On the Calculation of Rigid
Motion Parameters From
The Essential Matrix

M.A. Snyder

COINS TR 89-102

January 1990



-
¥

On the Calculation of Rigid Motion Parameters
from the Essential Matrix *

M. A. Snyder
Computer and Information Science
University of Massachusetts
Ambherst, Mass. 01003

November 20, 1989

*supported by DARPA/Army ETL under grant DACA76-85-C-0008.



Abstract

We consider the calculation of the motion parameters for finite rigid motion from the
“essential” matrix E introduced by Tsai and Huang [Tsai84] and by Longuet—Higgins
[Long81]. We give a simple method for calculating the rotational parameters which in-
volves only the multiplication of simple known matrices; it does not use a singular value
decomposition of the E matrix, and hence requires no iterative procedures. We show that,
contrary to the assertions of [Tsai84] and [Long81], the direction of tra.nslation. and the
rotation matrix are not uniquely determined from E. We show that there are precisely
two rigid motions which give rise to the same essential matrix, and that these motions are
related by duality. It is shown that the ambiguity is not at all rare, but vanishes for the
case when the translation is in the image plane, which includes stereo as a special case. We
use the theory of the rotation group SO(3) and its Lie algebra so(3) to elucidate certain
of the manipulations of Tsai and Huang [Tsai84], and point out errors in their work and

that of Longuet-Higgins[Long81].



1 Introduction

The calculation of the parameters which describe the motion of rigidly moving objects in
the environment through which a sensor is moving is a major research area in computa-
tional approaches to visual motion. Over the years, many techniques have been devised
to find these motion parameters, which describe the rotational and translational motion
of objects in the environment. One such approach is to use the 2-D motion of distinctive
image structures (tokens) between frames of a sequence of camera images to compute the
3-D motion parameters of the corresponding environmental structures. Such techniques
are called correspondence-based techniques, since the fiducial information required for
their application is the correspondence between tokens in successive frames of the image
sequence.

In this paper we consider one aspect of a particular technique for computing the ro-
tational and translational motion parameters for finite rigid motion using image corre-
spondences, the “eight—-point” algorithm discovered independently by Longuet-Higgins
[Long81] and Tsai and Huang [Tsai84]. This technique uses the correspondence of eight
(or more, for robustness) image points in two image frames to find a 3 x 3 matrix E, called
by T'sai and Huang the “essential” matrix, which encodes the translational and rotational
motion which gave rise to these image correspondences. This matrix can be calculated
from the eight point correspondences in a linear fashion, so that the questions of existence
and uniqueness can be addressed in a straightforward way. The problem we address here is
how the rotation and translation can be calculated from the essential matrix, and whether

such motion is uniquely determined from E.
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In the work of Tsai and Huang [Tsai84], the essential matrix is used to find the axis

of the translational vector t. Since such an axis determines two directions in space, there
will be a two—fold ambiguity in the determination of {. Tsai and Huang then find the
rotation matrix by makiv_ a singular value decomposition of the essential matrix E. They
find two possibilities for the rotation matrix, and attempt to prove that only one of the
possibilities will lead to positive depth values for both the initial and the final (i.e., after
the motion has taken place) set of 3D points. We will call the requirement that the rigid
motion be associated with initial and final 3D points which lie in the forward hemisphere
the positivity condition. Longuet-Higgins [Long81] introduces a matrix which is essentially
the transpose of the essential matrix defined by Tsai and Huang. His rather spare technique
is quite different from that of Tsai and Huang. He also finds a two—fold ambiguity in the
expression for the rotation matrix (given the essential matrix), then states (without proof)
that one of these expressions will satisfy the positivity condition, and one will not. We
show in Appendix B of the present work that both of these papers are mistaken: both
ambiguous solutions satisfy the positivity condition for initial points in a “large” region of
the forward hemisphere.

We are aware that the use of linear algorithms such as the eight-point algorithm is
currently out of fashion, and that methods which use least-mean-square techniques (such
as the algorithm of Faugeras, Lustman, and Toscani [Faug87]) generally give superior
results. We note, however, that the essential matrix is of considerable interest in theoretical
discussions of motion ambiguity, as is seen from its use in, for example, the work of Faugeras
and Maybank [Faug89). Consequently, we feel that any information about the essential

matrix should be of interest to the vision community.

