AN APPROXIMATE ANALYSIS
OF THE LRU AND FIFO BUFFER
REPLACEMENT SCHEMES

Asit Dan and Don Towsley
University of Massachusetts
Ambherst, MA 01003

COINS Technical Report 89-98
September 1989

An Approximate Analysis of the LRU and FIFO
Buffer Replacement Schemes!

Asit Dan? and Don Towsley3

University of Massachusetts
Amherst, MA 01003

ABSTRACT

In this paper, we develop approximate analytical models for predicting the buffer hit probability
under the Least Recently Used (LRU) and First In First Out (FIFO) buffer replacement
policies under the independent reference model. In the case of the analysis of the LRU policy,
the computational complexity for estimating the buffer hit probability is O(K B) where B is
the size of the buffer and X denotes the number of items having distinct access probabilities.
In the case of the FIFO policy, the solution algorithm is iterative and the computational
complexity of each iteration is O(K). Results from these models are compared to exact results
for models originally developed by King [KINGT1] for small values of the buffer size, B, and
the total number of items sharing the buffer, D. Results are also compared with results from
a simulation for large values of B and D. In most cases, the error is extremely small (less than
0.1%) for both LRU and FIFO, and a maximum error of 3% is observed for very small buffer
size (less than 5) when the access probabilities are extremely skewed. To demonstrate the
usefulness of the model, we consider two applications. In our first application, we compare the
LRU and FIFO policies to an optimal static buffer allocation policy for a database consisting
of two classes of data items. We observe that the performance of LRU is close to that of the
optimal allocation. As the optimal allocation requires knowledge of the access probabilities,
the LRU policy is preferred when this information is unavailable. We also observe that the
LRU policy always performs better than the FIFO policy in our experiments. In our second
application, we show that if multiple independent reference streams on mutually disjoint sets of

data compete for the same buffer, it is better to partition the buffer using an optimal allocation
policy than to share a common buffer.

!This work was partially supported by a gift from the Digital Equipment Corporation.
*Department of Electrical and Computer Engineering :
3Department of Computer and Information Science

-1 Introduction

In this paper, we develop approximate analytical models for predicting the buffer hit
probability under the Least Recently Used (LRU) and First In First Out (FIFO) buffer
replacement policies under the independent reference model. This problem was first
studied by King [KING71] who provided an exact analysis for both policies. This
analysis has been used by several researchers [RAQ78,BABAS83] to study the merits of
different hardware cache organizations and buffer replacement policies. Unfortunately,
the computational complexity of King’s analysis grows exponentially with the buffer
size or the number of data items, and hence, is not very useful for large buffer sizes and
large number of data items. Consequently, these studies have resorted to simulation
in order to study the behavior of large buffers. Apart from the exact analysis, various
performance bounds were obtained by Franaszek and Wagner [FRAN74], and by Aven

et. al.[AVENT76]. There does not appear to exist any simple analysis for estimating
buffer hit probabilities.

The models developed in this paper are computationally efficient. The computational
complexity for estimating the buffer hit probability of the LRU policy is O(K B) where

. B is the size of the buffer and K denotes the number of items having distinct access
probabilities. In the case of the FIFO policy, the solution algorithm is iterative and
the computational complexity of each iteration is O(K). The error in our analysis
decreases with increasing values of B and K (less than 0.1% for K > 20) and it is also
very close for small values of K and B(maximum error is less than 3%).

Dynamic buffer (cache) replacement policies such as LRU and FIFO have wide
applications in hardware cache management [SMIT82,STON89,RAQ78], operat-
ing system memory management [COFF73], and data base buffer management
[LANG77,TENG84,SACC87]. We believe the simple approximate analytical models
developed in this paper, will be useful to gain qualitative insights for various appli-
cations where different sets of data have different access probabilities. For example,
the model can be used to investigate the issues of skewness in data access, optimal set
size in hardware cache, and buffer coherency policies in multi-computer systems. The
model has successfully been used for predicting buffer hit probability under a data
sharing environment by one of the authors [DAN8Y].

