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ABSTRACT

The UMass Mobile Robot project is investigating the problem of intelligent navigation of an
autonomous robot vehicle. Model-based processing of the visual sensory data is the primary
mechanism used for obstacle avoidance, movement through the environment, and
measuring progress towards a given goal. This paper describes our current approach to
goal-oriented navigation through a partially modeled, unchanging environment which
contains no unmodelled obstacles.

The navigation system integrates perception, planning, and execution of actions. Of
particular importance is that the planning processes are able to reason about landmarks
that should be perceived at various stages of plan execution. Correspondence between
image features and expected landmark locations are used at several abstraction levels to
ensure proper plan execution. Experiments in this and three companion papers
demonstrate the performance of the various components within the navigation system.

L _INTRODUCTION

The UMass Mobile Robot project is investigating the problem of enabling a mobile
automaton to navigate intelligently through indoor and outdoor environments. At the
foundation of our work is the premise that higher-level vision beyond the first stages of
sensory processing will greatly benefit from, and in many cases require, the use of
knowledge and models of objects in the environment. Thus, model-based processing of the
visual sensory data is the primary mechanism used for obstacle avoidance, movement
through the environment, and measuring progress towards achieving a given goal.

Our mobile robot, called Harvey, is a Denning platform ultimately intended to navigate
through offices, hallways, and university grounds as it carries out commands sucli as
"Fetch the book" or "Bring this to Allen". Since this is a rather formidable task, we have
developed a research plan that will be carried out in stages of increasing generality and
functionality. In the early phases of this research, we wish to balance generality with
setting sufficient constraints on the initial research goals to be achievable.  Our initial
experiments focus on robust goal-oriented navigation through a partially-modeled,
unchanging environment that does not contain any unmodelled obstacles.

If robust autonomous navigation can be achieved in this restricted domain, then a variety
of challenging problems can be considered as the constraints are eased on the assumed
knowledge about the environment. These problems include: navigation in a partially
known environment with obstacles, navigation in the presence of independently moving
objects, and exploration of an unknown environment to learn a model in order to support
future model-directed navigation. This paper, however, describes the current UMass
approach to the initial problem domain of robust navigation in a partially-modelled

IThis work was supporied in part by the Defense Advanced Research Projects Agency under
contract numbers F30602-87-C-0140, DACA76-85-C-0008, and DACA76-86-C-0015, and by the
National Science Foundation under grant number DCR-8500332.
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cnvironment, and our experiments in testing an implementation of such a system.
1.1  Related Mobile Robot Research

We begin with a brief survey of previous mobile robot research; other relevant rescarch
will be addressed in the sections discussing particular system modules.  The Carnegie-
Mellon NAVLAB (Kanade, Thorpe ct al. 1986; Shafer, Stentz ct al. 1986) and the Martin-
Marictta ALV (Lowrie, Thomas et al. 1985) are systems that can move down a path or road or
navigate off-road terrain, but the processing has been restricted to simple goals, such as
controlling the vehicle relative to the sides of the road, or avoidance of major obstacles
such as trees. Recent demonstrations of these systems have been quite interesting, but a
laser range sensor providing depth information played a significant role in the obstacle
avoidance capabilities.

Brooks (Brooks 1986) has an unusual demonstration of low-level behaviors and motor
activity to allow a relatively inexpensive robot to wander in an unknown environment
carrying out some purposeful activity, but this work has not yet focused on the
achievement higher-level goal-oriented navigation tasks, and does not make use of models
of the environment.

Dickmanns and Graefe (Dickmans and Grafe 1988a; Dickmans and Grafe 1988b) have
developed techniques for using image features in a real time feedback control loop to
control the motion of a car on the autobahn. In the system we develop in this paper their
techniques could serve as part of the function we term "action level servoing". The
approach described here, like Dickmans and Graefe, accomplishes servoing by tracking
image features, but here the tracking features are constructed from landmarks which have
been selected from a knowledge base.