4



The structure of this paper is as follows. In Section 2, we introduce the essential matrix
and discuss its properties. We discuss the meaning of a rigid motion in the context of the
rotation group SO(3), and exhibit the two ambiguous rigid motions which give rise to the
same essential matrix. In Section 3, we show how the direction of translation and the
rotation matrix corresponding to the rigid motion can be calculated in a direct way, using
only explicitly known matrices. This section makes extensive use of the group theory of
SO(3) and its associated Lie algegra so(3). We show that there can be only three sources
of ambiguity in the calculation of the rigid motion from the essential matrix. These are
called the Coset, the Parity, and the Duality ambiguities. In Section 4, we discuss these
ambiguities, and show that only the duality ambiguity is a real ambiguity. We also discuss
the relation between our work and the work of Tsai and Huang, and of Longuet-Higgins.
There are three extensive appendices to the paper. In Appendix A, we give a short tutorial
on the theory of Lie groups, with particular attention to the rotation group SO(3). The
reader unfamiliar with this topic should refer to this appendix to underst and the main text.
In Appendix B, we show that both ambiguous solutions satisfy the positivity condition for
initial points in “large” regions of the forward hemisphere, so that it is generally impossible
to decide which is the “correct” rigid motion on this basis alone. We also consider the issue
of when the indicated ambiguity can be resolved by recourse to the positivity condition, and
show that it can be so resolved when the translation is in the image plane, corresponding
to the case of stereo. In Appendix C, we present a more general proof of a property of the

essential matrix first discovered by Faugeras and Maybank [Faug89).



2 The Essential Matrix and a Remark on Uniqueness

A rigid motion is a linear map from R3 into itself that preserves both the distance between
points, and the orientation of the coordinate axes. It is straightforward to show that such
a map can be parametrized by a rigid motion pair (R,t), which takes r € R3 into r' € R3,
where

(R,t) : r—r'=Rr+t. (2.1)

Here R is an element of SO(3), the Lie group of 3 x 3 real matrices with determinant +1,
and t is the translation vector. This map therefore defines the action of the Euclidean
group ISO(3) on R3. The initial point r and the motion-transformed final point r’ are
called corresponding points.

We use bold face symbols to denote both vectors and tensors, and the corresponding
3 x1 and 3 x 3 matrices, respectively. Context will distinguish which is the appropriate
viewpoint. We can, if t # 0, choose to measure distances in units of |t|, so that t will be
taken to be a unit vector {, with t-§ = 1.

There are many ways of introducing the “essential” matrix [Long81,Tsai84,Faug89).

We note that If t # 0, then from equation (2.1)

whence

0=r'-txr'=r"{x(Rr). (2.2)

We can rewrite (2.2) by introducing the antisymmetric matrix G, given in terms of the

infinitesimal generators {J; ;i = 1,2,3} of SO(3) by (see Appendix A for a summary of



the group theory of SO(3) and its associated Lie algebra so(3)):

0 —ta tz
G=t-J=]| t3 0 -t |, (2.3)

—tz t1 0

where t = (t;,%2,23)T. This matrix is an element of the Lie algebra so(3). It has the

interesting property that if A is a vector, then (see (A.44) of Appendix A)

~

GA =t x A. (2.4)

Therefore, we can write (2.2) as

(r)YGRr = 0.

The “essential” matrix E introduced independently by Tsai and Huang [Tsai84] and by

Longuet-Higgins[Long81], is then defined to be
E = GR, (2.5)

so that it satisfies

(r')TEr = 0. (2.6)

Although (2.6) can be taken as the basis for an algorithm [Tsai84,Long81] for computing
E, we do not address that issue here; we concern ourselves only with the question of how
the motion parameters R and t can be computed from E. That is, given a matrix E known
to be of the form (2.5), how can we recover its constituent parts R and £? We assume in
the remainder of this work that E is a fixed matrix of the form (2.5). We do not address
the ambiguity of E on the level of this algorithm, i.e., that if E satisfies (2.6), so does AE,

where A € R.



We first observe that if one can find a motion pair (R, t) that satisfies (2.5), then there
are three (at least) other pairs that give the same E. Ciearly, one such pair is (-R, —t),

since

~

((-)-3)(-R) = (-t-3) (-R) = (£ - I)R.
However, if R € SO(3) (i.e., det R = +1), then —R is not in SO(3), since det(—R) =
(-1)*det R = —det R = —1. That is, —R € O~(3) (see App. A). Therefore, the transfor-

mation r — 1’ given by (—R, —t):
(-R,-t) : r—r'=-Rr-t{

is not a rigid motion, contrary to the assertions on p. 18 of [Tsai84].

To be sure, if (R,t) gives rise to a positive depth for the corresponding point r’ of
the initial point r, then (—R, —t) will give rise to a negative depth for r' (i.e., r' would
be behind the camera plane, and hence not imaged by the camera), but that is quite
irrelevant. The real reason for eschewing (—R, —t) in favor of (R, t) is that if the latter is
a rigid motion, the former is not (if it were, a (3D) left hand could be rigidly transformed
into a right hand, and that is not possible in R3 (though it is possible in other spaces, e.g.,
the Mébius strip or the Klein bottle)).

We promised that there were at least four rigid motions that give rise to the same
E, but have so far presented only two. The two others can be defined as follows. Let
Ro = exp(7t-J) = exp(rG) € SO(3), i.e., R, is a rotation by 180° around the direction of
translation. Then consider the pair (RoR, —t) which, as we will show, is dual to the pair

(R,t). We claim that this rigid motion gives the same E as the pair (R,t). We first give

a geometrical proof that this is the case, and then a more formal proof.

