THE SPRING KERNEL:
A NEW PARADIGM FOR HARD
REAL-TIME OPERATING SYSTEMS

John A. Stankovic and Krithi Ramamritham
Department of Computer and Information Science
University of Massachusetts
Ambherst, MA 01003

COINS Technical Report 89-101
September 28, 1989



The Spring Kernel:
A New Paradigm for Hard Real-Time
Operating Systems?

John A. Stankovic
e-mail: stankovic@cs.umass.edu
phone: 413-5450720
Krithi Ramamritham

e-mail: krithi@nirvan.umass.edu
phone: 413-5450196

Dept. of Computer and Information Science
University of Massachusetts
Ambherst, Mass. 01003

September 28, 1989

Abstract

Next generation, critical, hard real-time systems will require greater flexibility, depend-
ability, and predictability than is commonly found in today’s systems. These future systems
include the space station, integrated vision/robotics/Al systems, collections of humans/robots
coordinating to achieve common objectives (usually in hasardous environments such as under-
sea exploration or chemical plants), and various command and control applications. The Spring
Kernel is a research oriented kernel designed to form the basis of a flexible, hard real-time
operating system for such applications. The Spring Kernel is being implemented in stages on a
network of (68020 and 68030 based) multiprocessors called SpringNet. A preliminary version
of the Kernel is now operational. Our research approach challenges several basic assumptions
upon which most current real-time operating systems are built and subsequently advocates
a new paradigm based on the notion of predictability and on a method for on-line dynamic
guarantee of deadlines. The purpose of this paper is to provide an overview of the major ideas
of this new paradigm and show how the Kernel implements these ideas. Detailed descriptions
of both the Kernel and the algorithms referred to in this paper can be found in the referenced
material.

KEYWORDS: real--time kernel, multiprocessor kernel, real--time scheduling,
integrated scheduling, new paradigm, next generation systems,
dynamic time guarantees, deadlines, operating systems.

*This work was supported by ONR under contract NOOO14-85-K-0389 and NSF under grant DCR-8500332.
'This paper is a significantly updated version of an unrefereed paper that appeared in ACM SIGOPS Revieu,
July 1989.



1 Introduction

Real-time computing is that type of computing where the correctness of the system depends not
only on the logical result of the computation, but also on the time at which the results are pro-
duced. Real-time computing systems play a vital role in our society and the spectrum of their
complexity varies widely from the very simple to the very complex. Current real-time computing
systems are used in applications such as the control of laboratory experiments, the control of en-
gines in automobiles, command and control systems, nuclear power plants, process control plants,
flight control systems, space shuttle and aircraft avionics, and robotics. Next generation systems
will include the autonomous land rover, teams of robots operating in hazardous environments such
as chemical plants and undersea exploration, systems found in intelligent manufaciuriag, aud the
space station. These next generation real-time systems will be large, complex, distributed, adap-
tive, contain many types of timing constraints, operate in non-deterministic environments, and
evolve over a long system lifetime. Many advances are required to address these next genera-
tion systems in a scientific manner. For example, one of th?e most difficult aspects will be in
demonstrating that these systems meet their performance requirements including satisfying spe-
cific deadline and periodicity constraints. Timing constraints of today’s systems are verified with
ad hoc techniques, or with expensive and extensive simulations. Minor changes in the system
result in another extensive round of testing. Different components of such systems are extremely
difficult to integrate with each other, and consequently add to the cost of such systems. Millions
(even billions) of dollars are currently being spent (wasted) by industry and government to build
today’s real-time systems. The current brute force techniques will not scale to meet the require-
ments of guaranteeing real-time constraints of the next generation systems [11]. New paradigms,
algorithms, architectures, design and implementation techniques, languages, operating systems,
tools, etc. are required to support predictability, dependability, and flexibility so that next gen-
eration real-time systems can be carefully analyzed, can react to non-deterministic environments

in a flexible manner, and can be constructed and maintained in a cost-effective manner.



We will not address all of these issues here. Rather we focus only on describing a new real-
time operating system, called the Spring Kernel, and show how it provides basic support for next
generation real-time systems. In developing this new operating sysiem our rescarch approach
challenges several basic assumptions upon which most current real-time operating systems are
built and subsequently advocates a new paradigm based on the notion of predictability and on a
method for on-line dynamic guarantee of deadlines. The purpose of this paper is to provide an
overview of the major ideas of this new paradigm and to show how the Kernel implements these

ideas.

In Section 2 we briefly identify current real-time operating system paradigms and say why
we feel they are wrong for next generation real-time systems. In order to place the discussion
of our new ideas in perspective, in Section 3, we then give a high level overview of the Spring
Kernel. Section 4 presents our real-time operating system paradigm discussing the details of how

the Spring Kernel supports this paradigm. Concluding remarks are made in Section 5.
2 Current Real-Time Operating Systems

Most current real-time operating systems (e.g., [7,1,3,8]) contain the same basic paradigms found
in timesharing operating systems. These kernels are simply stripped down and optimized versions
of timesharing operating systems. For example, while they stress fast mechanisms such as a fast
context switch and the ability to respond to external interrupts quickly, they retain the main

abstractions of timesharing operating systems including:

e viewing the execution of a task as a random process, in which if resources requested by a

task are available, they are granted, otherwise the task is blocked,

e assuming that very little is known about the tasks a priori so that little (or no) semantic

information about tasks is utilized at run time, and

[



e attempting to maximize throughput or minimize average response time?.