We present two applications of our models in this paper. In the first application,
_ ‘we consider the behavior of LRU and FIFO in a database environment where there
are two classes of data items, a hot set and a cold set. We show, for .a wide range
of parameters, that the buffer hit probability under LRU is close to that achieved

1

under a static optimal policy. The static optimal policy has the disadvantage that it
" requires knowledge of the access probabilities of the data items. Hence, we observe
that the LRU policy is preferable in an environment where the hotness of the data
changes over time. The assumption of independent references not only simplifies the
a.halysis and makes it tractable, but is also quite realistic for various applications
such as database systems, where independent transactions access a small set of data
[VERK85,KEARS89]. Finally, the LRU pohcy always performs better than the FIFO
policy in all our experiments.

In our second application, we show that if multiple independent reference streams on
mutually disjoint data sets compete for the same buffer space, it is better to partition
the buffer amongst the reference streams using an optimal policy, rather than sharing
a common buffer. The performance gain due to partitioning depends on the relative
skewness of the data streams and the buffer size. The policy can be used for parti-

tioning of disk cache and partitioning of cache for the instruction and data set of a

program [STONB89).

We develop the analytical model for the LRU and FIFO policies in Section 2. Results
from these models are compared to exact results obtained from King [KINGT71] and
to results obtained from simulations i in Section 3. Section 4 contains two applications
of the models and Section 5 summarizes and concludes the paper.

2 Analysis of Replacement Policies

We consider a collection of D fixed size items that share a buffer that can store B
items. An item may correspond to a line in a cache, a page in memory, or a granule
in a database system. The collection of items is partitioned into K partitions labelled
k =1,2,..., K where the k-th partition contains D, items, D = YK, Dy, and the
probability that any access lies in partition k is ay, YK ar =1. Let {A:}2, be a
sequence of i.i.d. r.v.’s where 4; denotes the partition from which the i-th item is
requested. According to our assumptions, Prla;=kl=ap, k=1,---,K,i= 1,2,....

This corresponds to the Independence Reference Model (IRM) used in many studies of
buffer behavior [KINGT71).

We are interested in the behavior of the LRU and FIFO repla.cement polices for such
a system. Let X, = (X;,,,---, X B,,,) be the state of the system after the n-th request.
" Here X;, denotes the occupancy of the i-th position in the buffer; X;, = k if an

item from partltlon k resides in position i after the n-th request. Deﬁne Yin to be

Gncw

| — |
G] Gnew G1 Gj
Gz G1 G2 Gl
o . o .
. o o °
. o o °
Gj-l A, Gj—2 Gj—l _A G i—2
4 — d
G; Gj Ll G; Gj-1
Gin G; Gin Gin
° . o °
o o ° .
. o . .
Gs Gp-1 Gs Gp
a) Buffer miss b) Buffer hit

Figure 1: Least Recently Used replacement policy

the number of items from partition k that are in the buffer after the n-th request,
Yin = S8, 1(Xin = k), k = 1,---, K. Here 1(P) = 1 if the predicate P is true
and 0 otherwise. We are interested in the stationary behavior of the buffer when it
exists, X = limp oo X, Yk = limpoo Yan, 1 < kE < K. It is easy to show that the
LRU and FIFO policies exhibit such stationary behavior [COFF73]. The focus of our
analysis is the determination of the stationary buffer hit probability for partition k,
hi = E[Yy]/Dy, k=1,--- , K.

2.1 The LRU Buffer Replacement Policy

Figure 1 shows the behavior of the buffer under the LRU replacement policy. The
buffer can be thought of as a stack. If the newly requested item is not found, it is
brought from outside and placed on the stack top pushing all the others down by
one position and the least recently used item (the one at the bottom of the stack) is
removed from the buffer. However, if the newly requested item is found in the buffer
‘then it is removed from the stack and placed at the top. If the item was originally
* the j-th element in the stack, then all items in positions 1,-+.,7 —1 m_ové down one
position. The remaining items are unaffected by the move.

The top of the stack is located at position 1 in the buffer and the bottom of the stack
~ in position B. The j-th most recently used item is found in position j, j=1,---,B.
Let m(z) = Pr[X = z] where z = (z1,---,2p) € S the set of feasible buffer occupancy
states. Here
B K B
S={g:21(:c,-=k)§Dk, 1<k<K, ZZ1(mg=k)=B}.
i=1 k=1i=1

These probabilities satisfy

B

W(Q) = Zﬂ'(mz, IR Z PR ST 2 XS PRRR azB)am
=1
B
+ > m(z2, -+ 2B, 1)az, (D2, — Y 1(2i = 21) = &1.4,)/ Ds,.
le{k:3°2) 1(2i=k)<Dy} =2

Here 6.y = 1if z = y and 0 otherwise.