[N



Consider the two rigid motions in question:

r = Rr+t
r’ = ReRr-t.
Let the essential matrix defined from the first be E, and that from the second be E’. That
is,
Er = tx(Rr)

Er = —t x(RoRr).

Define, now,

Rr=V=V+V,
where V) and V] are parallel and perpendicular, respectively, to t. It then follows that
Er=i{x(Rr) = tx(Vj+V.)
= txV,
and that

E'r=1x (RoRr) = —t x (Ro(Rr)) = —£ x (Ro(Vj+ V1))
=V|-V.

= +£ X V.L
= Er.

But if E’ and E have the same effect on an arbitrary vector, that means that E and E’ are

identical, Q.E.D.
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For the interested reader, we now give a more formal proof of this result. To whit, let

E’ be the essential matrix defined by (RoR, —f:):

Then

E' = -GR,R,

with G given by (2.3). But (see equation (A.43) of Appendix A)
Ry = exp(7G) = 13 + 2G>
Hence, using the property G® = —G (see equation (A.42) of Appendix A), we find that
—-GRy = =G(13+ 2G?) = -G - 2G?® = -G + 2G = +G.

Therefore,

E =(+G)R =GR =E.

Therefore both (RoR, —t) and (R, t) give rise to the same essential matrix E. The fourth

possibility is then just the negative of the former: (—RoR,, +t). Of course, if R is a proper
rotation, so is RoR, but —RoR is not. Therefore of these four motions that give rise to

E, only two of them, namely
(R,t) and (RoR,-t),

are in fact rigid motions. The analysis of Sections 3 and 4 show that these are the only rigid
motions that give the same E. If we can then show that for both of these rigid motions there

exist situations for which both the initial point r and the corresponding points r’ for both
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motions satisfy the positivity condition, we will have shown the claims of [Tsai84,Long81],
namely, that the direction of t can be determined from the positivity condition, and hence
that E gives unique values for the rotational and translational motion parameters, are
false. This is done in Appendix B. We hasten to add, however, that these two motions
will in general give different point correspondences. Consequently, the ambiguity can be
resolved at the level of correspondences, but not at the level of the essential matrix. It is,
in this sense, not an “inherent” ambiguity. Once one has found these two sets of motion
parameters, however, one must check which gives the correct point correspondences. It is
only when noise, spatial discretization, etc. make it impossible to determine which is the
“correct” choice of parameters that the discovered ambiguity is “inherent.”

In the next section, we show how to calculate the constituent (R,t) pair, given the
essential matrix E, in a very direct way which avoids the need for a singular value decom-
position of E. We show that there is in principle a one-parameter infinite family of pairs
(R,t) that give the same E. In the succeeding section, we show that only 2 of these give
distinguishable rigid motions. In Appendix B, we show that these 2 motion pairs can in
fact be realized with initial and transformed points in the forward hemisphere for both

motion pairs, and find when this ambiguity vanishes.

3 The Determination of t and R from E

3.1 The Determination of t

We note that the essential matrix satisfies the relation

EET = GR(-RTG) = -G? = 1, — {iT.
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where we have used the relation (A.46) in Appendix A. This means that EET is a projection

operdtor: EET = P, where P2 = P:
P? = (13- tt7)(15 — tt7)
= 13— 2ttT + t(tTt)tT
= 1;-ttT=P. Q.E.D.

Physically, EET projects a vector A onto its component t x (A X i“.) = —G?2?A in the

plane perpendicular to t. EET must therefore have one zero eigenvalue (corresponding to
the eigenvector t), and two equal (to one) eigenvalues (corresponding to any two vectors
which span the plane perpendicular to t). Therefore, E is a singular matrix, with two equal
singular values and one zero singular value, as was shown in a different way by Faugeras
and Maybank[Faug89]. The argument can be reversed, either by explicit construction
[Faug89], or by using the singular value decomposition of E (see Appendix C).

| The translation vector can thus be determined as a solution to the eigenvalue equation
EETt = 0, or by the explicit calculation presented by Tsai and Huang[Tsai84]. In either
case, however, only the line parallel to { can be determined, so that there is a two—fold
ambiguity, in general, corresponding to the two different directions determined by the line
in question. If we (arbitrarily) pick t, to be one of these directions, then the translation
vector can be either £ = +{, or { = —{,. We will refer to this as the “duality” ambiguity in
the determination of £ and R from E. It is discussed further in Section 4.3. Both [T'sai84]
and [Long81] state that the correct choice of t can be determined from the condition that
the initial and transformed points satisfy the positivity condition. We show in Appendix

B that this is not true.