In addition, very often today’s real-time kernels use priority scheduling. Priority scheduling is
a mechanism which provides no direct support for meeting timing constraints. For example, the
current technology burdens the designer with the unenviable task of mapping a set of specified
constraints on task executions into task priorities in such a manner that all tasks will meet their
deadlines. Thus, when using the current paradigms together with priority scheduling it is difficult
to predict how tasks, dynamically invoked, interact with other active tasks, where blocking over
resources will occur, and what the subsequent effect of this interaction and blocking is on the
timing constraints of all the tasks. Basically, currently used scheduling policies are inadequate
for three main reasons: (1) they do not address the need for an integrated cpu scheduling and
resource allocation scheme, (2) they don’t handle the end-to-end scheduling problem, and (3) they
are not used in a planning mode, thereby containing a myopic view of the system capabilities. We
will define and further discuss these three important issues in the context of the Spring Kernel.

Other research efforts are also challenging the current paradigms (e.g., see [4,12]).
3 The Spring Kernel - A High Level Overview

Rather than simply providing a factual description of the primitives in our Kernel, we will present
the major abstractions (paradigms) supported by the Kernel. This approach lets us concentrate
on the new ideas found in the Kemel. Before we do this, however, we first set the stage for
the presentation of these new ideas by stating the general requirements (Section 3.1), describing
the environments of applicability (Section 3.2), and outlining the structure of the hardware and
operating system (Section 3.3). In Section 4, we then concentrate on the major new ideas found
in the Kernel, showing how the Kernel supports these ideas and how they, in turn, provide basic

support for next generation real-time systems.

For a more detailed discussion of the problems with today’s real-time kernels see [10].




3.1 Requirements

We believe that next generation, critical, real-time systems should be based on the following

considerations:

o Tasks are part of a single application with a system-wide objective. The types of tasks
that occur in a real-time application are known a priori and hence can be analyzed to
determine their characteristics. There is no need to treat a task as a random process.
Many characteristics of tasks (such as their importance, as well as their timing and resource
requirements) can be determined a priori and utilized at run time. Further, designers must
follow strict rules and guidelines in programming tasks, e.g., tasks must not have a large
variance in their execution time. These facts can be exploited in developing a solution to

real-time sytems and also in facilitating subsequent analysis of timing requirements.

o The value of tasks executed should be maximized, where the value of a task that completes
before its deadline is its full value (depends on what the task does) and some diminished
value (e.g., a very negative value or zero) if it does not make its deadline. Fairness and
minimizing average response times are not important metrics for tasks with hard timing

constraints.

e Predictability should be ensured so that the timing properties of both individual tasks and
the system can be assessed (in other words we have to be able to categorize the performance

of tasks and the system with respect to properties such as timing and fault tolerance).

o Flexibility should be ensured so that system modifications and on-line dynamics are more

easily accommodated.



3.2 The Environment and Definitions

Real-time systems interact heavily with the environment. We assume that the environment
is dynamic, large, complex, and evolving. In a system interacting with such an environment
there exist many types of tasks. Our approach categorizes the types of tasks found in real-time
applications depending on their interaction with and impact on the environment. This gives rise to
two main criteria on the basis of which to classify tasks: importance and timing requirements. Our

Kernel then treats the different classes of tasks. differently thereby reducing the overall complexity.

Based on importance and timing requirements we define three types of tasks: critical tasks,
essential tasks, and non-essential tasks. Tasks’ timing requirements may range over a wide spec-
trum including hard deadlines, soft deadlines, periodic executioﬁ requirements, while other tasks
may have no explicit timing requirements. Critical tasks are those tasks which must make their
deadline, otherwise a catastrophic result might occur (missing their deadlines will contribute a
minus infinity value to the system). It must be shown a priori that these tasks will always meet
their deadlines subject to some specified number of failures. Resources will be reserved for such
tasks. That is, a worst case anaysis must be done for these tasks to guarantee that their deadlines
are met. Using current OS paradigms such a worst case analysis, even for a small number of tasks
is complex. Our new, more predictable Kernel facilitates this worst case analysis. Note that the
number of truly critical tasks (even in very large systems) will be small in comparison to the total
number of tasks in the system. Essential tasks are tasks that are necessary to the operation of the
system, have specific timing constraints, and will degrade the performance of the system if their
timing constraints are not met. However, essential tasks will not cause a catastrophe if they are
not finished on time. There are a large number of such tasks. It is necessary to treat such tasks in
a dynamic manner as it is impossible to reserve enough resources for all contingencies with respect
to these tasks. Our approach applies an on-line, dynamic guarantee to this collection of tasks.
Non-essential tasks, whether they have deadlines or not, execute when they do not impact critical

or essential tasks. Many background tasks, long range planning tasks, maintenance functions,

1
H



etc. fall into this category.

Another timing issue relates to the closeness of the deadline. Some tasks may have extremely
tight deadlines. These tasks cannot be dynamically guaranteed since it would take more time to
ascertain the schedule for them than exists before the task’s deadline. Such tasks must be treated
differently, e.g., they might run in a front end using a cyclic scheduler, or a rate monotonic
algorithm, or have preallocated resources. These tasks usually occur in the data acquisition front

ends of the real-time system.

Task characteristics are complicated in many other ways as well. For example, a task may
be preemptable or not, periodic or aperiodic, have a variety of timing constraints, precedence
constraints, communicativn constraints, and fault tolerance constraints. While we wili not specif-
ically address each of these issues in this paper, it would be unrealistic to design a real-time

operating system for a large system that could not support these types of tasks.

3.3 A SpringNet Node

SpringNet (Figure 1) is a physically distributed system composed of a network of multiprocessors
each running the Spring Kernel. Each multiprocessor contains one (or more) application proces-
sors, one (or more) system processors, and an I/O subsystem. Application processors execute
previously guaranteed and relatively high level application tasks. System processors? offload the
scheduling algorithm and other OS overhead from the application tasks both for speed, and so
that external interrupts and OS overhead do not cause uncertainty in executing guar-
anteed tasks. The I/0O subsystem is partitioned away from the Spring Kernel and it handles

non-critical I/0, slow I/O devices, and fast sensors.

