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ABSTRACT

This paper presents a comparative performance study of three representative routing algorithms for
packet switched networks: (1) the CODEX algorithm, (2) Gallager's distributed algorithm, and (3) the
well-known ARPANET algorithm. The essential characteristics and critical issues in these algorithms
are identified through experimentation under a variety of traffic and network operating conditions. The
sensitivity of the mean delay performance of the algorithms to operating parameters such as the
routing update period and the traffic adjustment parameters are examined. The comparison of mean
dclay behavior indicates that under stationary traffic conditions, gradient-based algorithms, such as
Gallager's algorithm, outperform the other algorithms, whereas the CODEX algorithm, which is a
shortest-path-based virtual circuit routing algorithm does better in quasistatic traffic conditions. The
ARPANET algorithm performs poorly compared to the above two algorithms under moderate to
heavy loading conditions. Some of the factors which could be contributing to the poor performance of
the ARPANET algorithm are examined.

* This work is supported in part by the Rome Air Development Center under contract F 30602-88-D-0027 and by the
Office of Naval Rescarch under contract N 00014-87-K-0304.



1. INTRODUCTION

Routing is one of the principal functions of the Network Layer in the OSI reference model, and
deals primarily with determining the path (i.e. a sequence of links) that a packet originating at one
node of a network takes in order to reach its destination. Most often the paths are chosen so as to
minimize the mean network delay. Various routing algorithms which perform the above function
can be classified according to the packet switching scheme (Datagram (DG) vs. Virtual Circuits
(VC)), the method of information dissemination (Centralized vs. Distributed algorithms) and the
route selection mechanism (shortest path vs. gradient-based algorithms).

Most of these algorithms are too complex to be studied analytically under realistic operating
conditions. The few theoretical studies available in the literature make simplifying assumptions
such as stationarity of traffic inputs, convexity of network wide cost functions e.g. [3],[11] and
M/M/1 models of individual links. In practice, one may have to resort to experimental methods to
obtain insight into the operations of these algorithms. More important, experimenting may be the
only means for determining suitable algorithmic parameters such as the length of the routing
update period and the values of the traffic adjustment parameters if any. In this paper we examine
and compare the mean delay performances of three representative routing algorithms, namely the
CODEX algorithm [1],{2], Gallager's minimum delay algorithm [3] and the ARPANET algorithm
[4], through simulations with a wide range of traffic and parametric variations. The choice of
these algorithms is largely motivated by their diverse characteristics and operating conditions, as
will be further discussed below. These algorithms are different in their packet switching and/or
route selection mechanisms.

Of the three algorithms chosen for the performance comparison reported here, the
ARPANET algorithm is datagram type. The same is true for Gallager's algorithm, although the
route selection mechanism is different. On the other hand, the CODEX algorithm employs virtual
circuits, except that control packets are still treated as datagram-based traffic. Although the method
of information dissemination is of great importance for a routing algorithm, for the purposes of
our study, it is assumed that an appropriate mechanism is in place which provides all nodes with
all information required to implement routing decisions.

The ARPANET algorithm employs a shortest path algorithm to determine the minimum
delay path from a source node to the destination node. On the other hand, Gallager's algorithm is
a gradient-based algorithm which attempts to optimize a network-wide performance measure by
adjusting routing probabilities for all ohtgoing links at each node. The CODEX algorithm is based
on shortest paths where the "length” assigned to a link is an incremental function of link capacity
and traffic rate. Shortest path algorithms are generally conceptually simple; however they are
heuristic, and do not guarantee optimality of performance. Moreover, they are known to be highly
susceptible to instabilities manifested in the form of oscillatory behavior in the observed mean
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delay [5],[6]. On the other hand, gradient-based algorithms are more sophisticated and can
achieve optimal network-wide performance under stationary traffic conditions [3]. However, they
too are susceptible to instabilities. Moreover, successful implementation of these algorithms relies
on the development of efficient methods for estimating the required gradient information. The
approach employed here is the direct estimation of the derivatives on line by using Perturbation
Analysis (PA) techniques (71,[91.

The paper identifies the critical parameters such as the length of the routing update period in
all the algorithms, the values of the rerouting probability in the CODEX algorithm and the step
size in Gallager's algorithm. The sensitivity of the mean delay performances to each of these
parameters is examined. This study, based solely on experimentation, brings out some of the
inherent operational limitations of the algorithms and some of the tradeoffs involved in choosing
suitable operational parameters. Some of the merits and demerits of using datagram (Gallager's)
or virtual circuit (CODEX) routing algorithms in stationary as well as quasistatic traffic
environments are examined. Moreover, the mean delay performances of the CODEX and
Gallager's algorithms under suitably tuned parameters are compared with that of the standard
ARPANET algorithm. Some of the possible causes of the oscillations in the ARPANET algorithm
such as the traffic load are investigated. Finally, in the context of the comparison of datagram and
virtual circuit routing algorithms, the effect of resequencing delays on Gallager's algorithm is
investigated.