13

3.2 The Determination of R from E

We assume that one of the values t = *t, has been chosen. We define the matrix Q to
be an element of SO(3) which rotates the chosen vector { onto the positive Z-axis. As
is shown later in Sec. 4.4, the matrix Q is just the transpose of the matrix of the same

name introduced by Tsai and Huang [Tsai84]. In their work, however, Q was an unknown

matrix; here we see exactly what Q is. Denoting by ¢ the unit vector (0,0, 1)T along the
+Z-axis, then

Qi=(0,01)T=¢ = t=QT¢. (3.7)
For instance, if ¢ is parametrized by the polar angles (6,4) (see Figure),
to = (sin @ cos ¢, sin 8 sin @, cos ),

where 0 < 8 < 7, 0 < ¢ < 2m, then the following choice for Q satisfies (3.7):
Q= Qo =exp (IN -3), (3.8)
where (see the Figure) N is the unit vector

N = (77,0)T; # = (sin@,— cos$)”. (3.9)

However, there are an infinity of other elements of SO(3) which satisfy (3.7). To see
this, suppose that Q is an element of SO(3) which satisfies (3.7), and that Qo is defined

by (3.8). Hence,
Qi:' = Z = QO;H

and so

-~

QQiZ=qi=C (3.10)
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But any rotation QQ7 which leaves Z invariant must be a rotation H by some angle 3
around the Z-axis:

H = exp(8( - J) = exp(BJ3),
where A € [0,27). The set of all such H forms an SO(2) subgroup of SO(3) called the lLitle

group® of ¢. Equation (3.10) therefore says that QQT must be in the little group of ¢, so

that for some H € SO(2)
QQT=H = Q=QQ;Qo=HQ.. (3.11)

That is, a Q which rotates { into ¢ must be a product of an element H of the little group
and the matrix Qo defined in (3.8). This ambiguity in the determination of Q will be called
the “coset” ambiguity, for reasons that will become clear shortly. We show in Section 4.1
that this ambiguity in the definition of the matrix Q has no effect on our analysis.

We now find an explicit expression for R in terms of Q and E. If we assume that Q

satisfies (3.7), then (using equation (A.48) of Appendix A),
QEQ” = Q(i-3)Q’QRQ" = ((af) -3) (QRQY)
= (C -3 (QRQT) =17, (QRQT) , (3.12)

where we have used equation (A.43) of Appendix A, and equation (3.7). But

-3 0
1= (7 0)

where J is the 2 x 2 antisymmetric matrix

J= ( _?1 21 ) (3.13)

10ther names for this group are the stabilizer or isotropy group.
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(It will be clear from context whether J denotes the (2 x 2) matrix defined in (3.13) or the
triplet of (3 x 3) matrices {J1,J2,J3}.) Hence, it is easy to see from (3.12) that QEQT is

of the form
E
QEQT = ( 0 ‘;1 ) (3.14)

where Eg is a 2 X 2 matrix and e; is a 2 X 1 matrix (i.e., a column vector). We now define
F f

RQT = ! ) : 3.15

qrq"=( § (3.15

By substituting this expression into (3.12) and comparing with (3.14), we find that
F = JE, (3.16)

fi = Je, (3.17)

and f, and ¢ are undetermined. However, since Q and R are in SO(3), so is QRQT, so

we must have that
FTf, + ef, = 0,

firfl-l-goz = 1.

Hence,

y = ivl_ﬂrflv

fz = :lFTfl.
¥

Consequently, using (3.16,3.17), and the fact that J? = —1,,

1-efe (3.18)

€
il
H_
S
®
1]
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1
f2 = :F_Eg‘el .
M

As a consequence, we have two implicit expressions R for the rotation matrix R:

JE, J
. e‘)s - (3.19)

R.QT =
QR:Q (¢g;f:}3_0 Ly

where p is defined in (3.18). Note that the “ * ” superscript does not mean “complex
conjugate”: everything in our analysis is in the real number field.

We can therefore solve (3.19) immediately for the rotation Ry:
R: = QTR1Q. (3.20)

We note the ambiguity in the choice of sign. We call this the “parity” ambiguity. It
is discussed further in Section 4.2, where we show that only one choice of sign gives an
element of SO(3); the other is not a proper rotation (it is an element of 0~(3)).

In summary, the matrix EET determines (up to sign) the translation vector t. The
matrix Q is determined (up to an SO(2) factor) by t. The matrices Eq and e, are de-
termined from E and Q via (3.14), which then determines the matrix R}, and hence the
rotation matrix Ry via (3.20).

We therefore have found expressions for R and t, given only the matrix E. The ex-
pression (3.20) for R, in particular, is explicit and simple; no singular value decomposition
is necessary. However, there are several ambiguities in the calculation of R and t from E.