Not surprisingly, the main components of the Kernel can be grouped into task management

and scheduling, memory management, and intertask communication (ITC). While this sounds

2Ultimately, system processors could be specifically designed to offer harware support to our system activities
such as guaranteeing tasks.



similar to many other kernels, the abstractions supported are quite different and represent a new
paradigm for real-time operating systems, as we shall see. Before we discuss the new ideas in
detail (the subject of Section 4), we provide a brief overview of the main components of the Kernel

in order to provide a better perspective for understanding the ideas in Section 4.

Task Management and Scheduling: The task management primitives support executable
and guaranteeable entities called tasks and task groups. A task consists of reentrant code, local
data, global data, a stack, a task descriptor (TD) and a task control block (TCB). Multiple
instances of a task may be invoked. In this case the (reentrant) code and task descriptor are
shared. A task group is a collection of simple tasks that have precedence constraints among
themselves, but have a single group deadline. Each task acquires resources before it begins and
releases the resources upon its completion. For task groups, it is assumed that when the task
group is invoked, all tasks in the group can be sized (this means that the worst case computation
time and resource requirements of each task can be determined at invocation time). More flexible

types of task groups are currently being investigated.

Tasks are characterized by:

o ID

o C (a worse case execution time - may be a formula that depends on various input data

and/or state information)
o D (Deadline) or period or other real-time constraint

e importance (this is an indication of the value imparted to the system by the execution of

the task)
e preemptive or non-preemptive property
¢ maximum number and type of resources needed (this includes memory segments, ports, etc.)

e type: critical, essential, or non-essential



e incremental task or not (incremental tasks compute an initial answer quickly and then

continue to refine the answer for the rest of its requested computation time)
e location of task copies,
e Group ID, if any (tasks may be part of a task group)

o precedence graph (describes the required precedence among tasks in a task group or a

dependent task group)

e communication graph (list of tasks with which a task communicates), and type of commu-

nication (asynchronous or synchronous).

All the above information concerning a task is maintained in the task descriptor (TD). We
have plans for adding semantic information concerning a task’s fault tolerance requirements to the
TD. Much of the above information is also maintained in the task control block (TCB) with the
difference being that the information in the task control block is specific to a particular instance
of the task. For example, a task descriptor might indicate that the worst case execution time
for TASK A is 5z milliseconds where z is the number of input data items at the time the task is
invoked. At invocation time a short procedure is executed to compute the actual worst case time
for this module and this value is then inserted into the TCB. The guarantee is then performed
against this specific task instance. All the other fields dealing with time, computation, resources

or importance are handled in a similar way.

Scheduling is an integral part of the kernel and the abstraction provided is one of a guaranteed
task set. It is the single most distinguishing feature of the kernel. Since much of Section 4 1s
devoted to dicussing the merits of our scheduling approach, here we simply identify the scheduling

components.

Our scheduling approach separates policy from mechanism and is composed of 4 levels. At

the lowest level multiple dispatchers exist; one type of dispatcher running on each of the applica-



tion processors, and another type executing cn the system processor. The application dispatchers
simply remove the next (ready) task from a system task table (STT) that contains previously
guaranteed tasks arranged in the proper order for each application processor. The system dis-
paicher provides for the periodic execution of systems tasks, and asynchronous invocation when
it can determine that allowing these extra invocations will not adversely affect guaranteed tasks,
nor the minimum guaranteed periodic rate of other system tasks. Asynchronous invocation of
system tasks are ordered by importance, e.g., the local scheduler is of higher importance than the

meta level controller (see below).

The three higher level scheduling modules are executed on the system processor. The second
level is a local scheduler. The local scheduler is responsible for locally guaranteeing that a new
task or task group can make its deadline, and for ordering the tasks properly in the STT. The
logic involved in this algorithm is a major innovation of our work and details can be found in [9).
The local scheduler, also called the guarantee routine, is invoked periodically or asynchronously
as discussed above, and when invoked attempts to guarantee any new tasks or task groups that
arrived since the last activation of the local scheduler. It guarantees the new task if the task
can be scheduled to complete before its deadline and if the previously guaranteed tasks are not

jeopardized by the execution of the new task.

The third scheduling level is the distributed scheduler which attempts to find a site for execution
for any task or task group (or even partial task group) that cannot be locally guaranteed [5]. The
fourth level is a Meta Level Controller (MLC) which has the responsibility of adapting various
parameters or switching scheduling algorithms by noticing significant changes in the environment.
These capabilities of the MLC support some of the dynamics required by next generation real-
time systems. The distributed scheduling component and the MLC are not discussed any further
in this paper since they can be considered upper levels of the OS, are not part of the Spring kernel

itself, and are still being refined.

When a task is activated, any dynamic information about its resource requirements or timing

10



constraints is computed and set into the TCB; the guarantee routine then determines if it will be
able to make its deadline. Note that the execution of the guarantee algorithm ensures that the
task will obtain the necessary segments such as the ports, data segments, etc. and at the right
time. (Again, at activation time tasks always identify their maximum resource requirements; this

is feasible in a hard real-time system).

Memory Management: Memory management primitives create various well defined re-
source segments such as code, stacks, task control blocks (TCB), task descriptors (TD), local
data, global data, ports, virtual disks, and non segmented memory. Memory management tech-
niques must not introduce erratic delays into the execution time of a task. Since page faults and
page replacements in demand paging schemes create large and unpredictable delays, these mem-
ory management techniques (as currently implemented) are not suitable for real-time applications
with a need to gua.ra.nteé timing constraints. Instead, the Spring Kernel memory management
adheres to a memory segmentation rule with a fixed memory management scheme. Tasks, as
defined, require a maximum number of memory segments of each type, but at activation time
a task may request fewer segments. All of the currently required segments are allocated when
the task starts execution as part of the integrated scheduling and allocation scheme we use. If a
task is programmed to dynamically ask for segments, then the worst case time for this task must
include time to invoke the bounded Kernel primitives to get these resources which have already

been allocated by the local scheduling algorithm.

