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Abstract

The GeoMeter modeling system is described. The system is designed to manipulate solid models for a variety
of purposes. GeoMeter nlso supports polynomial and transcendental function manipulation, including methods

for solving systems of polynomial equations. The applications for such methods in the context of solid modeling

and computer vision are also discussed.

1 Introduction

GeoMeter [17] is a system written in Common Lisp for the purpose of modeling solid objects and providing tools for
algebraic manipulation. The original motivation for GeoMeter was as a library to support experiments in Computer
Vision, although its uses are by no means limited to that application. It is the result of several years of effort in

both the Image Understanding Laboratory at the GE Research and Development Center, and more recently in the
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VISIONS Group at the University of Massachusetts in Amherst. Others who have been affiliated with this software
are now at the Rensselaer Polytechnic Institute and the State University of New York at Albany.

Existing uses of GeoMeter include robot navigation [18,19), model matching [33], model construction from image
data (12}, proofs of geometry theorems using algebraic techniques [15], and computation of generic view information
[20]. GeoMeter is written in Common Lisp, and has been compiled and tested on TI Explorers, Symbolics Lisp
Machines, VAXLisp, and Suns under Lucid Lisp. Work is underway to allow GeoMeter to run on the Sequent
Balance 2000 series computer.

Many of the functions and data structures in GeoMeter have close counterparts in mathematics. The implementors
attempted to approach classical mathematical terminology in naming functions and data structures. The intent was
to keep interested users from being bewildered by a deluge of nonstandard terminology. In addition, it allows users

to resort to their own mathematical references for clarification of certain concepts, when desired.

1.1 Representations

There are many different representations for encoding the shape and three-dimensional structure of objects. All
of them impose some type of restriction on the surfaces that can be described. For example, ACRONYM uses
generalized cylinders as the basic primitive [5], SuperSketch uses superquadrics [30], some are specifically polyhedral
[32] while others provide multiple primitives 6] For example, the Designer system [31] has rectangular blocks together
with spheres, cylinders, and tori.

In GeoMeter, the language of simplicial complexes in algebraic topology [16,21] has been adopted for describing
surfaces. It provides generality and an explicit representation of edges, vertices, and faces. Each of these serve as a
type of geometric primitive, and can be parameterized as a smooth function from a point, unit interval, and triangle
to R?, respectively. For example, a standard 0-simplex is a point, a 1-simplex is a straight line segment, and a
2-simplex is a triangle (see figure 1). In the usual mathematical approach, a smooth n-simplex is a differentiable
map from the standard n-simplex to a subset of R>, and the images of these 0-, 1-, and 2-simplices correspond to
the vertices, edges and faces of a surface. Surfaces are thus constructed as the union of these primitives, and are
denoted by an algebraic sum of simplices. This representation produces a triangulation of the surface, where the
triangles are not necessarily planar. Each smooth simplex determines an orientation on its image, i.e. a choice of the
direction of the normal at each point. It is worth noting that the theory of Algebraic Topology provides operations

for determining whether the triangles in a simplicial complex fit together to form a closed surface. This theory



provides the foundation for many of GeoMeter's operations.
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Figure 1: 0-, 1-, and 2-simplices

2 GeoMeter Structure

GeoMeter has two basic paris: a geometric section, and an analytic section. The geometric section consists of those
functions and data structures which are used to describe physical objects. The analytic section consists of functions

and data structures used in manipulating polynomials and transcendental functions.

2.1 Geometric section

The three basic entities which GeoMeter uses to represent sets are the vertex, the edge, and the face. These entities
are composed Lo represent solid objects. The vertex is a 0-dimensional primitive which has an z,y, z position in
space. An edge is a 1-dimensional set defined by two vertices (if linear). Edges can also be defined by three hounded
univariate functions (if parametric) or as the planar zero set of a bivariate polynomial (if implicit). Linear edges
have a direction vector and a normal vector (defined with respect to the origin). A face is a 2-dimensional set defined
by a collection of edges. In GeoMeter, faces can also be defined parametrically and implicitly. Planar faces have a
normal vector and a transformation matrix to define their coordinate system.

Iunterleaved with the faces, edges, and vertices are topological structures which are used to define the connectivity

of sets in the model. A 0O-chain is a set of vertices from which an edge can be defined. A 1-chain is a set of edges from



which a face can be defined. A 2-chain is a set of faces which can be used to define a surface. An important concept
in forming closed surfaces, i.e. objects, is the definition of the boundary. Every 2-chain has a boundary which is a
1-chain. If the boundary of a 2-chain is 0, then the 2-chain is said to be a 2-cycle. Similarly, if the boundary of a
1-chain or O-chain is 0, it is a cycle. Each of GeoMeter's chain structures can be used to represent cycles. A 1-cycle,
i.e., a chain in which every vertex is used on exactly two edges, forms one or more polygons in the plane. ! Likewise,
a 2-cycle defines one or more polytopes.