King [KING71] has presented an exact solution for this Markov chain which yields
E[Y:]. However, the computational complexity for evaluating E[Y,] grows exponen-
tially as a function of B and D. Hence, we present an approximate analysis yielding

E[Y].

Let Yi(j) denote whether an item from partition k is stored at the J-th position. It
takes value 1 if it is present in position j and 0 otherwise, Yi(5) = 1(X; = k). We have
Yi= DL %) k=1, K. Let () = PrlXa(j) = 1, 1< k< K,1 < j < B.
Clearly, px(1) is the probability that the last access was from partition k, and is given
by p(1) = ai. Let r¢(j — 1) be the conditional probability that an item from partition
k moves from location j — 1 to location J in the stack after a request, given that an
item moves from location j — 1 to J. We approximate the steady state probability,
P(f) =m(j—-1), 1<k<K, 1 < 7 £ B. Let bi(j) represent the the average
number of items from partition k contained in the first J positions of the buffer (the

top j positions of the stack is equivalent to considering a buffer of size j — 1). This is
expressed as

ba() = Zj:E[Xt(J')] - lipk(z), i=1,2,B. (1)
and we have |

(o 252"

D,
r(j—1)

Pe(§) =m(5 - 1) = » 3=1,2,-,B-1;k=1,---,K. (2)

where

ST o L |

=1
and (a)* takes value a whenever a > 0 and value 0 otherwise.

Using the above two equations recursively, we can calculate the buffer hit probability
of partition k as hy = E[Yi]/ Dy = by(B)/Dy.

The approximation in the above expression for pr(j), uses the average values of the
number of granules of partition k in the top j — 1 locations, rather than the exact
distribution. This causes an error for small values of D and B. We have observed that
it is possible to obtain estimates for the hit probability h; to exceed 1 for some i. To
alleviate this, b;(j) is capped at D;. This results in a lower value in pi(7) and the extra
probability is redistributed to other partitions proportionally so that YK, m(5) = 1.
In our iterative algorithm, once bi(7) reaches the value D, for all subsequent steps, [
(I > j) partition 7 is not considered, i.e., pi(l) =0.

2.2 FIFO Buffer Replacement Policy

We now consider the FIFO buffer replacement policy. Under FIFQ, the buffer can be
thought of as a queue with position B considered as the head of the queue and position
1 as the tail of the queue. If a request is to an item already in the buffer, then the
buffer remains unchanged. If a request is to an item not in the queue, then the item
is placed in position 1 and all of the items within the buffer are moved one position.
The item at the head of the queue (the oldest item in the buffer) is removed from the
buffer. '

The following equations describe the behavior of the stationary probability distribution
of m(z), '

B

m(2) = w(z)}_ z:i/D;

i=1
B
+ Z W(mh"’amBal)aaz:(Dz; _Zl(mi=ml)—6l,zl)/pzu :_B.GS

le{k:3"7 , L(zi=k)<Dy} _ i=2

‘King [KINGT71] has obtained an exact solution to this Markov chain. We present,
" instead, an approximate analysis that yields estimates of E[Y}].

Let R be the probability that an item is removed from the buffer when a request is
- served. This is identical to the probability that a new item is brought in, hence

B=S au(l- ED), (3)

According to flow conservation, the probability that an item from partition k is
removed from the buffer equals the probability that an item from partition k is
brought in. The probability that an item from partition k resides in any position
is E[Y,]/B. Hence, the probability that an item from partition k is removed from the
buffer is RE[Y;]/B. The probability that an item from partition k is brought in is
ax(1 — E[Yi]/Dy]). Equating these two probabilities yields

ElY;

ag(l — E[Yk]/Dk) = TIC]R. (4)
After some algebric manipulation we get
D,
EY:] = ﬁszg' (5)