Inter-Task Communication (ITC): Tasks can communicate using shared memory or ports.
The ITC primitives support communication via ports between tasks, local or remote. The schedul-
ing algorithm automatically handles synchronization over shared memocry. We will not discuss

ITC in this paper.

The final point we would like to make in this brief overview is that to enhance predictability,
system primitives have capped execution times, and some primitives execute as iterative algo-

rithms where the number of iterations it will make for a particular call depends on its capped

11



execution time and on other state information including available time.

4 The New Péradigm

In light of the complexities of real-time systems, the key to next generation real-time operat-
ing systems will be finding the correct approach to make the systems pre;iictable yet flexible in
such a way as to be able to assess the performance of the system with respect to requirements,
especially timing requirements. In particular, the Spring Kernel stresses the real-time and flexi-
bility requirements, and also contains several features to support fault tolerance. Qur approach
to supporting this new paradigm combines the following ideas resulting, we believe, in a flexible
yet predictable system. The first three ideas are not new, but are quite useful and, consequently,

we make use of them. They are:

e resource segmentation/partitioning,

o functional partitioning,

e selective preallocation,

e a prior: guarantee for critical tasks,

¢ an on-line guarantee for essential tasks,

e integrated cpu scheduling and resource allocation,

e use of the scheduler in a planning mode,

e the separation of importance and timing constraints, e.g., a deadline,
¢ end-to-end scheduling, and

e the utilization of significant information about tasks at run time including timing, task
importance, fault tolerance requirements, etc. and the ability to dynamically alter this

information.

12



We now indicate how the Spring Kernel incorporates the above ideas, thereby supporting

predictability and flexibility.

Resource Segmentation: All resources in the system are partitioned into well defined
entities. As mentioned, the Kernel supports the resource abstractions of tasks and task groups,
and various resource segments such as code, stacks, TCBs, TDs, local data, global data, ports,
virtual disks, and non segmented memory. It is important to note that tasks and task groups
(which includes the operating system primitives ) are time and resource segmenied and bounded
meaning that they are composed of well defined segments and that both the worst case execution
times and the worst case resource requirements for these tasks are known. Kernel primitives
are also time and resource segmented and bounded. There exists a prologue (as part of an
Invoke primitive) that uses formulas for worst case needs to compute the timing and resource
requirements for the current invocation. Resource segmentation thereby provides the scheduling
algorithm with a clear picture of all the individual resources that must be allocated and scheduled.
This contributes to the microscopic predictability, i.e., each task upon being activated is bounded
in time and resource requirements. Microscopic predictability is necessary, but not sufficient

condition for overall system predictability.

Functional Partitioning: As stated earlier, each node in SpringNet is a multiprocessor.
There is a system processor, a communications processor, one or more application processors,
and one or more front end I/O processors. Upon failure of the system processor, one of the
application processors can become the systems processor. Functional partitioning provides many
benefits including dividing a large problem into more manageable pieces, allowing us to treat crit-
ical, essential and non-essential tasks differently, allowing different solutions for different levels of
granularity of timing constraints, and enabling the isolation of tasks that run on the application
processors from unpredictable interrupts generated by the non-deterministic environment. This
latter point is extremely important and together with our guarantee algorithm allows us to con-

struct a more macroscopic view of predictable performance since the collection of tasks currently

13



guaranteed to execute by their deadline are not subject to unknown, environment-driven inter-
rupts. The unexpected interrupts can occur, but they affect the current tasks in a very predictable

manner due to our on-line guarantee approach.

Many real-time constraints arise due to I/O devices including sensors. The set of I/O devices
that exist for a given application will be relatively static in most systems. Even if the I/O devices
change, since they can be partitioned from the application processors and changes to them are
- isolated, these changes have minimal impact on the Kernel. Special independent driver processes
must be designed to handle the special timing needs of these devices. In Spring we separate
slow and fast I/O devices. Slow I/O devices are multiplexed through a front end dedicated I/0
processor. System support for this is predetermined and not part of the dynamic on-line guarantee.
For example, the I/O processor might be running a cyclic scheduler or a rate monotonic scheduler,
etc. However, the slow I/O devices might invoke a task which does have a deadline and which is
subject to the guarantee. Fast I/O devices such as sensors are handled with a dedicated processor,
or have dedicated cycles on a given processor or bus. The processors might be front-end I/O
processors or one or more of the application processors (See Figure 1). The fast I/O devices
are critical since they interact more closely with the real-time application and have tight time
constraints. They might invoke subsequent higher level real-time tasks. However, it is precisely
because of the tight timing constraints and the relatively static nature of the collection of sensors
that we preallocate resources for the fast I/O sensors. In summary, our strategy suggests that
some of the tasks which have real-time constraints can be dealt with statically, and others by
a dynamic scheduling algorithm in the front-end. This leaves a smaller number of tasks which
typi‘ca.lly have higher levels of functionality and can tolerate a greater latency, for the dynamic,

on-line guarantee routine.

Selective Preallocation: Critical tasks and tasks with very fast I/O requirements are preal-
located. Further, the Spring Kernel contains task management primitives that utilize the notion

of preallocation where possible to improve speed and to eliminate unpredictable delays. For ex-

14



ample, all tasks with hard real-time requirements are core resident, or are made core resident
before they can be invoked with hard deadlines. In addition, a system initialization program
loads code, and sets up stacks, TCBs, TDs, local data, global data, ports, virtual disks and non
segmented memory using the Kernel primitives. Multiple instances of a task or task group may
be created at initialization time and multiple free TCBs, TDs, ports and virtual disks may also be
created at initialization time. Subsequently, dynamic operation of the system only needs to free
and allocate (the first item on a list) these segments rather than creating them. While facilities
also exist for dynamically creating new segments of any type, such facilities should not be used
under hard real-time constraints. Using this approach, the system can be fast and predictable,

yet still be flexible enough to accomodate major changes in non hard real-time mode.

