-moment but which only approximate optimal solutions in
most tasks (see, for example, refs. [45, 59]). Although here it is not our goal to provide a
comprehensive theory of animal behavior, we can describe the kind of theory with which the
perspective taken in this report is consistent. The framework of sequential decision theory
adopted here provides a molar view of behavior involving a specific optimality criterion,
and the TD and policy adjustment procedures we describe provide molecular accounts of
how optimal behavior might be approximated. At the molar level, because this view defines
optimality in terms of a dynamical system underlying a decision task, it avoids the circularit y
inherent in theories that define optimality only as revealed by an organism’s behavior. At
the molecular level, the computational procedures outlined provide one account of how
the maximization of cumulative payoff over time can be approximated without recourse
to teleological principles. Moreover, because these procedures usually only approximate

10

optimal policies, they do not imply that optimal behavior will be achieved. The performance
of these procedures in specific decision tasks depends on the specification of many details,
such as the manner of representing system states. Choices made in specifying these details
strongly influence the degree of optimality achievable.

3 Solving Sequential Decision Tasks

Because so many problems of practical interest can be formulated as sequential decision tasks,
there is an extensive literature devoted to the study of solution methods for this type of task, the
large majority of which require the agent to have a complete model of the decision task. Even if
one has a complete model of the decision task, which means knowing all the state—transition and
payoff probabilities of the system underlying the task, determining the best policy can require
an extremely large amount of computation because it effectively requires a search through the
set of all possible state sequences generated by all possible sequences of actions. Except for very
specialized tasks in which analytical methods can be used instead of search, the required amount
of computation increases so rapidly with increases in a task’s size (as determined by its horizon,
number of states, and number of actions) that it is not feasible to perform this search for large
tasks. Dynamic programming, a term introduced in 1957 by Bellman [10], consists of particular
methods for organizing the search under the assumption that a complete model of the decision
task is available. Although these methods are much more efficient than explicit exhaustive search
of all possible state sequences, the amount of computation still grows so rapidly with the size of the
task that large tasks remain intractable. Search methods specialized to take advantage of specific
kinds of “heuristic” knowledge can be applied to some types of larger tasks, but these methods
also require a complete model of the decision task and can still require prohibitive amounts of
computation.* 3

Methods for estimating optimal policies in the absence of a complete model of the decision
task are known as adaptive or learning methods. Because the most difficult aspect of applying
dynamic programming is often the accurate modeling of the decision task, adaptive methods have
great practical importance. Additionally, if an adaptive method can improve a decision policy
sufficiently rapidly, then the amount of computation required may be less than would be required
by an explicit solution via dynamic programming. How can an optimal policy be constructed
when a complete model of the decision task is not available? Instead of being able to generate a
solution by manipulating a task model, it is necessary to learn about the system underlying the
task while interacting with it. Two general approaches are possible, one of which has been much
more widely studied than the other. Most widely studied is the model-based approach, which
requires constructing a model of the decision task in the form of estimates of state—transition and
payoff probabilities. These probabilities can be estimated by keeping track of the frequencies with
which the various state transitions and payoffs occur while interacting with the system underlying
the decision task. Assuming that these estimates constitute an accurate model of the decision
task, one can then apply a computational technique for finding an optimal policy, such as a
dynamic programming technique, which requires an accurate model of the decision task.®

1A large component of artificial intelligence research concerns search strategies of this type, called “heuristic
search” strategies, although their objective is usually not to maximize a measure of cumulative payoff. See Pearl
[44].

®Most of the methods for the adaptive control of Markov processes described in the engineering literature are
model-based. Examples are provided by Borkar and Varaiya [12], El-Fattah [17], Kumar and Lin [30], Lyubchik

11

In this report our concern is with other approaches to learning how to solve sequential decision
tasks, which we call direct approaches. Instead of learning a model of the decision task, that is,
instead of estimating state-transition and payoff probabilities, a direct method adjusts the policy
as a result of its observed consequences. Actions cannot be evaluated unless they are actually
performed. The agent has to try out a variety of decisions, observe their consequences, and
adjust its policy in order to improve performance. We call this process reinforcement learning
after Mandel and McLaren [38] who describe its relevance to adaptive control? To facilitate
the direct learning of a policy, it is possible to adaptively improve the criteria for evaluating
actions so that the long-term consequences of actions become reflected in evaluations that are
available immediately after an action is performed. The TD procedure appears as a method for
accomplishing this.