Due to the complexity of visual perception, autonomous navigation projects, such as those
cited, have utilized only limited visual processing, cither in terms of the features extracted
from the environment, or the modeled set of objects to be recognized in the environment,
or both. This is not meant to be a serious criticism, but rather serves as an observation for
the reader who does not recognize the extreme complexity of the problems of vision and
autonomous navigation in natural outdoor domains.

Recently, Faugeras (Toscani and Faugeras 1987) used more sophisticated vision algorithms
involving sterco to derive depth in an office scene. Depth information was extracted from a
stereo pair, the robot was moved some distance, and a second stereo pair was used to derive
depth and the associated motion.  Again, this cffort does not represent a full robot
navigation system, and made no use of high-level models.

1.2 Overview of System Modules

The processing modules that provide the basic functional capabilities for our mobile robot
system are briefly outlined below. There are many possible control strategics and system
organizations that can be imposed on top of these modules to support effective mobile robot
navigation. In Section III, we bricfly outline one such control strategy.

Modelling _the 3D Environment (Connolly 1989; Connolly and Weiss 1989) - Geometer is a
solid modelling package that was jointly developed at the University of Massachusetts and
General Electric Corp. The CAD system provides tools for representing knowledge of shape
in an  annotatable hierarchy.

Planning (Fennema, Hanson et al. 1989; Fennema, Riseman et al. 1988)- Tasks (or goals) are
translated by a command interpreter and decomposed by a hierarchical problem solver into
a sequence of milestones and proposed actions. Plans arc developed depth-first, with less
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detail away from the current task; task failure triggers dynamic replanning.

Monitor Plan Execution (Fennema, Hanson et al. 1989; Fennema, Riseman et al. 1988) - Plans
are executed in a repetition of two operations: recognize milestone and execute primitive
action.  Each milestone is constructed from a perceivable 3D landmark derived from the
model. Finding the projection of the landmark in the image signifies a successful
completion of the associated action.

2D Line Model Matcher (Beveridge, Weiss et al. 1989a; Beveridge, Weiss et al. 1989b) - This
module finds a best match and fit of a given 2D line model to a subset of data line segments
that may have been fragmented, skewed, omitted, etc. during low-level processing. A
scarch through the plausible symbolic correspondences between model and data lines is
performed, and the optimum 2D translational and rotational fit for each is computed as a
closed-form solution.

3D _Posc Refinement (Kumar 1989) - Given correspondences between a set of points and lines
in a 3D model and a 2D image, the 3D camera location and orientation is computed as an
optimization procedure. In addition, uncertainty in the output parameters as a function of
the variance of the noise in the input parameters is provided.

In addition to these modules, several basic vision modules have been developed. These
modules include a fast line finder (Kahn, Kitchen et al. 1987) derived from a straight line
algorithm developed by Burns (Burns, Hanson et al. 1986), a histogram based region
segmentation algorithm (Beveridge, Griffith et al. 1989), an algorithm for determining
subpixel line placement given an image line, and a local template correlation mechanism
(Fennema, Hanson et al. 1989).

I E TER A DELS OF THE ENVIR N

I1.1 Geometer

Models of the wvehicle's environment are built using Geometer, a three-dimensional solid
modeling package developed jointly by UMass and the GE Research and Development Center
(Connolly 1989; Connolly and Weiss 1989). Geometer is implemented in LISP and is oriented
towards image understanding (although it has many other potential applications). It
currently runs on several types of workstations, including the Symbolics LISP machines, TI
Explorers, Vax workstations, and Sun workstations. Refer to (Connolly and Weiss 1989) in
this proceedings for additional information about Geometer.

Objects in Geometer arc represented in an annotatable hierarchy:
World = Object = Faces = Edges = Vertices.