Our simulation-based comparative study indicates that in stationary traffic conditions, while
the gradient-based Gallager's algorithm leads (under suitably chosen parameters) to oscillation-
free mean delay characteristics at steady state, shortest-path-based algorithms suffer from
instability problems. However, the CODEX algorithm, which is a shortest-path-based algorithm,
is found to have better adaptivity to bursty traffic environments. This suggests that in an
environment expected to feature abrupt traffic changes, a combination of approaches is desirable:
an initial setup procedure based on shortest path algorithms, combined with a gradient-based
scheme seeking to optimize the steady-state performance of the network. In the case of the
ARPANET algorithm, the observed oscillatory behavior is due to lack of any control mechanism

10 regulate the traffic adjustments at each update instant. On the other hand, the CODEX algorithm
displays oscillatory behavior due to its mechanism of rerouting of virtual circuits. These
oscillations are considerably reduced under light load conditions. Besides oscillations, the
shortest-path-based algorithms result in comparatively higher mean network delay due to their
heuristic approaches to routing.

The remainder of this paper is organized as follows. Section 2 describes the basic operations
of the three algorithms. This discussion is limited to those aspects which are important to our
comparative study. The network configuration and the traffic environments considered, as well as
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some of the implementation details of the simulations we performed are described in Section 3.
Section 4 discusses the results of the experiments for different parametric and operational
variations. Finally in Section 5, we present the main conclusions of our experimental study.

2. THE ALGORITHMS

In this section, we briefly describe the basic operation of the three algorithms to be compared.

2.1. CODEX Algorithm

The CODEX routing algorithm actually consists of two routing algorithms executing
concurrently, one of which performs datagram routing (DG) for network control traffic while the
other performs virtual circuit routing (VC) for network user traffic. Their operation relies on the
existence of a broadcast-type algorithm [1], where every node broadcasts all relevant information,
i.e. the estimates of flow rates on each of its outgoing links, to every other node along a minimum
spanning tree rooted at itself. ‘

The datagram routing algorithm employs a shortest path algorithm to find the best routes
between all the node pairs. Each node obtains estimates of the average flow rates on all its
outgoing links over an observation interval which are used to compute the mean link delays
assuming M/M/1 link models. Routing updates are done at the end of such an observation
interval. The above mean delays on links are input as link lengrhs in computing the shortest paths.

Virtual circuit routing is again based on a shortest path algorithm; however, the link length
assignment process is different. The algorithm allows different classes of traffic to be routed
differently by assigning to them priority numbers which are incorporated in the calculation of link
lengths. Flow rates on links are estimated separately for virtual circuits with different priority
numbers. 4

There are two aspects to the VC routing algorithm: establishment of a VC upon initiation of

a session, and periodic rerouting of VC's to account for changes in the network operating
conditions. These two aspects are considered below.
Routing Policies for VC Setup: The cost of a link (ij), denoted by Djj, is defined to be a
weighted sum of mean delays experienced by packets of different priorities traversing the link. As
in the case of datagram routing, an M/M/1 queueing model [12] is assumed for all links. Dj;is
given by




where Cj; is the link capacity, F if* is the mean flow rate estimated over an observation interval for
a VC with priority , djj is the propagation delay on the link, and p; is a positive weighting factor
representing the priority, with k=1,.. M.

Suppose a new VC with estimated traffic rate A and priority £ is to be set up. The length of
link (i,j) is the estimated incremental link cost given by

l,j = D;j(F,‘j’, ........ , F;jk + 4, ... , FiM) - D,'j(F,'j’, ........ . F M)
The first term in the above expression corresponds to the projected link cost (as a result of the
new VC) and the second term to the current cost of the link. Shortest paths are computed from the

source to the destination using the above link lengths. The computation is done by Pape's version
of the Bellman-Moore algorithm [9].

Rerouting Policies for Active VC's: At the end of every observation interval, a fraction of
the active VC's is chosen for rerouting. The selection is done randomly, by simply assigning each
VC a certain probability for rerouting; we shall refer to this as the rerouting probability.

If a VC is selected for rerouting, it is viewed as a new VC. First, link costs are computed
for all links based on the traffic conditions that would result if this VC were removed: then, link
lengths are evaluated by treating the VC as a newly arriving one. Using these lengths, a new
shortest path is computed for the VC. If the resulting cost is lower than the current one, then the
VC is rerouted along the new shortest path. Details of this implementation can be found in [2].