We address these ambiguities in the next section, and show that the only real ambiguity

is in the choice of sign in the expression t = +t,.
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4 Resolution of the Ambiguities

There are three sources of ambiguity in our analysis. The first arises from the fact that
the rotation matrix Q which rotates t onto the +Z-axis is not uniquely determined, the
second from the choice of sign in the quantity R}, and the third from the choice of sign
for the translation vector t = +t,. We will call the first kind of ambiguity the “coset”
ambiguity, the second the “parity” ambiguity, and the third the “duality” ambiguity. We

will show that only the last is an actual ambiguity.

4.1 Resolution of the Coset Ambiguity

We refer to the non—uniqueness of Q (given £) as the “coset” ambiguity for the following
reason. The set of rotations {H = exp (8J3) ; B € [0,2w)} forms an SO(2) subgroup of
the full rotation group SO(3). The relation (3.11) can be expressed as saying that two
rotation matrices Q and Q' in SO(3) are “equivaient” if they differ by an SO(2) rotation
H:

Q~Q' iff Q' =HQ.
It is easily checked that this is indeed an equivalence relation, and hence that the set of

equivalence classes (the left cosets of SO(3) mod SO(2)) is just the coset space

where S? is the unit 2-sphere. The question whether the non-uniqueness of Q gives rise

to an ambiguity in the motion pair (R, E) associated with E is therefore equivalent to

whether different elements of the same coset give rise to different motion pairs (R, f:),
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whence the name “coset” ambiguity. We now prove that the expression for the rotation
matrix R depends only on the coset to which Q belongs, i.e., there is no coset ambiguity.
Let Q and Q be two elements of SO(3) which rotate the translation vector t onto the
+Z-axis:
Qi ={=Qt
We showed in Section 3.2 that this implies that

Q=HQ (4.21)

for some element H of the little group SO(2) of ¢. Now any such element of SO(2) can be

expressed as

1,cos8—-Jsinf8 0 A O
H=exp(,e.13)=( 2 0 A 1)5(0 1), (4.22)
where the matrix A is an element of SO(2):
A=1,cos8-Jsinf ;AAT = ATA =1, ; det A = +1. (4.23)

We note that J,A]=JA - AJ =0,i..,J and A commute.
We define R as the rotation matrix which arises from the choice Q, and R as that

which arises from the choice Q (we will suppress the + subscripts in the symbols for the

rotation):
T __ EO €; _ AT JEO Jel
aral _ E, & 5 _~T JE, Je \=~
(b))



Hence, using (4.21),

QEQ’ = (HQ)E(HQ)" = H(QEQ™)H'

_ A 0 Eo (3] AT 0
- 01 0 0 0 1
AEAT Ae,
0 0 )

We therefore have the following relations:
Eo = AEAT,
€ = Ae;.
This then gives:
eTE, = elATAEAT = eJE AT,
ele, = eTATAe, = ele,

so that @ = pu. Consequently,

—_ T JA.EoAT JA81
= H
R (HQ) ( T1eTE,AT  p (HQ)

Q'FQ,

where, using (4.22),

F = AT 0 JAEOAT JAe1 A O
- 0 1 FielEoAT  p 0 1

ATIJAE,ATA ATJAe,
q:%e?EoATA +pu

19
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ATIAE, ATJAe,
;-‘lze’irEo i# ’

But J and A commute, so that
ATIA = ATAJ =1.

Consequently,

F = JEO Je1
- :Fie'lrEo +u ’

and so

— JE Je
—_ T 0 L =
R=Q (¢%eon +y )Q_R Q.E.D.

Therefore there is no coset ambiguity: the expression for R is independent of the particular
Q which rotates £ onto (.

4.2 The Parity Ambiguity

The ambiguity which we call the parity ambiguity arises from the two possibilities for the

rotation matrix R: R, and R_, where

JE Je
R. = TR* =0T 0 1 .
+ Q iQ Q ( ;“%e'irEO ip Q

We note, however, that
detR; = detQ det QT det RL

= detR] = det ( JEo Je: )

:F%e'lrEo +u



21

But clearly,

JEo Je1 _ JEO Je1
det ( —ie’irEo +# ) = (—)det ( +%e}‘Eo —p ’

since the two matrices in question differ only by the sign of the third row. Hence,

det R_ = —det R,. (4.24)

This means that of the two possible choices {R,,R_} for R, one of the matrices has
determinant +1, while the other has determinant —1. That is, one is a proper rotation
(an element of O*(3) = SO(3)), while the other is an improper rotation (an element of
0-(3)). Since only proper rotations are associated with a rigid motion, there is in fact
no ambiguity in the choice of sign in Ri: one must choose whatever sign makes the
determinant positive—the other choice is not a rigid motion and can be neglected. In the
work of Tsai and Huang [Tsai84], this point is confused with the less intrinsic requirement

that only points in the forward hemisphere can be viewed.

4.2.1 The Relationship between R, and R._

It is of interest to know the precise nature of the relationship between R, and R_, both for
completeness and for the discussion of the “duality” ambiguity addressed in Section 4.3.
In the present section we elucidate this relationship.