In Geometer, the language of simplicial complexes in algebraic topology (Eilenberg and
Steenrod 1952; Greenberg and Harper 1981) has been adapted for describing surfaces. It
provides generality and an explicit representation of edges, vcrtic‘cs, and faces. Each'of
these serve as a type of geometric primitive, and can be parameterized as a smooth function

from a point, unit interval, and triangle to R3 respectively.  Surfaces are cqnstruclcd as _thc
union of these primitives, and arc denoted by a sum of simplices. ThlS‘ representation
produces a triangulation of the surface, where the triangles arc not necessarily planar.

I1.2 Constructing Environmental Models

The system begins with an accurate, but incomplete, model of the world implemented in
Geometer, augmented by the locale structure described in the next section. We have



constructed a 3D model of portions of the interior of the UMass Graduate Rescarch Center, as
well as a portion of the campus surrounding the building.  The outdoor model (shown in
Figurecs | and 2) includes buildings (windows, doors, pillars, etc.), sidewalks, lamp posts,
telephone poles, and most of the significant objects in the area. This model h:dS been
annotated with properties of objects and surfaces which are useful to the planning and
vision routines used by Harvey.

Figure 1. Geometer model of the area  Figure 2. A more detailed Geometer model of the

around the Graduate Research Center  same areas shown in Figure 1 with hidden lines

used in the experiments. removed. Note that additional landmarks, such as
telephone poles, have been added.

The construction of an accurate 3D model of an environment is a fairly difficult job. The
first attempt involved digitizing data from engineering blueprints using a bit pad
(digitizing tablet). This method is quite error prone given the spatial resolution of the bit
pad, since the blueprints were drawn to a scale of 40 feet to an inch We found errors of up
to 10 feet in the 3D model constructed in this manner. In the second attempt, theodolites
were used to survey the landmarks. This method, while accurate, is very time consuming.
As a check, some of the theodolite data was verified by direct measurement. On the average,
the measured distances matched with the surveyed distances within 0.2 feet.

[1.3 Locales

The model of space in this system plays a rather central role in most of the robot's activities.
During planning, for example, the model is used to construct routes. Consequently, the
concept of doorways, portals, exits, and entrances must be represented. During plan
monitoring, the model is used in a top-down fashion to control visual perception by
specifying what is to be "seen" and where to "look for" it. In this situation, only the space
within the perceptual field of view of the robot is relevant. If the robot gets lost, the world
model is used as a means for localizing it within the environment. Space should be
represented and organized in a way which simplifies these tasks.

Conceptually, our view of the organization of space is inspired by the topological notion of a
neighborhood. Hicrarchically organized neighborhoods serve to successively localize a
point to a finer resolution. We use this concept as a means for localizing the agent (robot)
by associating with each necighborhood a means for determining whether or not the agent
is inside it. This neighborhood-test pair is called a 'locale’. Locales impose an organization
on 3D space and partition it into convenient subspaces that are used for planning and robot
localization.



A locale is represented by a data structure that captures its neighborhood-likc properties
via a 3-D shape description of the locale and a contained-by hierarchy as shown in Figure 3.
Each locale also contains additonal information, such as its shape descriptors as shown in
Figure 4. From this locale data structure, it is possible to construct a test to determine
whether or not the agent is in a particular locale and to pick landmarks to act as milestones.
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Figure 3. Locales are subspaces of the Figure 4. The actual shape descriptions of
environment which are organized into a each locales is a hierarchy of geometric
hierarchy by set inclusion. This simplified entities defined in Geometer. Shown are the
example shows three levels of locales entity properties used during perceptual
representing the Graduate Research Center reasoning to construct landmarks.
environment.
B T N

Each task given to Harvey is translated by a command interpreter and problem solver
which ultimately produces a set of navigational goals. The execution of these goals is
accomplished by a tight interweaving of planning, perception, and action, orchestrated by
a dynamic planning and execution scheme (Fennema, Hanson et al. 1989; Fennema, Riseman
et al. 1988) called "plan-and-monitor”. This subsystem works with plans, each represented
as a sequence (MO A1 M1 ... AG MG) of milestones (Mk) and proposed actions (Ak).
Milestones are used to verify the successful completion of a particular phase of the plan.
They are composed of 3D landmarks (perceivable physical events) and their expected
location with respect to the robot at the completion of the appropriate phase of the plan.