A Priort Guarantee for Critical Tasks: The notion of guaranteeing timing constraints
is central to our approach. However, because we are dealing with large, complex systems in
non-deterministic environments, the guarantee is separated into two main parts: an a prior:
guarantee for critical tasks and an on-line guarantee for essential tasks. All critical tasks are
guaranteed a priori and resources are reserved for them either in dedicated processors, or as a
dedicated collection of resource slices on the application processors (this is part of the selective
preallocation policy used in Spring). Hence, critical tasks are guaranteed for the entire lifetime
of the system. While a priori dedicating resources to critical tasks is, of course, not flexible, due

to the importance of these tasks, we have no other choice!

On-line Guarantee for Essential Tasks: Due to the large numbers of essential tasks and
to the extremely large number of their possible invocation orders, preallocation of resources to
essential tasks is not possible due to cost, nor desirable due to its inflexibility. Hence, this class
of tasks is guaranteed on-line. This allows for many task invocation scenarios to be handled
dynamically (partially supporting the flexibility requirement). However, the notion of on-line
guarantee has a very specific meaning as described in the first itemized point below. The basic

notion and properties of guarantee for essential tasks have been developed elsewhere (6] and have

15



the following characteristics:

e it allows the unique abstraction that at any point in time the operating system knows exactly
which tasks have been guaranteed to make their deadlines®, what, where and when spare
resources exist or will exist, a complete schedule for the guaranteed tasks, and which tasks
are running under non-guaranteed assumptions, However, because of the non-deterministic
environment the capabilities of the system may change over time, so the on-line guarantee for
essential tgsks 1s an instantaneous guarantee that refers to the current state. Consequently,
at any point in time we have the macroscopic view that all critical tasks will make their
deadlines and we know ezactly which essential tasks will make their deadlines given the

current load?,

o conflicts over resources are avoided thereby eliminating the random nature of waiting for
res'(‘;urces found in timesharing operating systems (this same feature also tends to minimize
context switches since tasks are not being context switched to wait for resources). Basically,
resource conflicts are solved by scheduling tasks at different times if they contend for a given

resource, R

e there is a separation of dispatching and guarantee allowing these system functions to run
in parallel; the dispatcher is always working with a set of tasks which have been previously
guaranteed to make their deadlines and the guarantee routine operates on the current set

of guaranteed tasks plus any newly invoked tasks,

e provides early notification; by performiﬁg the guarantee calculation when a task arrives
there may be time to reallocate the task to another host of the system via the distributed
scheduling module of the scheduling approach; early notification also has fault tolerance

implications in that it is now possible to run alternative error handling tasks early, before a

Mu coutrast, current real time scheduling algorithms, such as carliest deadline, have no global knowledge of Lhe
task sct nor of the system’s ability 10 mect deadlines; they only know which task to run next.

*1t is also possible to develop an overall quantitative, but probabilistic assessment of the performance of essential
tasks. For example, given expected normal and overload workloads, we can compute the average percentage of
essential tasks that make their deadlines.

16



deadline is missed,

e within this approach there is the notion of still “possibly” meeting the deadline even if the
task is not guaranteed, that is, if a task is not guaranteed it could receive idle cycles at
this node, and, in parallel, there can be an atltempt to get the task guaranteed on another
host of the system subject to location dependent constraints, or based on the fault tolerance

semantics of the task, various alternatives could be invoked,

o the guarantee routine supports the co-existence of real-time and non real-time tasks, and
note that this is non-trivial when non real-time tasks might use some of the same resources

as real-time tasks,

o the guarantee can be subject to computation time requirements, deadline or periodic time
constraints, resource requirements where resources are segmented, importance levels for
tasks, precedence constraints, [/O requirements, etc. depending on the specific guarantee

algorithm being used in a given system.

Integrated CPU Scheduling and Resource Allocation: Current real-time scheduling
algorithms schedule the CPU independently of other resour(;es. For example, consider a typical
real-time scheduling algorithm, earliest deadline first. Scheduling a task wvhjch has the earliest
deadline does no good if it subsequently blocks because a resource it requires is unavailable. Qur
approach integrates CPU scheduling and resource a]]ocatién so that this blocking never occurs.
Scheduling is an integral part of the Kernel and the abstraction provided is one of a guaranteed

task set.

Because hard real-time scheduling in a multiprocessor with resource constraints is NP-hard,
we use a heuristic approach. Scheduling a set of tasks to find a feasible schedule is actually a
search problem. The structure of the search space is a search tree. An intermediate vertex of the
search tree is a partjal schedule, and a leaf, a terminal vertex, is a compiete schedule. It should

be obvious that not all leaves, each a complete schedule, correspond to feasible schedules. The

17



heuristic scheduling algorithms we use try to determine a full feasible schedule for a set of tasks
in the following way. It starts at the root of the search tree which is an empty schedule and tries
to extend the schedule (with one more task) by moving to one of the vertices at the next level in
the search tree until a full feasible schedule is derived. To this end, we use a heuristic function,
H, which synthesizes various characteristics of tasks affecting real-time scheduling decisions to
actively direct the scheduling to a plausible path. The heurisfic function, H, (in a straightforward
approach) is applied to each of the tasks that remain to be scheduled at each level of search. The
task with the smallest value of function H is selected to extend the current schedule. A more

efficient scheme we use allows application of the H function to only K tasks at each level. See [6].