By solving the above set of equations (3) and (5) we get E[Y:]. This can be done in an
iterative manner. However, the convergence of the algorithm is sensitive to the way

EYi] is adjusted at each iteration step. We have found the following algorithm to
work well.

step 1: Intialize R := 1; Ysum := 0;

step 2: Repeat while (|Y sum — B| > §)
E[Yy] := D/(1+ RD¢/etB); k=1,2---K
Ysum := 7K | E[Y] '
R:= RxYsum/B;

step 3: hi := E[Y}])/Di,k=1,2--- K

3 Validation of the Analysis

. In this section, we validate our analytical models against exact results given by King’s
analysis for a small number of data items (< 10) and against results obtained by

'simulatiog for larger number of data items. To introduce skewness in the access pattern

6

of the data items, we choose their access probabilities according to truncated arithmetic
- and truncated geometric distributions [BABA83]. Under the truncated arithmetic
probability distribution, the access probability of the i-th item is p; = FI?TI) x 1. Here
we assume that the access probability of each data granule is unique, i.e., K = D. The

probability of the i-th item under the truncated geometric distribution is p; = gl_—:i-} xcl,
where c is a constant. The variance in p; gives a measure of skewness in the access
probabilities. It is higher for truncated geometric distribution than for truncated
arithmetic distribution. In the next section we will give a more formal definition
of skewness using optimal buffer hit probability as a measure. Figures 2 through
5 compare the buffer hit probability of the approximate analysis to that of exact
analysis for LRU and FIFO replacement policies. The value of ¢ for the geometric
distribution is taken to be 2. The model prediction is optimistic for the LRU policy
and pessimistic for the FIFO policy. The error in the approximation for both cases is
very small and decreases with the number of data items. It is greater for truncated
geometric probability distribution (the skewness is higher for geometric distribution)
(K =4,error < 0.1%).

To validate our model for large buffer size, we simulate a skewed data access pattern for
2 and 3 partitions. Figures 6 and 7 show the buffer hit probability of each component
as well as the overall buffer hit probability for 2 and 3 partitions case under the LRU
policy. As can be observed from these graphs, the match between the approximate
analysis and the simulation is excellent. In the case of 2 partitions, the total database
size is 1000 items, and 80% of the data accesses goes to 20% of the data items (i.e.,
the partition sizes are 200 and 800, and the corresponding access probabilities are 80%
and 20%.). In the case of 3 partitions, the sizes of the partitions are 100, 200 and
400 and the respective probabilities that an access will go to the partitions are 57%,
29% and 14% (truncated geometric distribution). The simulation was run for a long
initial period so as to fill up the buffer (20,000 accesses) and then for an additional
duration of 20,000 accesses to gather statistics. The results from the simulation and
the approximate analysis are found in figures 8 and 9 for both the LRU and the FIFO
policies. The match between analysis and simulation is very good for the FIFO policy

as well as the LRU policy. In both cases, LRU performs better than FIFO.

4 Applications

To demonstrate the usefulness of the mbdel, we now consider two applications. In our

first application, we compare the LRU and FIFO policies to an optimal static buffer

7

allocation policy for a database consisting of two classes of data items, a hot set and
~ a cold set. In our second application, we compare the policy of optimal partitioning
of buffer to a policy of shared common buffer for the case of multiple independent

reference streams on mutually disjoint data sets competing for the same buffer.

4.1 Database under Skewed Access

In this application we consider the problem of buffer allocation in a database system.
We compare the performance of the LRU and FIFO policies with that of an optimal
static allocation. We observe that the LRU policy provides most of the performance of
the optimal policy. This is of interest because the static allocation requires knowledge
of the access probabilities whereas the LRU policy does not. Furthermore, the LRU
policy adapts easily to time varying changes in the access probabilities whereas the
optimal policy does not.

We begin with a description of the optimal static allocation. Given the K partitions
with known sizes and access probabilities, we allocate By, units of the buffer to partition
k,1 <k £ K so as to maximize the overall buffer hit rate H. Here H is given by the
expression,

K
H = Z akBk/Dk.

k=1

If ar/Dr > a;/Dj, then reallocating buffer from partition j to partition k increases
H. Hence, the optimal solution is obtained in the following manner. Order the K
partitions in decreasing value of oy /Dy. First allocate a buffer of size max(B, D;) to
partition 1. If B > D, then allocate a buffer of size max(B — D,, D,) to partition 2.