We note that

JE Je
. NnT 0 1
R+ - Q ( —i—e'irEo +u ) Q
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Hence,
—JEo —Je1 -1, 0 JEo Je1
T = —
—QR.Q" = ( +2elEy  —p ) ( 0 1 ) ( +ieTEy —u
-1, 0 T
( o 1 ) (Qr-Q7)
- T
= exp(nd;) (QR-Q7),
where we have used expression (A.43) of Appendix A. Consequently,
R, = - {QT exp (nJs) Q}R..
But (equation (A.48) of Appendix A)

QTexp(7J3)Q = QTexp (71'2 -J) Q

exp (7r (QTZ) . J) .

However, from (3.7), QT¢ = {. Therefore,

R, = —exp ('n'f: -J) R_
= —-RoR_, (4.25)
where
Ro = exp (7G) = exp (wf -J) = RJ € SO(3), (4.26)

i.e., Ro is a rotation by 180° about the direction of translation. This expression for R,
in terms of R_ makes clear the earlier remark that these two quantities have opposite

determinants: R is given by Rz, followed by a rotation of 180° around the direction of £,
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followed by an inversion. The inversion operation I takes a vector r € R? into its negative
—~r. It is therefore represented by the matrix I = —13. Hence, detI = —1. It is the
presence of the inversion that accounts for the fact that R_ and R, have determinants of

opposite sign, and hence that only one can in fact represent a rigid motion.

4.3 The Duality Ambiguity

As we discussed earlier, only the line along which the translation lies can be found from E.
That is, each E corresponds in principle to two possible translations t = +to. This leads
to two definitions of the matrix Q, and hence to two expressions for the motion pair (R, t).
We call this the “duality” ambiguity for reasons which will be clear shortly. Suppose that
fo is fixed, and that I have chosen £ = +t,, while you, the reader, made (unbeknownst to
me) the opposite choice § = —fo. I would therefore have found polar angles 8 and ¢ for to,
and defined from that the matrix Q, found the matrices Eo and e; using Q and E, and
calculated the rotation matrix R (choosing, of course, the appropriate sign so as to make
det R = +1). You, on the other hand, would have proceeded in the same way, but using
quantities which (in principle) might differ from mine: I will denote your quantities by a

“prime” (/). We then have:

ME ; YOU
i=(6¢) ; ¥'=(6,¢)
Q=exp(0N-3) ; Q' =exp(N'-7J)

N=(0) ; ®=(7"0)

n= (sin ¢, — cos ¢)T ;0= (Sin ¢',— cos ¢')T
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E, e et _ [ Eo e
QEQT=(O° 0‘) . QEQ —(0° 01)

JE, Je JE, Jé
- 07T 0 1 . 1 — T 0 1 '
Re=Q (;ﬁeon :l:u)Q 3 Re=Q (:F&;e’lTEg :I:;L')Q

p=+1—ele; ; p'= 1-¢eTel

Now the relation between the unprimed (my) quantities and the primed (your) quantities
is that your translational vector t’ is just the negative of my translational vector t. A little

thought shows that this means that

so that

This then gives the relation between Q' and Q:

QI

exp (G'ﬁ' -J)
= exp ((7r ) (—-ﬁ) . J)

= exp (—wﬁ -J) exp (Gﬁ . J)

Q.Q, (4.27)

where

Q. = exp (—Wﬁ -J) € SO(3).
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The question, then, is if Q' and Q are related by (4.27), what is the relation between R

and R/, ? This is easily found.

We first note that (see Appendix A)
Q. =exp (—wﬁ'J) =13+ 2 (ﬁ -.'I)2 = QE,

so that Q2 = 15. Explicitly, in terms of the (2 x 1) matrix n = (cos ¢, sin )T = -JIn,
Qn = (1\6{ __?1 ) 3 M=12—27777T=MT’ (4'28)

i.e., M is a Householder matrix. We note that M? = 1,. Now then:
El 1 7 ]
( o ) =QEQ” = (Q.Q)E(Q.Q)" = Q. (QEQT) QT

Ey e
= Qn(oo Ol)Qn

MEoM —Me1
0 0 )

Hence, we have that

E, = MEM

e; = —Me;.

and so

p o= \/1 —eTe; = \[1 —eTM2e; = /1 —efe; =p

eTE, = —eIM?EM = —e]EoM.
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Therefore

, o IMEQM -IMe; \ .,
R: = Q (i%e}‘EoM +p )9

JMEoM —JMe1
T
Q Qn( i%e‘{EoM :tﬂ: )QnQ

r( MIME, +MIMe, )
Q :F%e'onM +u

However, it is easy to check that M and J anticommute: {M,J} = MJ +JM =0, i.e.,
MIM = -J.