Based on the discussion above, it is clear that there are two critical aspects which affect this
algorithm's performance:

* the choice of the length of the observation interval on which routing updates are based: too
short an interval results in poor traffic rate estimates, whereas too lon g an interval delays possible
performance improvements

* the choice of rerouting probabilities for VC's: too small a probability limits adaptivity,
while too large a probability may cause overloading of some links and lead to oscillations in
performance

There is generally no well-defined way of choosing these parameters and one must resort to
trial and error through experimentation.

2.2. Gallager's Distributed Algorithm

Gallager's distributed routing algorithm [3] is designed for datagram networks. The critical steps
involved in this algorithm may be summarized as follows. Over an observation interval, each
node estimates the traffic rate on each outgoing link as well as the sensitivity (gradient) of the
mean packet delay on each outgoing link with respect to the traffic rate through that link - this is
also referred to as the link marginal delay. At the end of an observation interval, each node
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identifies the "best" outgoing link, i.e. the link with the smallest marginal delay (gradient
estimate). The node decreases the traffic rate into all other outgoing links and adds the total traffic
rate removed from these links into the "best" link where the amount of traffic rate adjustments is
regulated by a step size parameter. The process continues until equilibrium is reached, i.e. all
outgoing links have the same marginal delays.

In theory, Gallager's algorithm achieves the minimum possible network-wide mean packet
delay under stationary traffic conditions [3], provided step sizes are chosen sufficiently small. In
practice, however, there are three critical aspects which determine the algorithm's performance:

« the choice of observation interval length: too short an interval results in poor estimates,
whereas too long an interval delays improvements

* the choice of step size: too small a value results in slow convergence, too large a value
may lead to instabilities

* the method of gradient estimation used.

Clearly, the first two choices are the analogs of the observation interval and rerouting probabilities
required in the CODEX algorithm. As for gradient estimation in our simulations, we employ the
PA technique used in [10].

2.3. ARPANET Algorithm

A detailed description of the current ARPANET algorithm can be found in [4]. Here, we shall
discuss only the features relevant to our performance study. The main distinction between the
datagram routing performed by the ARPANET algorithm and that used in Gallager's algorithm
lies in the number of paths available between any source-destination pair. Whereas in Gallager's
algorithm a packet between a node pair may take any of several available paths depending on the
routing assignments at each intermediate node to the outgoing links, in the ARPANET algorithm it
is constrained to the single best path available between this pair of nodes. This is sometimes
referred to as single path datagram routing.

The path selection is done by employing a shortest path algorithm with "lengths" assigned to
links. Each node estimates the mean packet delay on each outgoing link over an observation
interval . If the current estimate of mean delay differs from the previous update by more than a
certain threshold, then it is passed on to other nodes in the network. At the end of an observation
interval, each node uses a shortest path algorithm to find the minimum delay path between itself
and all other nodes.

It is worthwhile to note at this point that the basic philosophy of operation in the ARPANET
algorithm makes it prone to oscillations in the observed performance. The policy of diverting all
the flows to a currently less congested region of the network without any regulatory mechanism
(like the step size in Gallager's algorithm and rerouting probabilities in the CODEX algorithm)

may cause this area to be heavily congested at the next update time. Conversely, the region which
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is currently congested becomes lightly loaded at the next update, thus making it attractive for
routing. This shifting back and forth of traffic flows gives rise to oscillations which may be
damped by adding a bias factor to the link length.

The main parameter here is the observation interval, which is set to 10 seconds in the
currently operating version of the algorithm. In addition, a threshold of 64 msec is used to wrigger
reporting a new mean delay estimate. This threshold decreases at the rate of 12.8 msec with every
observation interval (10 sec). Thus, one update is guaranteed every 6 observation intervals. After
every update reporting, the threshold is set back to 64 msec. This mechanism ensures reporting
small changes slowly and large changes more rapidly.

3. EXPERIMENTAL SETUP

In this section the experimental setup used to carry out the simulations of the chosen routing
algorithms is described. Most of the experiments were conducted under similar network
conditions as those presented in [10], where Gallager's distributed routing algorithm employing
PA techniques was considered. This was done to enable us to compare results in that work with
some of our results here.

3.1. Network Configuration and Traffic Characteristics

A 6-node network, similar to that used in [10], was used for our experimentation. This is shown
in Figure 1, where link capacities are shown in Kbps. We consider a traffic environment with 19
traffic-generating source-destination pairs. The packet interarrival time distributions are arbitrarily
chosen from a set of exponential and uniform distributions. A list of these distributions is
presented in Table 1, where EX(ct) denotes an exponential distribution with mean & msec and
UN(.,8) denotes a uniform distribution over the interval [o,B] msec. The same traffic interarrival
distributions were used in the performance study reported in [10] as well. When Gallager's
algorithm is employed in this network with this traffic load, the highest link utilization at steady
state is 0.89.