Objects are built hierarchically starting with vertices. Vertices can be added together to form a O-chain, a
0-chain with two points can be used to create an edge, edges can be added together to form a 1l-chain, 1-chains
can be used to create faces, etc. Usually, for computational simplicity, straight lines are used for edges and planes
for faces, so that curved surfaces are approximated by polyhedra. Models can also be built by joining faces along
common edges. A hinge function enforces the constraints that the edges must be aligned. Due to the generality
of the mathematical framework, it is possible to represent semi-algebraic curves and surfaces, and there are some
procedures for manipulating these objects. There are plans for the future to expand this capability. In addition,

GeoMeter is capable of representing superquadrics and generalized cylinders.

2.2 Analytic section

A major section of GeoMeter is devoted to the manipulation of polynomials and transcendental functions. The
motivation for these functions is twofold. They permit the exact description of curved surfaces. They also provide
the mechanism for performing algebraic deduction, which is useful in reasoning about geometric relations. GeoMeter
provides polynomial arithmetic and various ordering and testing predicates for polynomials. A full set of utilities for
printing and evaluating polynomials and transcendental functions is also available.

GeoMeter allows several specialized operations on polynomials. Functions for performing polynomial arithmetic,
GCD, univariate factoring, remainder sequences, decomposition, resultant computation, and Grébner Basis [7] com-

putation are incorporated into GeoMeter. Functions are available for bounding the roots of univariate polynomials
and limited capabilities exist for performing Cylindrical Algebraic Decomposition [2). Methods for triangulating sets
of polynomials are available, as well as functions for testing the consistency of a polynomial with a triangulated set.
Polynomials are represented in distributed form. Every polynomial is a list of monomials. In turn, each monomial

is a cons pair consisting of a coefficient and a term representing a power product of the variables of the polynomial.

1 Note that this differs slightly from the usual definition.



Transcendental functions are represented as a pair (p,s) where p is an arbitrary polynomial, and s is a set of
substitutions mapping the variables of p to functions. For instance, a circular arc in GeoMeter is represented by a
pair of transcendental functions:

Pl(fc) = rz4+z9, «— cosl

pa(y) ry+yo, y—sinb

where z, yo is the center of the arc and r is its radius.

3 Applications

3.1 Representing curves and surfaces

As mentioned above, GeoMeter has the capability to define parametric surfaces and curves. Both are defined using
transcendental or polynomial functions in one or two variables over some interval. Parametric curves are defined
using three transcendental functions in one variable, u: z(u), y(u), z(u). The curve structure also has a slot for the
bounds on u and the sampling rate for displaying the curve. Parametric faces are defined similarly, but the defining
functions and interval are bivariate.

GeoMeter also supports algebraic curves and faces. Algebraic Faces are implicit surfaces defined by a polynomial
p(z,,2) = 0. In conjunction with algebraic faces, GeoMeter can also represent planar algebraic curves expressed
with bivariate polynomials. Decomposition techniques [1,2] are used for display and analysis of such curves and

surfaces. Figure 2 shows a sample GeoMeter frame displaying various objects.

3.2 Projection and Image Formation

There are a number of applications which require models of the imaging process. Modeling the projection process is
not only useful for display of objects. It has been used (via GeoMeter) to model appearances for robot navigation
[19,18]. The projection process within GeoMeter is central projection, also known as perspective projection. The
projection is modeled in GeoMeter by a Camera entity, which contains the projection parameters. The projet_:tion
is computed on points in R?, which are represented by homogeneous coordinates in R*. Each point is rotated and
translated by a homogeneous 4x4 matrix that represents the transform from model coordinates to camera coordinates.
Then each point is projected onto the image plane according to the camera parameters: the camera lens focal length,

zoom, aspect ratio, and the image center.
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Figure 2: A Planar, algebraic, and parametric surface, respectively

In implementing the projection operation, we are not only interested in point sets, but also in the edges and
possibly the faces that constitute the model as well as their visibility. GeoMeter contains a Viewer entity, which
stores information about what is to be projected and the camera entity parameters for performing the projection.
In addition, the Viewer contains the global, local, and projected coordinates of the points of the model, along with
incidence information that allows faces and edges to be selected and drawn. The global coordinates and the incidence

information are obtained from the faces, edges, and vertices of the model (or part thereof) that is being projected.