The process is continued until all the buffers are allocated. The general solution is
given by,

C k-1
B, = max (O,min(Dk,B—ZDk)), k=1,---,K. (6)

=1

Consider a database of size D consisting of two partitions where the first partition is
of size 8D and the second of size (1-B)D. Let a denote the fraction of accesses made
to the first partition. Let 4 = (a,f) define an access pattern to a database. We will
order the access patterns in terms of skewness. Two access patterns are different if they |
4 differ in one or both the attributes. Let H (4, B, D) represent the buffer hit probability
under the optimal buffer allocation policy, where the access pattern, buffer size and
database size are given by A, B and D respectively. We say that access pattern 4, is

more skewed than access pattern 4,, if H(Ay,B,D) > H(A3,B, D) for all values of
B and D and if H(A:,B,D) > H(A,, B, D) for at least one set of values of B and D.
Figures 10 through 13 compare the buffer hit probability of LRU and FIFO schemes to
that of static optimal allocation scheme, for various degree of skewness and buffer size.
The database size, D, in all of these cases is 10,000. The straight lines (dotted lines)
correspond to the policy when buffer is allocated to a particular partition first and
then the remaining buffer is allocated to the other partition. As the relative frequency
of access to the first partition (a) changes, the optimal buffer hit probability follows
the straight line corresponding to that partition, until it is no longer optimal to prefer
that partition. The intersection of the straight lines represents that point.

We make the following observations from these figures. Both LRU and FIFO track
optimal allocation policy for all parameters. However, their relative performance de-
pends on the parameters B, D, A. When the buffer size is small (B = 3,000), and the
data access patterns are highly skewed (8 = 0.4, o > 0.4), both LRU and FIFO fail
to retain sufficient hot data granules in the buffer. Hence, they perform considerably
worse than the optimal allocation. (compare figures 10 and 11). This degradation is
much less for a larger buffer size (B=8,000) (compare figures 12 and 13).

In all cases the LRU policy performs better than the FIFO policy. Consider the case,
where both the hot-set and the buffer sizes are small (8 = 0.2 and B = 3000). As
the LRU retains more hot granules than FIFO, the difference in their performance is
significant (figure 10). This difference is less for a larger hot-set size and small buffer
size (figure 11). For a larger buffer size (B = 800), if the hot-set is small then all three
policies retain the hot-set and their performances are close (figure 12). However, for
a larger hot-set size, FIFO fails to retain the hot-set even for a large buffer size, and
performs worse (figure 13).

Another observation to be made from all these figures is that at the point of intersection
of straight lines, (i.e., when no partition is preferred) the performance of all three
policies is the same. As the hotness migrates, i.e., as a changes, the performance of
LRU and FIFO changes very little. However, the performance of the optimal allocation
1s very sensitive to correct knowledge of the access probabilities, and a large penalty
may be incurred if the wrong partition is chosen. This points out the danger of a static

allocation in an environment where the access probabilities are not well known.

As observed from the earlier figures, the difference in performance between the LRU
. and the optimal allocation policies depends on the relative size of the buffer compared
to the database. We next explore the degradation of LRU performance as a function
of the database size while keeping the buffer size fixed (figures 14 through 16). As we

9

increase the database size, both of the partition sizes increase proportionally, but their
 relative sizes remain constant. For a small database, both the LRU and optimal policies
retain the hot-set and the difference between their performances is negligible. The
first break-point occurs when the LRU policy begins to lose some of the hot granules
(ﬁgure 14). From this point on, the performance of LRU degrades more quickly with
increasing database size. The second break-point occurs when the optimal policy fails
to satisfy the hot-set, i.e., the size of the hot-set is greater than the buffer size (figure
15). From this point on, the difference between the performances of the optimal
and the LRU policies gets smaller. Figure 17 shows the percentage degradation in
performance of the LRU policy for various access patterns. The degradation reaches
a maximum (note, a peak occurs at the second break-point) when the hot-set is small
and a significant fraction(say, 50%) of accesses goes to the cold-set. For a system
with multiple partitions, several break-points can be observed, each corresponding to
a point when one less partition cannot be satisfied under the optimal policy. In figure
18, we plot the buffer hit probabilities of the LRU and the optimal policies as well
their difference (in same unit), for a three partition case.