The heuristic that we employ combines a task’s worst case computation time, its deadline
(or other timing constraint), and its resource requirements into a relatively simple formula. An
innovation in our work is the way we quantify the resource requirements. Briefly stated, we
quantify resource requirements by computing an Earliest Start Time, i.e., the earliest time by
which all the resources required by a task will be available given the current partial schedule.
The earliest start time incorporates both resource requirements and worst case computation time
considerations. We then simply combine the earliest start time and deadline in a weighted formula
to quantify the needs of each task®. Other considerations such as precedence constraints are

handled by additional logic in the algorithm and not directly in the H function.

One very important aspect of this work, different from previous work, is that we not only
specifically consider resource requirements, but we also model resource use in two modes: exclusive
mode and shared mode. We have shown that by modeling two access modes, more task sets are

schedulable than if only exclusive mode were used.

By integrating cpu scheduling and resource allocation at run time, we are able to understand

(at cach point in time), the current resource contention and completely control it so that task

*See the Appendix for more details. 1f the paper is accepted we expect that the Appendix would become an
accompanying overleaf box typical of IEEE Computer articles.

18



performance with respect to deadlines is predictable, rather than letting resource contention occur

in a random pattern resulting in an unpredictable system.

Use of Scheduler in Planning Mode: Another important feature of our scheduling ap-
proach is how and when we use the scheduler, i.e., we use it in a planning mode when a new task
is invoked. When a new task is invoked, the scheduler attempts to plan a schedule for it and
some number of other tasks so that all tasks can make their deadlines. This enables our system
to understand the total load of the system and to make intelligent decisions when a guarantee
cannot be made, e.g. see the next point below. This is at odds with other real-time scheduling
algorithms which, as mentioned earlier, have a myopic view of the set of tasks. That is, these
algorithms only know which task to run nezt and have no understanding of the total load or
current capabilities of the system. This planning is done on the system processor in parallel with
the previously guaranteed tasks so it must account for those tasks which may be completed before

it itself completes. A number of interesting race conditions had to be solved to make this work.

Separation of Importance and Deadline: .A ma jor advantage of our approach is that we
can separate deadlines from importance. Again, all critical tasks are of the utmost importance and
are a priori scheduled. Essential tasks are not critical, but each is assigned a level of importance
which may vary as system conditions change. To maximize the value of executed tasks, all
critical tasks should make their deadlines and as many essential tasks as possible should also
make their deadlines. Ideally, if any essential tasks cannot make their deadlines, then those
tasks which do not execute should be the least important ones. In the first phase of the guarantee
algorithm, scheduling is done ignoring importance. If all tasks are guaranteed then the importance
value plays no part. On the other hand, when a newly invoked essential task is not guaranteed,
then the guarantee routine will remove the least important tasks from the system task table if
those preemptions contribute to the subsequent guarantee of the new task. The low importance
eliminated tasks, or the original task, if none, are then subject to distributed scheduling. Various

algorithms for this combination of deadlines and importance have been developed and analyzed [2].

19



It is important to point out that our approach is much more flexible at handling the combination
of timing and importance than a static priority scheduling mechanism typically found in real-time
systems. For example, using static priority scheduling a designer may have a task with a short
deadline and low importance, and another task with a long deadline and high importance. For
average loads it is usuau3! acceptable to assign the short deadline task the higher priority, and
under these loads all tasks probably make their deadlines. However, if there is overload, it will
be the high importance task which ends up missing its deadline. This condition would not occur

with our scheme.

End-to-End Scheduling: Most application level functions (such as stop the robot before
it hits the -wa]l) which must be accomplished under a timing constraint are actually composed
of a set of smaller dispatchable tasks. Previous real-time kernels do not provide support for a
collection of tasks with a single deadline. The Spring Kernel supports tasks and task groups and
is currently developing support for dependent task groups. A task group is a collection of simple
tasks that have precedence constraints among themselves, but have a single deadline. Each task
acquires resources before it begins and can release the resources upon its completion. For task
groups, it is assumed that when the task group is invoked the worst case computation time and
resource requircments of each task can be determined. A dependent task group is the same as
a task group except that computation time and resource requirements of only those tasks with
no precedence constraints are known at invocation time. Needs of the remaining tasks of the
dependent group can only be known when all preceding tasks are completed. The dependent task
group requires some special handling with respect to guarantees which we have not done at this
time. Precedence constraints are used to model end-to-end timing constraints both for a single

node and across nodes and the scheduling heuristic we use can account for precedence constraints.

Dynamic Utilization of Task Information: Information about tasks and task groups
is retained at run time and includes formulas describing worst case execution time, deadlines

or other timing requirements, importance level, precedence constraints, resource requirements,

20



fault tolerance requirements, task group information, etc. The Kernel then dynamically utilizes
this information to guarantee timing and other requirements of the system. In other words, our
approach retains significant amounts of semantic information about a task or task group which
can be utilized at run time. Kernel primitives exist to inquire about this information and to

dynamically alter the information. This enhances the flexibility of the system.