In the case of datagram algorithms, each of the packets is treated independently. But from a
virtual circuit routing point of view, each of the 19 traffic generating source-destination pairs may
have one or more (10 or 20 in some experiments) virtual circuits active between them.

Of all the packets generated, 80% are long (1 Kbit) and 20% are short (128 bits). Long
packets may be viewed as user data packets, while short ones represent system or control traffic.
This distinction does not affect the handling of packets in the datagram routing setting
(ARPANET and Gallager's Algorithms). However, as already described in section 2.1, the
CODEX algorithm routes short packets on a datagram basis and long packets through virtual
circuits.



3.2. Traffic Generation

Several traffic generation processes are considered in our experiments. The first is a renewal
process where all traffic streams are switched ON at t = 0, and remain active for the entire
simulation run length. This type of traffic generation has been used in performance studies such
as [10]. However, it poses certain practical problems as described below:

1. If the initial routing assignments are not properly chosen, some of the links may be assigned
packet flows beyond their capacities, thus making them unstable. Under these conditions, most of
the theory based on modeling links as stable queueing systems becomes invalid, and the behavior
of an algorithm may be unpredictable. This issue is addressed in [3], where it is assumed that a
flow control mechanism is present, which ensures that no link flow ever exceeds the
corresponding link capacity.

2. The method of stationary traffic inputs is not suitable for a performance study of the CODEX
algorithm. Being a VC-based algorithm, its slow rerouting mechanism is not designed to clear
heavy traffic congestions that would arise due to the simultaneous activation of several virtual
circuits upon initialization. This congestion buildup may in fact take an extraordinarily long time
to be cleared before steady state conditions can be established. Therefore, this would be an
unrealistic model of the actual CODEX algorithm operation, and is likely to lead to erroneous
conclusions (for example: it may appear that large value of rerouting probabilities improve the
adaptivity of the CODEX algorithm; as we shall see in the next section, this may not be always
true). In contrast, datagram routing algorithms such as Gallager's assume stationary traffic inputs
over reasonably long periods, and may not be able to adapt to very frequent variations in network
traffic resulting from switching virtual circuits ON and OFF.

To accommodate the above considerations, we adopted a scheme where VC's are gradually
switched ON at time instants offset by random intervals, assumed to be exponentially distributed.
Once a VC is ON, it remains active for the entire simulation run. The only transient phenomena in
this traffic generation model are the arrivals of new VC's. To introduce more fluctuations into the
traffic input process, in some experiments an active VC is turned OFF after generating a
geometrically distributed number of packets and reactivated after an exponentially distributed time
interval. The other implementation-related point worth mentioning is that, for simplicity, the
priorities of all virtual circuits have been assumed to be the same.

4. COMPARATIVE PERFORMANCE RESULTS

In this section, we present the results of our comparative performance study based on the
experimental setup described in section 3. The performance comparison of the three algorithms
(CODEX, Gallager's, and ARPANET) reported here is on.the basis Qfaﬂje mean packet delay,
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which includes queueing delays at intermediate nodes, as well as transmission and propagation
delays on the links traversed.

The experimental results reported in this section are organized as follows. First, we examine
the effect of the observation interval on the mean delay for each of the three al gorithms. Second,
the effects of the traffic adjustment parameters employed in the CODEX and Gallager's algorithms
are investigated. The parameters of the CODEX and Gallager's algorithms are tuned as well as
possible, and their mean delay performances are compared under these conditions. The mean
delay behavior of the standard ARPANET algorithm is studied under similar traffic conditions and
compared to that of the CODEX and Gallager's algorithms. Last, we investigate the effect of
packet resequencing, manifested in datagram networks as additional end-to-end delay. This allows
us to make truly fair comparisons between Gallager's algorithm and the CODEX algorithm.

4.1. Effect of Observation Interval Length on Mean Delay Performance.

As already described in section 2, the operation of all three algorithms requires some feedback
information from the network. The CODEX algorithm requires estimates of individual link flows
and traffic rates on each of the active virtual circuits. Gallager's algorithm requires estimates of the
sensitivities of individual link delays with respect to corresponding flow rates. The ARPANET
algorithm measures average mean delays over all links, which are then used in shortest path
computations. This estimation is normally done over a period of time which we refer to as the
observation interval. Routing updates are normally done at the end of such an an observation
interval.