4.2 Optimal Buffer Partitioning

We have observed from our first application that the identification of the partitions
and the knowledge of their access probabilities are essential for obtaining the optimal
buffer allocation. In many applications the exact knowledge of the partitions may
be hard to gather without a substantial overhead. However, the partitions may be
grouped into identifiable groups. In the database context, this may correspond to
multiple database relations (files) sharing a common buffer and access to each relation
is skewed dividing each relation into multiple partitions. The exact knowledge of
skewness in each relation may not be known. A second example in the context of
program execution is the instruction and data set of a program, where the reference

streams to instruction and data can be separated and where accesses within the data
and instruction sets are skewed.

From our observation of the previous application, we know that LRU is the policy
of choice for buffer management for each relation when nothing is known about the
skewness in each relation. However, it is not clear whether a common buffer should be
.shared by multiple relations under one LRU policy or the buffer should be partitioned
. in some optimal way among the rela.tipns. In the latter case, each relation uses its
portion of the buffer under its LRU policy. For a real-life application, an online
adaptive algorithm may be used for an optimal partitioning of the buffer [STON 89].

10

From the analysis point of view, we will assume knowledge of the access pattern in
~ each relation to derive the near optimal partition sizes. We will describe below an
algorithm to derive the near optimal partition sizes, along with an informal argument
as to why this should be a near optimal buffer allocation for this problem. In both
cases, the performance metric of interest is the overall buffer hit probability.

All of our experimental observations suggest that the buffer hit probablity of the LRU
policy under the IRM model is a concave function of the buffer size. A formal proof
of this conjecture is an open problem. By making the assumption that this is so,
then the optimal partitioning of the buffer is a simple integer programming problem
which can be solved using a greedy algorithm first proposed by Fox [FOX66)]. This
algorithm allocates one unit of buffer at each step to the group that will yield the
highest incremental change in buffer hit probability. Since the algorithm for obtaining
estimates for the hit probability under the LRU policy is recursive and requires a single
step for the addition of a buffer unit, it is easily merged with Fox’s algorithm.

Figure 19 compares the two buffer policies for a database application with two relations
(groups). Each relation consists of 1000 data granules, but the access probabilities
within each relation is different. In relation 1, 80% of the accesses goes to 20% of the
items, and in relation 2, 60% of the accesses goes to 40% of the items. The relative
frequency of accessing each relation is given by the parameter 7. Increasing v increases
the difference in the access frequency between the most frequently accessed partition
(hot partition of relation 1) and the least frequently accessed partition (cold partition
of relation 2). For a large buffer size, both shared and partitioned policies retain the
hot data items of both the relations. But for a small buffer, the performance gain due
to partitoning is significant. In all cases, the partitioned policy performs better than
the shared policy. This provides evidence that the buffer pool mechanism used in DB2
system [TENG84] is a good one.

5 Summary

In this paper, we have developed approximate analytical models for predicting the
buffer hit probability under the Least Recently Used (LRU) and First In First Out
(FIFO) buffer replacement policies under the independent reference model. The com-
‘putational complexity of the analysis of the LRU policy is O(K B) where B is the size
~ of the buffer and K denotes the number of items having distinct access probabilities. In
the case of the FIFO policy, the solution algorithm is iterative and the computational
complexity of each iteration is O(K). We have compared results from these models to

11

exact results from models originally developed by King [KING71] for small values of
- the buffer size, B, and the total number of items sharing the buffer, D. In most cases,
the error is extremely small (less than 0.1%) for both LRU and FIFO policy, and a
maximum error of 3% was observed for very small buffer size(less than 5) and extreme
skewness in access probabilities. Results of the approximate models are also compared
with the results from simulations for large values of B and D and the match is found
to be excellent.