5 Summary

Most critical, real-time computing systems require that many competing requirements be met
including hard and soft real-time constraints, fault tolerance, protection, and security require-
ments [11]. In this list of requirements, the real-time requirements have reccived the least formal
attention. We believe that it is necessary to raise the real-time requirements to a central, focusing
issue. This includes the need to formally state the metrics and timing requirements (which are
usually dynamic and depend on many factors including the state of the system), and to subse-
quently be able to show that the system indeed meets the timing requircments. Achieving this
goal is non-trivial and will require research breakthroughs in many aspects of system design and
implementation. For example, good design rules and constraints must be used to guide real-time
system developers so that subsequent implementation and analysis can be facilitated. Program-
ming language features must be tailored to these rules and constraints, must limit its features to
enhance predictability, and must provide the ability to specify timing, fault tolerance and other
information for subsequent use at run time. Execution time of each primitive of the Kernel must
be bounded and predictable, and the operating system should provide explicit support for all the
requirements including the real-time requirements. The hardware must also adhere to the rules
and constraints and be simple enough so that predictable timing information can be obtained, e.g.,
caching, memory refresh and wait states, pipelining, and some complex instructions all contribute
to timing analysis difficulties. An insidious aspect of critical real-time systems, especially with

respect to the real-time requirements, is that the weakest link in the entire system can undermine

21



careful design and analysis 2t other levels. Our research is attempting to address all of these
issues in an integrated fashion. However, in this paper we restricted our comments to the Spring
Kernel. We claimed that current real-time operating systems are using the wrong paradigm. We

proposed a new paradigm and discussed how the Spring kernel supports this paradigm.

The salient features of the Spring approach are:

o Given that a majority of tasks in a real-time application are known e priori and hence
can be analyzed to determine their characteristics, our schemes use this information in

preallocation and for on-line guarantee.

o Predictability is achieved by a combination of schemes, including resource segmenta-
tion/partitioning, functional partitioning of application tasks, executing system support

tasks on a separate processor, and the use of integrated scheduling algorithms.

e Flezibilily/adaptability is improved by dynamic (decentralized) task scheduling, and the use

of meta-level control.

o The value of tasks executed is maximized through resource preallocation for critical tasks and
the use of dynamic scheduling algorithms (that take task importance values into account)

for essential and non-essential tasks.

The value of our approach has been repeatedly demonstrated by simulation (2,5,13]. We are
now in the process of implementing the Kernel, in stages, on a network of multiprocessors. A

preliminary version of the Kernel is operational. For more details on the kernel design see {9].

6 Appendix - Details of the Spring Scheduling Algorithm

The goal of vur scheduling algorithm is to dynamically guarantee new task arrivals in the context
of the current load. Specifically, if a set S of tasks has been previously guaranteed and a new task
T arrives, T is guaranteed if and only if a feasible schedule can be found for tasks in the set S {J
T. Hence, determining whether a feasible schedule exists for a set of tasks, i.e., whether all the
tasks in the set can be scheduled to meet their timing constraints, is the crux of the problem.

22



In practice, the actual algorithm that determines a feasible schedule must.con.sider many issues
including whether tasks are preemptive or not, precedence constraints (which is useq to ha.nc.lle
task groups), multiple importance levels for tasks, and race conditions. The. race cond.ltlions arise
because part of the set S may have completed execution or be in execution by the tu.ne .tlme
scheduling algorithm finishes. To simplify the discussion we will not consider these complications.
Rather, we assume that tasks are characterized by the lollowing:

e Task arrival time T'4;

e Task deadline Tp or period Tp

o Task worst case computation time T¢;
o Task resource requirements {Tr};

e Tasks are non-preemptive.

o A Task uses a resource either in shared mode or in exclusive mode and holds a requested
resource as long as it executes.

o Task earliest start time, T.,, at which the task can begin execution; (Test is calculated
when the task is scheduled and T, accounts for resource contention among tasks. It is a
key ingredient in our scheduling strategy.)

As mentioned in the body of the paper, scheduling a set of tasks to find a feasible schedule
is actually a search problem. The structure of the search space is a search tree. An intermediate
vertex of the search tree is a partial schedule, and a leaf, a terminal vertex, is a complete schedule.
In the worst case finding a feasible schedule requires an exhaustive search. Consequently, we take
a heuristic approach.

The heuristic scheduling algorithms we use try to determine a full feasible schedule for a set of
tasks in the following way. It starts at the root of the search tree which is an empty schedule and
tries to extend the schedule (with one more task) by moving to one of the vertices at the next level
in the search tree until a full feasible schedule is derived. To this end, we use a heuristic function,
H, which synthesizes various characteristics of tasks affecting real-time scheduling decisions to
actively direct the scheduling to a plausible path. The heuristic function, H, is applied to k tasks
that remain to be scheduled at each level of search. The task with the smallest value of function
H is selected to extend the current schedule.

While extending the partial schedule at each level of search, the algorithm determines if
the current partial schedule is strongly-feasible or not. A partial feasible schedule is said to be
strongly-feasible if all the schedules obtained by extending this current schedule with any one
of the remaining tasks are also feasible. Thus, if a partial feasible schedule is found not to be
strongly-feasible because, say, task T misses its deadline when the current schedule is extended by
T, then it is appropriate to stop the search since none of the future extensions involving task T
will meet its deadline. In this case, a set of tasks can not be scheduled given the current partial
schedule. (In the terminology of branch-and-bound techniques, the search path represented by
the current partial schedule is bound since it will not lead to a feasible complete schedule.)

However, it is possible to backtrack to continue the search even after a non-strongly-feasible
schedule is found. Backtracking is done by discarding the current partial schedule, returning to the
previous partial schedule, and extending it by a different task. The task chosen is the one with the
second smallest H value. Even though we allow backtracking, the overheads of backtracking can
be restricted either by restricting the maximum number of possible backtracks or by restricting

23



the total number of evaluations of the H function. We use the latter scheme because we found it
to be more effective.