In terms of theories of animal learning, the payoffs delivered to the agent at each stage of the
decision task correspond to primary reinforcement, and the TD procedure provides a gradient
of secondary reinforcement by anticipating the events that provide primary reinforcement. Sec-
ondary reinforcement is therefore defined in terms of estimates for the expected sum of future
primary reinforcement (possibly discounted). Adjusting a decision policy on the basis of this
acquired reinforcement is related to learning in instrumental tasks—actions that increase this
estimated sum more than others are favored in the process of learning what actions to perform.
Although this corresponds to a stimulus-response (S-R) view of instrumental learning based on
a version of the Law of Effect [65], it is not our aim to argue for the validity of this view of
animal instrumental learning, which probably involves more than can be accounted for by an S-R
model (see, for example, Dickinson [14] and Rescorla [46]). In Section 7 we provide an example of
how the TD procedure can be used with this kind of reinforcement learning method, but the TD
procedure can also be combined with model-based methods in a variety of ways, as was done, for
example, by Samuel [54], whose system performed look-ahead searches. However, it is beyond
the scope of the present report to discuss these more complex learning systems. Watkins (67]
discusses some of the issues that arise in combining direct and model-based learning methods.

4 Mathematical Framework

4.1 Systems and Policies

We assume that the system underlying the decision task is a discrete~time dynamical system with
a finite set of states, X. At any time step ¢ = 0,1,2,..., the system can be in a state z.X. After
observing the system state at time step ¢, the agent selects (and performs) an action from a finite
set, A, of possible actions. Suppose that at time step ¢, the agent observes state ¢ and selects
action a. Then, independently of its past history, the system makes a transition from state z to
state y with a probability that depends on the action a. We denote this probability P,,(a). When
this state transition occurs, the agent receives a payoff, denoted r, which is determined randomly

and Poznyak [34], Mandl [35], Riordon [48], and Sato, Abe, and Takeda [56]. Most of these methods apply to the
case in which return is the average payoff per-time-step and the underlying system is an ergodic Markov chain for
each possible policy. They differ in how the policy is adjusted over time based on the current estimates for the
transition and payoff probabilities.

SExamples of various direct methods for learning how to solve sequential decision tasks are those of Lyubchik
and Poznyak [34], Lakshmivarahan [31], Wheeler and Narendra [71], and Witten [77]. Most of these rely on results
about the collective behavior of stochastic learning automata and ergodic Markov chains (see also Narendra and
Thathachar [43]).

12

in a manner depending on z and a. This sequence of events repeats for an indefinite number of
time steps. Because we shall be concerned only with the ezpectation of the total amount of payoff
accumulated over time, it is not necessary to specify the details of the probabilistic process by
which a payoff depends on states and actions. It suffices to specify only how the expected value
of a payoff depends on actions and states. We let R(z,a) denote the expected value of a payoff
received as a consequence of performing action @ when observing state z. We assume that the
payoff whose expected value depends on the system state and agent action at time step ¢ is by
the agent at the next time step: step ¢ + 1. Although this formalism can be modified to let the
set of actions available to the agent depend on the system state, for simplicity we have chosen to
let the set of actions, A, be the same for each state. .

The objective of the decision task is to find a policy for selecting actions that is optimal in
some well-defined sense. In general, the action specified by the agent’s policy at a time step can
depend on the entire past history of the system. Here we restrict attention to policies, called a
stationary policies, that specify actions based only on the current state of the system. A stationary
policy can be represented by a mapping, denoted w, that assigns an action to each state. The
action specified by policy 7 when the system is in state z is denoted m(z). For the route—finding
example, a policy specifies what direction to move from any location. In Section 7.2, we consider
policies that specify actions probabilistically based on the current system state.

Letting z; denote the system state at time step ¢, if the agent is using policy =, then the action
it takes at step ¢ is a; = w(z,). The system state changes according to

Prob{z.y; = y|eo,a0,21,01,...,2: = 2,0, = a} = Prob{z;y1 = yle; = 2,0, = a} = Poy(a).
Letting 71, denote the payoff received by the agent at time step ¢ + 1, we have
Elreq1|ze, ar) = R(ze, ay), (1)

where E indicates expected value. Figure 2 illustrates this formulation by showing when the
relevant quantities are available to the agent, how they change over time, and on what information
they depend. Because we assume the policy = is stationary, the sequence of states forms a Markov
chain with transition probabilities Py = P,y (n(z)). For this reason, decision tasks of this kind
are called Markov decision tasks.

For the route-finding example, the state set, X, consists of the 96 different locations, one of
which is the goal; the action set, 4, is {N, S, E, W}; R(z,a) = —1 for all states z and actions a,
except for the goal state, g, for which R(g,a) = 0 for all actions a. Because the system in this
example is deterministic, R(z, a) is the actual payoff received by the agent for performing action
a in location z, and the transition probabilities equal either one or zero: Pgy(a) = 1 if action a
moves the agent from location z to location y, and is zero otherwise.