To demonstrate the usefulness of the model, we have considered two applications. In
our first application, we compared the LRU and FIFO policies to an optimal static
buffer allocation policy for a database consisting of two classes of data items, hot and
cold. Both LRU and FIFO track the optimal allocation policy, and the performance
of LRU is always better than FIFO. Both LRU and FIFO do not require explicit
knowledge of the access frequency of the data items. On the other hand, the optimal
allocation policy requires the precise knowledge of the access frequency of all data
granules. The penalty in performance for preferring a wrong partition to keep in
buffer is rather large. In the case that the hotness may migrate from one class to
another over time, this makes LRU the preferred policy. We have also explored the
difference in performance between the optimal policy and the LRU policy as a function
of database size, for a fixed buffer size. In our second application, we show that if
multiple independent reference streams on mutually disjoint data sets compete for the

same buffer, it is better to partition the buffer using an optimal allocation policy than
to share a common buffer.

References

[AVEN76]

[BABASS3]

[COFF73]
[DANS9]
[FOX66]

[FRANT4]

[KEARSY]
[KINGT1]

[LANGT77)

[RAOTS]
SACCST|

 [SMIT82]

Aven, O. I, L. B. Boguslavsky, and Y. A. Kogan;, “Some Results on
Distribution-Free Analysis of Paging Algorithms,” IEEE Transactions on
Computers, Vol. C-25, No. 7, pp. 737-745, July 1976.

Babaoglu, O. and D. Ferrari, “Two-Level Replacement Decisions in Paging
Stores,” IEEE Transactions on Computers, Vol. C-32, No. 12, pp. 1151-
1159, December 1983.

Coffman, E. G. and P. J. Denning, Operating Systems T. heory, Prentice-
Hall, Englewood Cliffs, N.J., 1973.

Dan, A., D. Dias and P. S. Yu, “Buffer Model under Skewed Data Access
for a Data Sharing Environment”(Work in progress).

Fox, B.,“Discrete Optimization via Marginal Analysis,” Management Sci-
ence, Vol. 13, pp. 210-216, November 1966.

Franaszek, P. A. and T. J. Wagner,“Some Distribution-Free Aspects of Pag-
ing Algorithm Performance,” Journal of the ACM, Vol. 21, No. 1, pp. 31-
39, January 1974.

Kearns, J. P. and S. DeFazio, “Diversity in Database Reference Behavior,”
Performance Evaluation Review, Vol. 17, No. 1, pp. 11-19, May 1989.

King, W. F., “Analysis of Paging Algorithms,” In Proc. IFIP Congress,
pages 485-490, Ljublanjana, Yugoslavia, aug 1971.

Lang, T., C. Wood, and I. B. Fernandez, “Database Buffer Paging in Vir-
tual Storage Systems,” ACM Transactions on Database Systems, Vol. 2,
No. 4, pp. 339-351, December 1977.

Rao, G. S., “Performance Analysis of Cache Memories,” Journal of the
ACM, Vol. 25, No. 3, pp. 378-395, July 1978.

Sacco, G. M., “Index Access with a Finite Buffer,” In Proc. of 18th VLDB
Conference, pages 301-309, Brighton; 1987.

Smith, A. J., “Cache Memories,” ACM Computing Surveys, Vol. 14, No. 3,
pp. 473-530, September 1982.

13

[STON89] Stone, H. S., J. L. Wolf, and J. Turek, Optimal Partitioning of Cache
» Memory, Research Report RC14444 (64697), IBM, March 1989.

[TENG84] Teng, J. Z. and R. A. Gumaer, “Managing IBM D;.ta,ba.se 2 Buffers to
Maximize Performance,” IBM System Journal, Vol. 23, No. 2, pp. 211-218,
1984.

[VERKS5) Verka.mo A. L., “Empirical Results on Locality in Database Referencing,”
In Proceedmgs of the ACM SIGMETRICS Conference on Measurement
and modeling of Computer systems, pages 49-58, 1985.