Consequently

Therefore,

That is, if you choose t = —to, and I choose £ = +i,, then the R4 you calculate will be the
negative of the Ry that I calculate. In each case, you must choose the one with positive
determinant, and so must I. Therefore, if det Ry is +1 (and hence det R_ is —1), then
I must choose R = R, and you (according to (4.29)) must choose R’ = —R_. On the
other hand if det R, = —1, then I would have to choose R = R_, and you would have to

choose R' = —R,. The possible rigid motion pairs are then:
(Ry,+t0) and (-R_,~fo) if detR, =+1

(R_,+%o) and (-R4,—to) i detR_=+1
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But we recall from (4.25) that R, = —RoR_, and so R. = —RoR., where Ry =
exp (7r§ . J). That is,
R. = —RoRs.

Therefore, we conclude that the rigid motions that can be derived from the essential matrix

E are just
(mmam(mm4¢ (4.30)

where R is the one matrix from the set {R.,, R_} having positive determinant. In Section 2,
we checked that each of these rigid motions does indeed give the same essential matrix E.

We now note the duality of these solutions. If we let
R' = RyR,
ﬂ) = "'f'Oa

= Ry exp{nt, - J} = exp{—wto - I}

= exp{+wto-J}

i

Ro,
then it follows that
R/R' = Ro(RoR)= RZR=1;R=R
—f = —(-to)= to-

(4.31)

Therefore, if let II be the operation that converts (R, Eo) into (RoR, -f:o):

1{(R,o)} = (RoR, ko).
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then

1{(RoR, )} = (R.is).

Therefore, II? is just the identity operation. We are therefore justified in referring to the
two solutions as duals of each other.

We have thus shown that for each E, there are exactly two different rigid motions that
give E, and that these two motions are related by duality.

To be complete, there is one more thing that has to be proved, namely, that for the two
rigid motions, there exists at least one situation in which the ambiguity can be realized,
i.e., that there exist initial and final 3D points associated with each of the rigid motions,
all of which lie in the forward hemisphere. This is a necessary condition for the discovered
ambiguity to be a real ambiguity, in a practical sense. We give the requisite example, and
find the conditions under which the ambiguity vanishes, in Appendix B. We thus conclude
that, contrary to the assertions of [Tsai84,Long81], the essential matrix is not associated

with a unique rigid motion.

4.4 Relation to the Work of Tsai and Huang, and of Longuet-

Higgins

In the paper of Tsai and Huang [Tsai84], the central result of their calculation of the
rotation matrix from the essential matrix is contained in their Theorem I, which states

that if the singular value decomposition of the matrix E is given by

E = UAVT,
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then the solutions for the rotation matrix are (using our notation):

R; = U( iOJ g )VT, (4.32)

where s = det Udet V. They quote a theorem from matrix algebra which (in our language)

states that the matrix G can be expressed as

G=QT(‘; g)Q (4.33)

for some Q € SO(3). Comparing this with our expression (3.12), we see that while the
matrix Q in [Tsai84] is known only implicitly, it is just the same as the transpose of our
matrix Q, which, as we showed, has an explicit physical interpretation as the rotation
matrix which rotates the translation vector t onto the +Z-axis, and is given explicitly by
expression (3.8).

Tsai and Huang go on to make the following argument to show that only one of the
expressions (4.32) is physically reasonable. Let (in our notation) the motion of the 3D

points P; (for 1 =1,2,...,n) be given by
My :r; — 1. (4.34)

Then the image motion corresponding to M; will be the same as it is for the image motion
Mz:
M, : r; — -r. (4.35)

They then make the following statement (p.18 of [Tsai84]):

Also, the rigidity constraint[s] obviously are not violated [for M;] since this
[t — —rf] is just like rescaling the z,y, z axes by a common factor —1 without
altering the right hand rule.
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This is wrong. The transformation of an (arbitrary 3D) vector into its.opposite is an
inversion in the origin. This is not a rigid motion uniess the points all lie in a plane
containing the origin. If you “rescale” the zyz axes by a common factor of —1, then you

end up with a left-handed coordinate system, which violates the “right hand rule”:
% x§=i=>(-%)x (-¥) = —(-2) # +(-2).

They continue with (op. cit.)

Note that for n > 2, it takes more than just translational motion to move

object points from (!, ¥}, 2!) to (—=!, —yi, —2{) ...

This is true, but not, I think, in the way intended. If n = 2, then a rotation by 180°
about the perpendicular to the plane containing the origin and the two points will be the
indicated transformation. If n > 3, however, no rigid motion can invert the coordinates
in the origin unless all the points lie in a plane containing the origin. The only operation
which can do this is the inversion I discussed earlier, and in three dimensions, this inversion
is not a rigid motion.

Continuing (op. cit.),

Therefore there are at least two distinct solutions for R, one for the motion
(r; — r?) [i-e., M) and [an]other [for the motion] (r; — —r}) [i.e., M>]. Since
(35) [our equation (4.32)] says there are at most two possible solutions, it can
be concluded that exactly one of the two solutions in [(4.32)] must correspond
to the case when the object moves from the front {o the back of the camera or
vice—versa.