3.3 Model construction

GeoMeter has been used for experiments in model construction at GE. Stenstrom, et al. [12] describe a method for
constructing volume models from image data. The technique involves the formation of volume sets from different
views and performing boolean intersection of the sets obtained. Most of the implementation of this technique is
carried out in GeoMeter. Other techniques have been developed [3] which use algebraic constraints to construct “pa-

rameterized models”. Extensions of this work are reported later in section 4.3.2, and elsewhere in these proceedings

[28).

3.4 Robot Navigation

GeoMeter is also being used for robot navigation experiments at the University of Massachusetts [18,19]. In order to



meet the demands of a robot navigation system, GeoMeter had to satisfy several requirements. Geometric modeling
- must be easily interfaced with other modules needed for specific tasks in navigation. In our work it is interfaced
directly with the high-level model matching functions used during model-to-image and image-to-model matching [4].
Con;ponents of the models are annotated with visual characteristics. A multilevel representation scheme is required
so that parts of objects can be isolated and named as landmarks for recognition.

For navigation through a complex domain, one needs to model the world in which objects can be located. In
our environment, buildings, lamp posts, and telephone poles must be modeled. Buildings have sub-objects such as
windows and doors. Elements at all levels may be annotated with information relevant to visual tasksb. In order to
navigate from known landmarks, the environment must be modeled accurately. For the University of Massachusetts
campus, this was done using information obtained from a careful survey of the environment, building plans, and
direct measurements. Once the landmarks are identified, GeoMeter is used for pose refinement [26] to obtain robot

bearings from visual information and information provided by the campus model.

3.6 Matching

Both at GE and at the University of Massachusetts, experiments in object recognition are underway (8,33]. These
experiments use GeoMeter for some of the geometric operations and data structures required for correspondence and
the computation‘of transformations. In both schemes, models are created, stored and displayed using GeoMeter.
Images are processed to obtain edge information which is then compared to the model data to identify objects and
their poses. In work described elsewhere in these proceedings, a method has also been devised for selecting and

verifying the best matches out of a finite set of possibilities (22].

4 Solution Techniques

Solution of nonlinear systems of equations and optimization are two functions which are central to some of the
aforementioned application areas. GeolMeter supports methods for solving such problems. Much of this machinery
is oriented toward exact solution methods such as Wu’s Method [34], the Grobner Basis method (7,23] or algebraic

decomposition [2,9). There are also functions for computing approximate solutions.



4.1 Numerical methods

GeoMeter uses numerical methods for obtaining approximate solutions to nonlinear systems of equations. Functions
exist for exact computation of the Jacobian, and for Newton's method for nonlinear systems. Morgan’s Continuation
method [27] h‘a,s also been implemented in GeoMeter. This is a numerical method which can find all isolated point
solutions to a system of nonlinear equations. It is a promising method that avoids many of the convergence problems
to which Newton’s method is susceptible. In addition, most of the computation used for modeling purposes in

GeoMeter is numerical in nature (e.g., curve and surface intersection, boolean operations, transformation, etc.).

4.2 Support for Geometric Reasoning

GeoMeter supports two different but related approaches to reasoning in algebraic geometry: a refutational method
based on the Grobner basis algorithm [24] and a direct method by Wu based on the Ritt principle. 2 Both methods
take polynomial equations as input. It is assumed that geometric relations have already been transformed into

polynomial equations.

4.2.1 Refutational approach based on the Grébner basis method

In the refutational method, the hypotheses of a geometry statement and the negation of the conjecture being proved
are input and it is checked using the Gribner basis algorithm that they are not satisfiable. If the algorithm detects
that the Grobner basis includes 1, it declares that the conjecture follows from the input. Otherwise, the Grobner
basis generated by GeoMeter can be used to extract out additional conditions that must be imposed on the input
for the conjecture to follow from the input.

The refutational method has been shown to be complete for deciding whether a conjecture follows from the input
or not [24]. In the case when the conjecture does not follow from the input, the method has also been shown to be
complete for computing conditions under which the conjecture would follow from the input. The method has been
successfully used to prove over a hundred geometry theorems including many nontrivial theorems which even humans

find very difficult to prove. The method is fully described with examples and theoretical foundations in [24].

2In fact, this portion of the software used to be called GEOMETER [14] and the whole system used to be called GEOCALC until we

discovered that there was a commerical product with the name GEOCALC. It was then decided to call the whole system GeoMeter.



4.2.2 The direct approach based on Wu’s method

GeoMeter also supports Wu’s method for geometric reasoning [34,36]. In contrast to the refutational approach based
on the Grobner basis algorithm, the method is direct. The ilypotheses of a geometry statement are transformed
into a triangular form using the Wu-Ritt method. GeoMeter expects the user to specify the independent varidbl#s
as well as a total order on dependent variables; it currentiy does not provide any assistance in selecting depen;lent
variables. Independent variables correspond to the degree of freedom in a geometric configuration defined by a
geometry statement. Intuitively, independent variables are those variables which can be assigned arbitrary values
and which determine the values of dependent variables.