Assuming stationary distributions, a sufficiently long observation interval is required to obtain
good estimates. In practice, however, the traffic input may not be stationary. Under these
conditions, the speed of response of a routing algorithm as traffic conditions chan ge is important,
and the algorithm may respond faster if a short observation interval is used. A proper choice of
observation interval length must take this factor into consideration.

Figurc‘ 2 shows the effect of the observation interval on the mean delay performance of the
CODEX algorithm. In this experiment all virtual circuits were initally activated and kept active for
the entire simulation run duration. A rerouting probability of 0.45 is considered here, which
appears to be large enough to bring the network out of the initial congestion in approximately 20
iterations. The observation interval was then varied from 6 sec, which corresponds to successful
departure of approximately 1000 packets over the network, to 56 sec, corresponding to
approximately 10000 packet departures. The mean packet delay in msecs observed over an
observation interval is plotted over time in secs. The results shown are averaged over 30
independent replications for each value of the observation interval length. The typical 95%
confidence intervals observed for times beyond 1500 secs are £10% for the 6 sec case and +4%
for the 30 sec and 56 sec cases. We can see that the network starts with an extremely large mean
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delay due to the initial congestion, and eventually clears out. This transient behavior is not of
critical importance here, since in practice rarely would a virtual circuit network see this much
traffic applied at the same instant.

The behavior of the algorithm after Clearing the initial congestion is of importance to our study.
It can be seen that a small observation interval length of 6 sec produces a highly oscillatory mean
delay profile. This is also manifested in a larger 95% confidence interval as compared to the same
for the longer observation interval length values of 30 secs and 56 secs. This is attributed to the
large amount of noise in the estimation of the link flows, resulting in erroneous reroutings, as well
as the large variance of the mean network delay itself. Clearly, as the observation interval is
increased to 30 seconds and then to 56 seconds, the oscillations subside considerably, although
the speed of convergence is relatively slow.

The effect of the observation interval on the mean delay performance of the ARPANET
algorithm is presented in Figure 3. Contrary to our observations for the CODEX algorithm above,
here the oscillations decrease with decreasing observation interval length. This behavior is
explained by the fact that the inherent oscillations in the ARPANET are so significant that the
effect of any mean delay estimation errors becomes negligible in comparison. The ARPANET
algorithm is heuristic in nature and there is no guarantee that it can ever find a fair allocation of
traffic over all the links in the network. This problem is exacerbated under moderate to high load
conditions; in such circumstances there are always some links which are heavily congested while
some others are lightly loaded. The switching of traffic back and forth between these two sets of
links gives rise to the oscillations observed. By taking a larger observation interval we only allow
the congestion to build up before switching to the other set of links where again the congestion
builds up over the interval.

The effect of the observation interval on the performance of Gallager's algorithm was
examined in [10]. The observations there were similar to those applicable to the CODEX
algorithm, i.e. a longer observation interval produces mean delay results with smaller variance.
For the sake of completeness, some results have been reproduced in Figure 4. The observation
interval corresponding to 10000 packets/iteration is equivalent to approximately 56 secs. Other
observation intervals can similarly be obtained by considering the fact that they would be
proportional to the number of packets/iteration. A reasonably small step size of 0.01 E -05 was
used to ensure convergence of the algorithm in this case.

4.2. Effect of Traffic Adjustment Parameters on Mean Delay.

The traffic adjustment mechanism appears in the form of VC rerouting probabilities in the CODEX
algorithm, and as a step size in Gallager's algorithm, which scales the amount of outgoing traffic
flow at a node transferred from “bad” links to a "good" link (i.e. from links with larger marginal
delays to those with smaller marginal delays as explained in section 2.2.). The choice of these
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parameters must take the stability and adaptivity aspects of the algorithm into account. It may also
depend on other factors, such as the network size and loading conditions. Gallager's algorithm
was shown [3] to require a "small" value of step size to guarantee convergence; the proper choice
in practice has to be obtained through experimentation on the specific network under
consideration. Similarly, in the case of the CODEX algorithm, one must resort to such
experimental means, since there are no theoretical guidelines for the choice of rerouting
probabilities. It may be noted that the ARPANET algorithm has no such traffic adjustment
parameter.

The experimental results depicting the effect of VC rerouting probabilities on the mean
packet delay in the CODEX algorithm are presented in Figure 5. In this experiment, we activate
the virtual circuits gradually, each with an exponentially distributed offset period with mean 4
minutes. Once activated, a virtual circuit remains active for the entire duration of simulation. This
was done to avoid the initial congestion from which it may be difficult to recover in the case of a
small rerouting probability. The observation interval was chosen to be 56 sec which is a
reasonably long period for obtaining good estimates as observed in section 4.1. The results shown
are averaged over 30 independent replications for each choice of the rerouting probability. A
typical 95% confidence interval for the mean network delay observed beyond 50 iterations in the
case of rerouting probability values of 0.15, 0.3 and 0.45 is + 4% of the point estimate. The
algorithm appears to be unstable for the rerouting probability value of 0.6. To maintain clarity in
figures we do not plot the confidence intervals.