As a plan is executed milestones must be verified (usually visually) before the next action of
the plan can be executed. For example, if the sequence of milesgones up to M7 have been
perceptually verified to be in the proper position in the image (i.e. within the acccpt'ab!e
crror bounds), this means that actions Al, .., A7 have  becen successfully completed, and it is
appropriatc to takc action A8. If M7 cannot be verified, then the plan must bp modified. _In
this way milestoncs allow the progress of the plan to be monitored, and trigger replanning
before the next action is taken when perception and milestone do not agree(Fennema,
Riscman ct al. 1989). Complex actions and tasks also trigger replanning in order to refine

. 5



them into a plan subsequence of milestones and primitive actions which can be dircctly
executed by the hardwar

The plan-and-monitor executive directs planning, perception, and execution in such a way
as to dynamically modify and refine the plan to fit the actual results of each action and the
details of the perceived environment. The principal activitics involved in this process are:
planning, milestone recognition, determination of location, and execution of primitive
actions. This interweaving of perception, planning and action makes specific what task is
expected of perception, and provides a means for focusing the knowledge available for that
purpose. The results is a distribution of perception and perceptual reasoning into all
aspects of navigation. Route planning uses perceptual reasoning to select appropriate
perceptual milestones; plan progress is measured using perception; perception is used to
relocate the robot when a milestone is not recognized; and during the execution of
primitive actions, low-level perceptual feedback is used to keep the robot on the expected
trajectory. The different levels of control all use model-directed vision and compare what is
sensed to what is expected, issuing corrective commands to minimize any difference.

Plan execution depends upon the recognition of milestones. The difficulty of wusing vision
to perform this task in a reliable and general manner has encouraged us to attack this
problem in two ways. Both methods use model-directed processing by comparing restricted
perceptual processing to what is expected if the robot's motor actions are correct. The next
scction describes a type of low-level perceptual servoing used during execution of primitive
actions. Section 5 describes a more complex method for matching modcls to landmarks and
refining the position of the robot based on these matches.

; PER TUAL |

Navigation goals are ultimately translated into primitive actions which can be directly
executed by the robot vehicle; in the case of the Denning platform, these are (MOVE
distance) and (TURN angle). Even at this primitive action level, however, execution errors
are probable. As the robot rolls along an environmental surface a slippery spot, a bump on
the surface, or even a bulge in its tire may throw it off course, causing inaccurate
execution.

It is possible to reduce the error incurred when ecxecuting a primitive action by servoing
on prominent visual features in the environment. Using information obtained from the
mcasured discrepancy between where the features should be and where they actually are, it
is possible to determine the corrective action required to bring the positions into
agreement.  This action level or perceptual servoing has the effect of locking the robot
onto a trajectory which improves the accuracy of the primitive actions over that which
would be obtained without servoing.

In order to determine the usefulness of servoing, a simple version was implemented that
used correlation to measure the deviation of actual motion from intended motion. Several
experiments, both with and without correlation servoing, were run. In the experiments
Harvey was to roll along a straight line 40 feet long, marked on the floor of a Graduate
Research Center hallway For the experiments in which servoing was used, an artificial
target was placed on a door at the end of the hallway, since the Geometer model of the
interior of the building was not complete. The target was a circle approximately eight
inches in diameter with two opposing black quadrants and two opposing white quadrants.
The robot's goal was to move down the corridor directly towards the target. To determine
course deviation, the vehicle was stopped every two feet and its deviation from the marked
line was measured.