Once a triangular system of polynomials is computed, the polynomial corresponding to the conjecture is pseudo-
divided by each of the polynomial equations in the triangular form to successively eliminate each dependent variable
in the conjecture. If the remainder is 0, then conjecture follows from the hypotheses. In this case, the method also
identifies subsidiary conditions ruling out degenerate cases for the conjecture to follow from thé hypotheses.

If the remainder is not 0, then it is still possible that the conjecture follows from the hypotheses. The triangular
form of the hypotheses must be checked for irreducibility. If polynomials in the triangular form cannot be factored
over successive extension fields, then the triangular form is irreducible. If the remainder of a conjecture with respect
to an irreducible triangular form obtained from the hypotheses is not 0, then the conjecture does not follow from
the hypotheses. Otherwise, the polynomials in the triangular form must be factored generating a set of irreducible
triangular forms; the conjecture must then be checked over each of these irreducible triangular forms. GeoMeter
does not provide algorithms for checking the irreducibility of a triangular form, nor does it provide any algorithms
for factoring over extension fields. Theoretical foundations of Wu's method are discussed in [35]. An excellent
implementation of Wu's method and its success in proving nontrivial geometry theorems are discussed in [10,11]. An

informal discussion of Wu’s method and its application to problems in perspective viewing is described in [25].

4.3 Hybrid Approaches
4.3.1 Hybrid Solution Methods

The power of purely exact methods for geometric reasoning and representation is limited to relatively small problems
(see [9] for an analysis). By contrast, large model specifications consisting of thousands of entities can be successfully

processed quickly if numerical methods are used. While they are capable of fast solution of such systems, numerical



methods can be plagne’d with error accumulation. More importantly, Newton's method is only guaranteed to converge
under very strict. condmons [29].
Usmg tools in G’eoMeter, an approach is bemg pursued where exact methods are used to improve the convergence
properties of numencal methods. The basic idea is to determine a set of independent model parameters which can
~be freely varied with respect to the model conatta.mts. Exact methods are then used to triangulate the conatraint
' equatlons, 'as‘ in Wu’s method described earher The triangulated constraints can then be easily differentiated to
‘de‘tenA!‘xine the singularities of the Jacobian matrix. Thus, algebraic techniques can be used to implement restrained
vetéibhs of Newton’s method which only operate in “safe” regions where gradients are always uniquely defined.
Expetimer#ts with this Basic technique have been> successful on systems with up to eight parameters. Other experi-
ments are underway to examine the possibility of reduction and decomposition of the original system. This involves

decomposing the system into individual subproblems which can be solved more easily than the original problem.

4.3.2 Constraint-based modeling

One approach to constraint-based modeling is to represent geometric constraints in a relational database, along with
a numerical specification [13]. Known relationships can be retrieved using standard database techniques. Additional
relationships can be derived by computation on the numerical specification of the objects and object relationships,
or by logical inferences on the known relations. The power of automated logical inference techniques is limited
to relatively slmple deductions. On the other hand, the inference of relationships by numerical processes alone
has limited robustness, particularly in the case of empirical data with significant errors. The numerically derived
relationships can be easily inconsistent with logically derived relations. SRI’s CKS (Core Knowledge System) deals
with this uncertainf.y by providing a logic of belief which can handle multiple agents with various levels of reliability.

Another appfoach is to maintain a consistent set of geometric relationships that are maintained in a relational
network, but specified algebraically [31]. The algebraic equations and inequalities provide a parametric specification of
the objects and object relationships. The interaction with empirical data is taken as a problem in error minimization.
That is, the parameters of the model specification are to be adjusted such that the distance between model predictions
and actual image features, and other empirical data, is a minimum. The resulting model configuration maintains
the consistency of a priori constraints while accommodating empirical relationships as closely as possible. We refer
to this approa.ch as constraint-based modeling [28].

The next major development of the constraint-based modeling technique in GeoMeter will be the integration of

10




the algebraically derived convergence strategy with classical nonlinear programming methods.

5 Conclusion

GeoMeter is a versatile tool for solid modeling and algebraic manipulation. It is written in Common Lisp, and is

portable. The source code is available via anonymous FTP from Internet host VAX1.CS.UMASS.EDU (128.119.40.1).

To obtain GeoMeter, contact GEOMETERQCS .UMASS .EDU via electronic mail.

The authors would like to acknowledge the many people who have contributed to GeoMeter, especially Michele
Barry, Brian Burns, Dave Cyrluk, Antonio Delgado, Rick Harris, Aaron Heller, Tim Kelliher, Ross Stenstrom, Dan

Thompson, and Patricia Vrobel.
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