A small value of rerouting probability such as 0.15 results in slow adaptivity which is
evident from the high mean network delays seen in the initial 40 iterations. This results in the
inability of the algorithm to clear the initial congestion and may cause a poor performance of the
algorithm in quasistatic traffic conditions. The abruptness of transition in the mean delay profile is
due to erroneous initial routing of some high traffic rate virtual circuits in one or more of the
sample paths. This creates heavy congestion in some of the links which i is cleared only when these
potential VC's are rerouted. A very large value of reroutin g probability results in extremely large
oscillations, as seen for the value of 0.6 in Figure 5. These large oscillations are due to the
uncoordinated rerouting of too many virtual circuits at the same time which leads to instabilities.

Similar experiments were performed for different values of step sizes for Gallager's
algorithm [10]. The results are shown in Figure 6. The same trend was observed as in the case of
rerouting probabilities for the CODEX algorithm, i.e. a small step size results in a slow but
smooth convergence to the optimal mean delay value, whereas a large value causes rapid
convergence at the expense of oscillations at steady state. Moreover, an extremely small value of
the step size is considerably slow in bringing the network out of an initial congestion.
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4.3. Comparison of Mean Delay Performance of the CODEX and Gallager's
Algorithms with Tuned Parameters.

In this section, we compare the transient and steady state mean delay performances of the CODEX
and Gallager's algorithms under suitably tuned parameters. The experiments are conducted for
two different traffic environments :

1. Long-run stationary traffic environment: the traffic generating source-destination pairs are
gradually activated with exponentially distributed random offset periods and they stay ON forever.
Thus, the traffic is initially not stationary, but becomes stationary after a sufficiently long period of
time. '

2. Quasistatic traffic environment: the traffic generating source-destination pairs are activated and
deactivated at random instants of time as was described in section 3.2.

For both algorithms, a reasonably large observation interval of 56 sec was chosen. The
rerouting probability and step size were tuned (by trial and error) to obtain the best possible
achievable performance in terms of the smoothness of the mean delay convergence profile.
Accordingly, a rerouting probability of 0.3 in the CODEX algorithm, and a step size of 0.01 E -
05 in Gallager's algorithm were chosen respectively. The results for both the algorithms are
averaged over 30 replications. Typical 95% confidence intervals for the mean network delays
observed beyond 50 iterations are +4% for CODEX and +2% for Gallager's algorithms
respectively.

4.3.1. Long-run Stationary Traffic Environment Results

The results for this case are presented in Figure 7. The mean network delays for the algorithms are
plotted against time measured as the number of iterations implemented (each iteration
corresponding to a 56 sec observation interval).

It can be seen in Figure 7 that Gallager's algorithm is slower to converge (up to 25 iterations
approximately) compared to the CODEX algorithm (up to 15 iterations approximately). This is
because the CODEX algorithm is better suited to handle new source-destination sessions by
finding the paths of least incremental delays for the new virtual circuits. On the other hand,
Gallager's algorithm adapts slowly to the increased traffic due to the small step size typically used.

Once the initial transients have died out and stationary traffic conditions have been
established, Gallager's algorithm converges to a steady state mean delay value with a tighter 95%
confidence interval as mentioned earlier, while the CODEX algorithm displays an oscillating
behavior within a relatively wider interval. Moreover, it is seen that the steady state nominal mean
delay is somewhat higher in the case of the CODEX algorithm.

This difference in mean delay at steady state is attributed to the fact that Gallager's algorithm
attempts to optimize the mean delay under stationary traffic inputs (which is the case here after all
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the traffic generating pairs have been activated). In contrast, the CODEX algorithm is heuristic in
nature.

The difference in the degree of oscillations for the two algorithms is attributed to the
fundamental difference in the method of traffic adjustments. At any link, Gallager's algorithm can
shift a fraction of the current traffic on the link taking any desired value between 0% to: 100%,
(depending on the estimated derivatives and the step size); the CODEX algorithm is only allowed
to do so in units of virtual circuits. Therefore, the amount of traffic shifted depends on the traffic
rates of the virtual circuits being rerouted. If the cumulative traffic rate of the VC's being rerouted
is significant, their shifting can give rise to considerable oscillations.