The point to be made here is that if M; is a rigid motion, then M, cannot be a

rigid motion, and vice-versa. Furthermore, the two solutions (4.32) for R both have

determinant +1. Consequently, neither can represent the motion M,. As a consequence,
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the completeness argument of [Tsai84] is faulty: the two ambiguous solutions given by
them cannot be discriminated on the basis that one satisfies the positivity condition while
' the other does not.
- In [Long81], Longuet-Higgins finds a similar two~fold ambiguity in the expression for
the rotation matrix, then states without proof that which is the “correct” motion can be
determined because one of the ambiguous solutions will satisfy the positivity condition,
while the other will not. As we show in Appendix B, this is wrong. We note that he
did not actually write down the ambiguous solution, but its existence is implicit in his
analysis. We can in fact show that the ambiguity found by Longuet—Higgins is exactly the
“duality” ambiguity described in the present work. We suspect that the same is true of
the ambiguity found by Tsai and Huang, though we have as yet no proof of this.

We now outline the technique developed by Longuet-Higgins. We have that E = GR.

Let us represent the matrices E and R in terms of their columns as:
E = (81,82,83) ) R = (Rl,Rz,R3),
where the e; and the R; are 3 x 1 column matrices. Then

(el,eg,e3)= G(Rth,Ra) = (GRl,GRz,GRa)

(f’. X R1,£ X Rz,i X Ra),
ie.,
e; =t x Ri. (4.36)

This expression, incidentally, makes clear the physical origin of the singularity of E: all the

column vectors e; which compose E are perpendicular to t, and hence must lie in the plane
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perpendicular to f. Since there are three such vectors, they are not linearly independent,

and hence det E = 0. It follows from (4.36) that R; and e; are orthogonal. Hence, R; must

be in the plane spanned by t and e; x t:
R; = a;t + be; x t (no sum)

(we recall that writing “no sum” means that repeated indices are not to be summed over).

Substitution of this equation into (4.36) then gives
e; =1t x (a;t + bie; x E) = bt x (e; x f) = bje; (no sum)
= =1, 1=1,2,3.

We then define (after Longuet-Higgins)

so that

R; = a,-f + W,;.

It is easy to see that the column vector R; is just the rotation (by R) of the i*h unit basis
vector of R3. Hence, the set {R;, Ry, R3} must be an orthonormal triad of basis vectors

(with positive orientation), i.e.,
R; =R; x Ry, (ijk) a cyclic permutation of (123).
Hence,

at+W,; = (a.jf; + WJ) X (akf; + Wk)

= aijxf:—ajkaf+ijWk.
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But the W,, (m = 1,2,3) are all perpendicular to t, so that W; x W), is parallel to {,
and W, x { is (of course) perpendicular to . Thus, equating components of the above

equation parallel and perpendicular to t, we find

|t : at =W; x W,
1t: W; =akW_.,-x{;—a.jkaf
Hence, we obtain Longuet-Higgins’s expression for the columns of the rotation matrix R:
R; =W;+W; x Wy,
where (ijk) is a cyclic permutation of (123).
Now this has been obtained for a particular value of §. As noted previously, only the

axis of £ can be determined from E, so there is an ambiguity (the duality ambiguity) in

the direction of £ along this axis. If we let ' = —t, then the corresponding expression for

the columns R! of R’ will be just
R, = W+ W; x W,
where
W = e;xt' =ex(—t)=—-ext

-W;.

]

Therefore,

R: = -W; +Wj X Wy,

We therefore, in Longuet-Higgins’s approach, find the two ambiguous solutions:

{i, R =(Ry,RyRs) | Ri=W;+W; x W }
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and

{_1‘;, R = (R'I,R;,R'a) I R: = -W; +Wj X Wy },

where W; = e; x . We wnt to show that the latter is just the dual of the former. This is
easy to do: we need to show that R' = RoR, where, as before, Ro = exp(wt - J) represents
a rotation by 7 around the direction of {. But since each of the W, is perpendicular to t,
it follows that RoW,, = —W,,. Hence,
RoR; = (=Wi)+(-W;) x(-Wi)

= -W;+W; xW,

= R; QUE.D.
Hence, the ambiguity implicit in Longuet-Higgins’s paper is just the same as the one we
discuss in the present work.

After the completion of this work, I became aware that what I have called the “duality

ambiguity” has been previously discussed (using quite different methods) by Horn [Horn87).

I thank Harpreet Sawhney for bringing this paper to my attention. We note, however, that

Horn does not present a proof that this is the only possible ambiguity, as we have done.
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A The Lie Group SO(3)

In this Appendix, we briefly discuss the mathematics of the rotation group. We do not as-
pire to the empyrean heights of mathematical rigor, but rather give an informal exposition
of the relevant facts. A general reference for this section is the book of Gilmore [Gilm74].
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