14

BUFFER HIT PROBABILITY

0.4

BUFFER HIT PROBABILITY

1.0

0.6

N
o
1 1 ! 1 1 - 1 1 1
2 4 8] 10
BUFFER SIZE

Figure 2: Comparison with King’s analysis
(LRU: Arithmetic Probability Distribution)

1.0

0.8
T

sessessrers EXACT:Kmd
—d— APPROX.:K=4
. ceenreenns EXACT:KmB
44) ——&5— APPROXK=8
= i ff cennsenesre EWACT:K=10
3 —48— APPROX.:K=10

0.4

1 1 1 1 1
2 4 [. 8 10

BUFFER SIZE

Figurc 3: Comparison with King’s analysis
(LRU: Geometric Probability Distribution)

15

BUFFER HIT PROBABILITY

BUFFER HIT PROBABILITY

1.0
L J

0.8

0.8

RR— EXACT:K=4
—4— APPROX.:Kmd
....... EXACT:K=8
——&8— APPROX.:K=8

—B8— APPROX.:K=8
wrerenre EXACT:K=10
—0— APPROX.:Kw10

0.4

0.2

1 1 1
2 4 L} a8 10

BUFFER SIZE

Figure 4: Comparison with King’s analysis
(FIFO: Arithmetic Probability Distribution)

1.0

0.8

0.6

0.4

1 1 1
2 4 8 8 10

BUFFER SIZE

Figure 5: Comparison with King’s analysis
(FIFO: Geometric Probability Distribution)

16

BUFFER HIT PROBABILITY

BUFFER HIT PROBABILITY

1.0

0.8

0.8

0.4

02

1 1 1 1 1 1 1 1 1
200 400 800 800 1000

BUFFER SIZE

Figure 6: Compatison with simulation (LRU: 2 Partitions)

1.0

0.8

0.4

02

BUFFER SIZE

Figure 7: Comparison with simulation (LRU: 3 Dartitions)

17

0.8 1.0

0.8

BUFFER HIT PROBABILITY

04

BUFFER SIZE

Figure 8: Comparison of LRU and FIFO policies (2 Partitions)

1.0
T

0.8 0.8
I

5 .

¢

BUFFER HIT PROBABILITY

0.4

1 1 I] 1 1 1
200 400 ' 800
. BUFFER SIZE

Figure 9: Comparison of LRU and FIFO policies (3 Partitions)

18

0.8

0.4

BUFFER HIT PROBABILUTY

0.2
G
1]

.......

Figure 10: Comparison of Buffer schemes (B = 3K; § =0.2)

0.8

0.4

BUFFER HIT PROBABILITY

02
]

:2

"

Figure 11: Comparison of Buffer schemes (B = 3K; f = 0.4)

19

BUFFER HIT PROBABILITY
0.8

ALPHA

< "o,
of 1.

- "-g_“
~ e
of ..

",
H 1 | 1 1 1 1 -2
02 0.4 0.8 08

Figure 12: Comparison of Buffer schemes (B = 8K; f = 0.2)

0.8

BUFFER HIT PROBABILTY

0.7
Y

02

0.4

ALPHA

Figurc 13: Comparison of Buffer schemes (B = 8K; f = 0.4)

20

BUFFER HIT PROBABILITY

BUFFER HIT PROBABILITY

bt
o
3
<«
o
ol 1 1 1 1 1 1 1 L i |
2 4 s] 10
DATABASE SIZE(K)
Figure 14: Effect of Database Size (B = 2K; § = 0.2)
2
3

0.0

0.4

0.2

DATABASE SIZE(K)

Figure 15: Effect of Database Size (B = 2K; f = 0.4)

21

1.0

BUFFER HIT PROBABILITY
0.4 0.8 0.8

0.2

DATABASE 'SIZE(K)

Figure 16: Effect of Database Size (B = 1K; § = 0.2)

30

10

BUFFER HIT DIFFERENCE (PER CENT)
20

o -l 1 !
2 ' 4 [] 8 10
DATABASE SIZE(K)

Figure 17: Degradation in Buffer Hit Probability of LRU policy (B = 1K)

22

0.4 0.8 0.8 1.0
T T]
rl
.-'F..,
¢
H
-]
Te
3

BUFFER HIT PROBABILITY

0.2

DATABASE SIZE(K)

Figure 18: Degradation in LRU Buffer Hit Probability
(3 partitions: B=1K; a:0.6,0.3,0.1; £:0.08,0.3, 0.62)

0.4

BUFFER HIT PROBABILITY

0.2

Sl 1 1 1 1 ! 1 1 1 L 1

BUFFER SIZE(x100)

Figurc 19: Comparison of Partitioned and Shared Buffer Policies

23