The fact that rerouting of virtual circuits is indeed the reason for the observed oscillatory
behavior of the CODEX algorithm is corroborated by the results of the following experimen:.
Instead of one virtual circuit per source-destination pair, now the same traffic is carried throuy}: ¢
and 20 virtual circuits respectively. Each VCis set up and routed independently. Thus, giv-: -
initial 19 source destination pairs, we have 190 and 380 virtual circuits each with 1/10 and 1/2%
traffic rates of the original VC's respectively. Each of these VC's is activated after un
exponentially distributed offset interval and remains active for the entire simulation duration. The
results are again averaged over 30 independent replications. As expected, the oscillations in the
mean delay were considerably reduced (and a tighter 95% confidence interval of +2% wa..
observed) as shown in Figure 8. The somewhat larger values of mean delays in the case of larger
number of virtual circuits are probably due to improper choices of rerouting probabilities which
may need to be more than the values used here (0.03 and 0.015 respectively).

4.3.2. Quasistatic Traffic Environment Results

In this case, a traffic generating source-destination pair can be in any one of the two possibla
states: active (ON) or inactive (OFF). The duration of time spent in the inactive state is .
exponentially distributed random variable with a mean of 4 minutes. The duration of time Spect ti
the active state is a random variable determined by the time required to generate a geometrically
distributed random number of packets (with a mean of 200). The active period obviously depends
on the traffic generation rates of the individual VC's. The mean active periods for all the sourc«
destination pairs are either comparable to or shorter than the length of the observation interval. The
results are presented in Figure 9A, and provide additional insight on the adapfivity of the
algorithms to burstier traffic conditions. All the results are averaged over 30 independent
replications.

Even though Gallager's algorithm performed better than the CODEX algorithm under
stationary traffic conditions as shown earlier, it is clear from Figure 9A that it has poorer
adaptivity to fast-changing traffic conditions. The sharp peaks observed in the mean delay

response of Gallager's algorithm correspond to arrivals of new VC's. As was noted in the
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previous subsection, the CODEX algorithm is suited to adapt better to arriving VC's through its
explicit VC setup routing mechanism, whereas Gallager's algorithm tries to adapt to the situation
rather slowly. Moreover, incorrect gradient estimates at the end of an observation interval tend to
cause instability in Gallager's algorithm which no longer converges to a steady state mean network
delay. Figure 9B presents similar results for the case when there are 190 VC's operating. The
active period of each of the VC's is the time required to generate a geometrically distributed
number of packets with mean 20. Since the VC traffic rates are smaller, the peaks observed in the
case of Gallager's algorithm are less sharp; however, the algorithm is unstable because of
inaccurate estimates.

Finally, note that the nominal mean delays observed in Figure 9A and 9B are lower than those
seen in previous cases. This is simply due to the fact that the overall network load is now lower,
since traffic generating source-destination pairs are periodically inactive.

4.4. Mean Delay Performance of the Standard ARPANET Algorithm.

The results of applying the standard ARPANET algorithm as described in Section 2.3 to the
network under consideration are reported in Figure 10. It can be seen that ARPANET displays
large high-frequency oscillations. Moreover, the value of the mean delay is much higher compared
to the CODEX and Gallager's algorithms. The main reasons for this behavior were discussed in
earlier sections: the basic operating philosophy of the ARPANET algorithm causes a far from
optimal performance and high susceptibility to oscillations. However, we were able to identify a
number of factors such as the traffic intensity and nonuniformity of link capacities which may be
contributing to the oscillatory performance. The observed effects of these factors are described
below. |

In reality, the ARPANET algorithm may not be performing as poorly as it appears in Figure
10. One of the reasons may be that it is designed to operate in environments with a light traffic
load on the network. To verify the effect of light load on the observed oscillations, the tratfic
intensities of each of the 19 source-destination pairs in our experiment were reduced by 50% and
20% respectively thus reducing the overall traffic intensity by the same factors as well.

The mean delay behavior of the ARPANET algorithm under these light load conditions is
presented in Figure 11. It can be seen that a 50% load reduction results in a drastic improvement in
performance, both in terms of nominal mean delay and the extent of oscillations. A further
reduction to 20% of the original load does not substantially affect the oscillation characteristics (as
expected, however, the mean delay is reduced).

13



It was also speculated that the nonuniform link capacities in our network (ranging from 9.6
Kbps to 72 Kbps) are contributing to the observed oscillations in the mean delay. In some
experiments with uniform link capacities of different denominations such a trend was observed
[10].

4.5. Effect of Packet Resequencing on Mean End-to-End Delay in
Datagram Networks.

One advantage of using virtual circuits over datagrams is the sequential delivery of packets at the
destination. In the case of datagram networks, the packets have to be resequenced ai the
destination nodes before being passed on to the host. A simple way of accomplishing this is to
assign a sequence number to each of the packets for a source-destination pair. At any tim. :ne
destination node is expecting a packet with a particular sequence number. Any arriving packet - i+
a sequence number less than this is stored in a buffer. When the expected packet arrives, i+
packets forming a sequence are removed from the buffer and passed on to the host. {iu.,
“resequencing delays" are the queueing delays experienced by packets stored in this buffer.