The algorithm works as follows:

The algorithm starts with an empty partial schedule. Each step of the algorithm involves
(1) determining that the current partial schedule is strongly-feasible, and if so (2) extending the
current partial schedule by one task. In addition to the data structure maintaining the partial
schedule, tasks in the task set S are maintained in the order of increasing deadlines. This is
realized in the following way: When a task arrives at a node, ‘it is inserted, according to its
deadline, into a (sorted) list of tasks that remain to be executed. This insertion takes at most
O(n) time. Then when attempting to extend the schedule by one task, three steps must be taken:
(1) strong-feasibility is determined with respect to the first (still remaining to be scheduled)
Ni tasks in the task set, (2) if the partial schedule is found. to be strongly-feasible, then the
H function is applied to the first Nj tasks in the task set (i.e., the k remaining tasks with the
earliest deadlines), and (3) that task which has the smallest H value is chosen to extend the
current schedule. Given that only N tasks are considered at each step, the complexity incurred
is O(nk) since only the first Nj tasks (where Nj < k) are considered each time. If the value of k
is constant (and in practice, k will be small when compared to the task set size ), the complexity
is linearly proportional to n, the size of the task set. While the complexity is proportional to
n, the algorithmn is programmed so that it occurs a fixed worst case cost by limiting the number
of H function evaluations permitted in any one invocation of the algorithm. Also, see [6] for a
discussion on how to choose k.

Before we list possible H functions, we should clarify some terms. Whereas typically nonperi-
odic tasks are invoked with a deadline for completion and can be started anytime after they are
invoked, the deadline and start times of periodic tasks can be computed from the period of the
tasks. (There are more efficient ways to deal with periodic tasks, for example, by generating a
separate scheduling template applicable to them, but we will not go into that here.)

Given a partial schedule, for each resource, the earliest time the resource is available can
be determined. This is denoted by EAT. Then the earliest time that a task that is yet to be
scheduled can begin execution is given by

Test = Maz(T’s start time, EAT}")

where u = s or e if T needs resource R; in shared or exclusive mode, respectively.

The heuristic function H can be constructed by simple or integrated heuristics. The following
is a list of potential simple and integrated heuristics that we have tested:

¢ Minimum deadline first (Min.D): H(T) = Tp;

e Minimum processing time first (Min_C): H(T) = Tc;

e Minimum earliest start time first (Min.S): H(T) = T.,;
o Minimum laxity first (MinL): H(T) = Tp - (Test+7Tc);
e Min.D + Min_C: H(T) = Tp + W x T¢;

MinD 1 Min.S: 1I(T) = Tp 4 W * Tep;

The first four heuristics are considered simple heuristics because they treat only one dimension
at a time, e.g., only deadlines, or only resource requirements (7Te,:). The last two are considered

24



to be integrated heuristics. W is a weight used to combine two simple heuristics. M:m_L and
Min_S need not be combined because the heuristic Min_L contains the information in Min_D and
Min_S.

Extensive simulation studies of the algorithm for uniprocessor and multiprocessors show that
the simple heuristics do not work well and that the integrated heuristic (MinD + Min_S) works
very well and has the best performance among all the above possibilities as well as over many
other heuristics we tested. For example, combinations of three heuristics were shown not to
improve performance over the (Min_D + Min_S) heuristic. Consequently, the Spring Kernel uses
the (Min D + Min_S) heuristic.

References
[1] Alger, L. and J. Lala, “Real-Time Operating System For A Nuclear Power Plant Computer,”
Proc. 1986 Real-Time Systems Symposium, Dec. 1986.

[2] Biyabani, S., J. Stankovic, and K. Ramamritham, “The Integration of Criticalness and Dead-
line In Scheduling Hard Real-Time Tasks,” Real-Time Systems Symposium, Dec. 1988

(3] Holmes, V. P., D. Harris, K. Piorkowski, and G. Davidson, “Hawk: An Operating Svstem
Kernel for a Real-Time Embedded Multiprocessor,” Sandia National Labs Report, 1987.

[4) Levi, S., S. Tripathi, S. Carson, and A. Agrawala, “The MARUTI Hard Real-Time Operating
System,” ACM Operating Sysiems Review, Vol. 23, No. 3, July, 1989.

(5] Ramamritham, K., J. Stankovic, and W. Zhao, “Distributed Scheduling of Tasks With Dcad-
lines and Resource Requirements,” JEEE Transaclions on Compulers, Vol. 38, No. 8, August
1989, pp. 1110-1123.

[6) Ramamritham, K., J. Stankovic, and P. Shiah, “O(n) Scheduling Algorithms for Real-Time
Multiprocessor Systems,” Proc. Int. Conf. on Parallel Processing, August 1989.

[7) Ready, J., “VRTX: A Real-Time Operating System for Embedded Microprocessor Applica-
tions,” IEEE Micro, pp. 8-17, Aug. 1986.

[8] Schwan, K., W. Bo and P. Gopinath, “A High Performance, Object-Based Operating System
for Real-Time, Robotics Application,” Proc. 1986 Real- Time Systems Symposium, Dec. 1986.

[9) Stankovic, J. and K. Ramamritham, “The Design of the Spring Kernel,” Proc. 1987 Real-
Time Systems Symposium, Dec. 1987.

(10] Stankovic, J. and K. Ramamritham, “The Spring Kernel: A New Paradigm for Real-Time
Operating Systems,” ACM Operating Systems Review, Vol. 23, No. 3, July, 1989, pp. 54-71.

[11] Stankovic,J., “Misconceptions About Real-Time Computing,” IEEE Computer, Vol. 21, No.
10, Oct. 1988.

[12] Tokuda, H., and C. Mercer, “ARTS: A Distributed Real-Time Kernel,” ACM Operating
Systems Review, Vol. 23, No. 3, July, 1989.

[13] Zhao, W., Ramamritham, K., and J. Stankovic, “Scheduling Tasks with Resource Require-
ments in Hard Real-Time Systems,” IEEE Transactions on Software Engineering, May 1987.

25



FIGURE 1: SpringNet

Node 1 Node 2 Node 3 Node N

/

Internals of a Spring Node

TIME
/ \ CRIT-
ICAL
AP AP AP AP
1/0
1/0
70}
SYSTEMS
PROCESSOR L
L
® NETWORK