4.2 Return and Evaluation Function

It is now possible to define a policy’s return, which for our purposes will be the infinite horizon
discounted return. Suppose an agent begins interacting with a system at time step t =0 and is
able to continue for an infinite number of time steps. Using discount factor v, the measure of the
total amount of payoff that the agent will receive over this infinite time period is

AT+ et Y g (2)

When 0 < v < 1, the powers of ¥ weighting the payoffs form a decreasing sequence so that later
payoffs are weighted less than earlier ones, with payoffs in the far distant future contributing

13

disturbance

R

T

disturbance

actl P

on

disturbance

R

state

t+ 1

|

disturbance

t+1
payoff

action

t+1

t+1

disturbance

ol

R

|

disturbance

Figure 2: How the state, action, and payoffs change over time in a sequential de-
cision task. The computation of the action, state, and payoff are shown
for three successive time steps. The squares labeled v, P, and R re-
spectively represent the decision policy, state-transition computation, and
payoff computation. The stochastic aspects of the system are illustrated
as disturbances influencing the latter two computations. In “space-time”
diagrams of this type, several of which appear below, the quantities be-
tween two bold vertical lines are labeled with the same time subscript
(exceptions to this which occur below are explained in the text). The
repetition of a rectangle representing a system component indicates the
same component viewed at different times.

14

negligibly to the return. If y = 0, the sum in Expression 2 is simply the immediate payoff, 7., due
to the first action, ag; if v = 1, it is the sum of all the payoffs received and generally is not finite.”
The discount factor adjusts the degree to which the long-term consequences of actions must be
accounted for in a decision task and influences the rate at which learning occurs. Although we do
not discuss the problem of determining a value of the discount factor appropriate for a particular
application, it is clear that a value close to one is appropriate when there is a high degree of
certainty about how the system will evolve over time. One would only want to sacrifice short-
term return for long-term return that is highly certain. We also do not discuss procedures for
dynamically adjusting 4 with experience, even though this would be useful in many applications.

In addition to depending on the system underlying the decision task, the initial system state,
and the decision policy used by the agent, the sum given by Expression 2 depends on unknown or
random factors influencing the state transitions and the payoffs. The expected value of this sum
over all possible decision tasks starting with initial state z when the agent uses policy policy = is:

v E-;r Z'Tkrt-l-l'zﬂ = z]) (3))
=0

where E, indicates that the expected value is taken under the assumption that policy is used
to select actions. We can think of this quantity as the value of a function, denoted V', assigning
an expected return to each system state z: '

V™(z) = B [f: 7‘r,+;|a:o = a:] . (4)

¢=0

This function is the evaluation function for policy =. For each state z, V7™(z) is the expected
return over the infinite number of time steps beginning at ¢ = 0 under the conditions that the
system begins in state £ and the agent uses policy 7, where it is understood that the discount
factor, v, has some specified value. We call V”(z) the evaluation of state z,

Because a system state has the property that the future behavior of the system does not
depend on how or when the system arrives at a state, the evaluation of a state is-in fact the
" expected return over an infinite number of time steps beginning whenever the system enters that
state under the condition that the agent continues to use policy 7 thereafter. The evaluation of
-a state is a prediction of the return that will accrue throughout the future whenever this state.
" is encountered. If one can determine the evaluation of a state merely from observing the system
when it is'in that state, then this prediction is effectively available immediately when the system
enters that state, even though the prediction contains information about the entire future.

For the route-finding example, the evaluation of location z for policy = depends on the
expected number of time steps the agent takes to reach the goal from location @ using pol-
icy m. If = always brings the agent to the goal in, say, n time steps from a lncation =, then
V™(z) = -1—-9—9% — ... — 9*"1. The series has n terms because the payoff is zero for all time
steps after the goal is reached. When v = 1, this series sums to —n, and as y decreases, the sum
becomes less negative, approaching ~1 as ¥ approaches zero. The evaluation of the goal, V™(9),
is zero for any policy. In this task, because a location’s evaluation is directly related, depending
on v, to the negative of the number of time steps to the goal, the larger a location’s evaluation

TOne situation in which it is finite when v = 1 is when the structure of the task ensures that all payoffs are zero
after a certain point in the decision task. However, restricting v to be greater than zero and strictly less than one
ensures a finite return under all circumstances (assuming the payoffs themselves are finite).

156

for policy w, the fewer time steps are required to move from it to the goal using 7. If = does not
generate a path from z to the goal in any finite number of steps, which can happen if = produces
a looped path, then V™(z) = — 02, 4%, which converges to ~1/(1 — 7)< -1if0<y<1.

4.3 Optimality

Let m and #’ be any two policies. Policy 7/ is an improvement over policy 7 if the expected
return for 7’ is no smaller than that for 7 for any state, and is larger for at least one state. More
precisely, 7’ is an improvement over 7 if V™'(z) > V7(z) for all states z, with strict inequality
holding for at least one state. A policy is an optimal policy, which we denote 7*, if no policy
is an improvement over it. Because the optimality of policies depends on the discount factor,
technically we should refer to y-optimal policies. As 7 changes, different policies become optimal
because a policy best for short—term versions of a task will generally not be best for long-term
versions. However, for simplicity, we omit reference to 7 if no confusion is likely to result, and we
assume that whenever policies are compared, they are compared according to expected returns
defined for the same 4. In the route-finding example, recalling that a location’s evaluation is
directly related to the negative of the number of time steps to the goal, an optimal policy takes
the agent from any location to the goal in the fewest possible time steps.

There can be many optimal policies for a given decision task. For example, in the route-
finding illustration, there are several different way<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>