For a fair comparison of mean delay performance one must consider the end-to-end delay,
which includes the resequencing delay, in the case of datagram routing. It should be noted that
even though the CODEX algorithm is a VC-type algorithm, resequencing delays do occur when 1
VCis rerouted: when a new path is established, there are still some packets propagating on the olu
path; consequently, the destination node must be able to do resequencing for a brief period of
time, until the old path has been completely drained of all the packets. One would, howe ver.
expect that this resequencing delay is very small when averaged over all the packets in an
observation interval.

Experiments were performed incorporating the resequencing mechanism described above for
Gallager's algorithm. The increase in the mean delay at steady state was found to be very sma!l.
amounting to approximately 5% of the mean delay without resequencing. This mean end-to-c1:!
delay performance of Gallager's algorithm with resequencing is compared with that of the
CODEX algorithm in Figure 12. These results are obtained by averaging over 30 replications. It is
clear that under stationary traffic conditions Gallager's algorithm outperforms the CODEYX
algorithm with respect to both mean delay and steady state oscillations. Thus, resequencing delays
have little effect on the relative performances of the two algorithms.

S. CONCLUSIONS

The main objective of this experimental performance study was to compare the gradient-based

routing algorithms with the shortest-path-based ones. Under stationary traffic conditions, the

gradient based algorithms perform better in terms of both mean network delay and steady stote

oscillations. Among the two shortest path algorithms, the CODEX algorithm produces lower mean
14



delays because it computes shortest paths based on incremental link delays rather than the abso!ute
link delays as in the case of the ARPANET. The steady state oscillations are particularly
significant in case of the ARPANET algorithm. However, we have found that these oscillations
are considerably reduced under light load conditions. Under these conditions, the simplicity of
shortest path algorithms becomes their main attractive feature. This is probably why the
ARPANET algorithm is still a favorite in light traffic datagram environments.

Under quasistatic conditions, where traffic is essentially bursty, a gradient-based algorithm
may not be able to adapt to the changing conditions as rapidly as a shortest path algorithm. The
adaptivity in this case depends on the step size chosen. There is a tradeoff involved in the choice
of this parameter. While a larger value provides greater adaptivity, a smaller one ensures stability.
Consequently, one has to select an appropriate value depending on the specific requirements,
leading to the strong argument for mechanisms to dynamically adjust this step size parameter.

Despite their many attractive features, gradient-based routing algorithms have not yet become
popular in practice. One of the reasons has been the lack of simple and efficient gradient estimation
techniques not requiring restrictive modelling assumptions. However, with the use of techniques
such as Perturbation Analysis this problem may be overcome [9]. Thus future research may be
directed at further exploring the implementation-related issues for such algorithms.

Another objective of our work was the performance comparison of virtual circuit routing an
datagram routing. The nature of traffic conditions in the network is an important factor that must
be considered before drawing any conclusion. As was mentioned earlier, under stationary traffic
conditions the steady state performance of the VC-based CODEX algorithm displays oscillatory
behavior which is due to the VC rerouting mechanism. On the other hand, it was seen that the
rerouting mechanism is essential to provide adaptivity. However, we have observed that
oscillations can be limited by imposing an upper bound on the traffic rates of individual VC's.
Whether such a constraint is desirable or not is a high level issue, and a subject for further
research. In bursty traffic conditions, however, the virtual circuit routing algorithms perform
better.

While comparing virtual circuits to datagrams, a naturally arising issue is that of
resequencing. This is a potential drawback for datagram networks, since (a) additional processing
at the end nodes is required, and (b) packets experience additional buffering delays at the end
nodes. We have found this additional delay to be insignificant compared to the overall mean
system delay. However, the extra processing requirement may be a more crucial factor, depending

on the network under consideration.
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The main limitation of our simulation-based study is that all our experiments were conducted
on a network (6 node, 16 links) which is relatively small compared to most of the existing
networks. Although with a proper design of experiments a small network can bring out the
essential characteristics of a routing algorithm, some of the trends observed in a small network
may not carry over to a larger network. For example, in the case of CODEX algorithm a large
network with a large number of virtual circuits each with a smaller traffic rate may be relatively
less sensitive to rerouting. Similarly the effect of resequencing in datagram algorithms may be
significant in a larger network. These are some of the issues which are currently under
investigation [10] with a 19 node, 33 full duplex links network (an earlier model of the
ARPANET).
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