The experiment was run a number of times; the results in Table 1 represent the best one in
the sense that the unservoed results represent the smallest deviations encountered during
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the trials. The z-axis referred to in the table is the line the vehicle is following with z=0
defined as the starting location. The x-axis is a line perpendicular to the z-axis and pointing
to the right. Total distance travcled is z-unservoed and deviation is x-unservoed. Even after
a rather painstaking set up procedure the vehicle wandered over two inches from the line
during a 20 foot motion. Other runs resulted in as much as a foot deviation in unservoed
mode. Most of the trials in unservoed mode were stopped at around 20 feet because the
vehicle was significantly off course and the total deviation was increasing. In contrast, in
servoing mode the vehicle stayed within .3 inch of the line for 38 feet. It is worth noting
that in both experiments the actual distance covered was considerably less than the
intended distance. It is consistently short by a constant factor (to 3 decimal places), due to
inaccurate calibration of the hardware.

| . Results from one experiment
(All measurements are in inches)

intended-z | unservoed-z | servoed-z intended-x| unservoed-x| servoed-x
24. 22.6 22.8 0.0 0.0 +0.13
48. 45.5 45.7 0.0 -0.3 +0.13
72. 68.3 68.5 0.0 -0.4 +0.13
96. 90.9 91.3 0.0 -0.6 +0.13
120. 114.2 114.3 0.0 -0.7 +0.06
144, 136.3 136.9 0.0 -1.1 0.00
168. 158.2 159.5 0.0 -1.3 -0.13
192. 181.8 182.2 0.0 -1.8 -0.13
216. 204.6 205.0 0.0 -2.0 -0.38
240. 228.3 227.7 0.0 -2.1 -0.25
480. - 456.0 0.0 -.- 0.0

The results of these experiments are encouraging and support the idea of action level
perceptual servoing over reasonably short navigation legs; additional results for (MOVE
distance) as well as servoing results for (TURN angle) are presented in (Fennema, Hanson et
al. 1989). Once the Geomecter model of the building interior is complete, similar experiments
will be performed using actual geometric features rather than the artificial target. When
weather permits, the vehicle will be moved outdoors and the Geometer model described in
Section II will be used to determine the effect of terrain cover and topography on servoing
accuracy.

IN L

Recognition of 3D landmarks involves matching an object model to data extracted from an
image, and this task has two parts: a)determining the correct corrcspondence- betwe_en
object features and image featurcs and, b)determining the position .of the 'object with
respect to the camera. We refer to the former task as 2D model matchm.g (Section V.1) .and
to the latter as 3D pose refinement (Section V.2) These sub-tasks are mtcrdep_endent,.smce
an object's position relative to the camera in 3D space cannot be determined without
determining a correspondence to image features, whllc. the correct corr.espoqdcnge
depends on the object's 2D appearance and hence its relative position and orientation in

space.
V.1 2D Model Matching
In contrast to the approach developed by Lowe for the SCERPO system (Lowe 1985; Lowe

1987) we have chosen to separate the 2D processing of model-to-image matching from the 3D
optimization :process for computing the camcra posc oncc the correspondences between
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model and image are completed. Thus, we restrict ourselves in this section to the problem of
matching a 2D model to a set of fragmented, skewed, and missing line segments, a rather
challenging perceptual organization problem. The model line to image line
correspondences determined from this 2D matching method are used as the input to the 3D
pose computation discussed in the next section.

We believe that there are strong incentives to solve as much of the identification problem
as possible via processing in the 2D image space. The combinatorics of cstablishing
correspondences between object and image features dominates the identification problem,
and geometric computations integral to this process are simpler in 2D than in 3D. In
particular, Beveridge et al (Beveridge, Weiss et al. 1989a; Beveridge, Weiss et al. 1989b) show
that the determination of the optimal position of an object's 2D projection with respect to
corresponding line features has an analytic solution in the two dimensions of image space.
This closed form solution for line correspondence is a new result and we believe it to be a
significant contribution. It is highly doubtful that the related 3D problem has an analytic
solution for determining model positions that minimize point-to-line and point-to-plane
distances.

Given that matches will seldom if ever be perfect, the emphasis must be on determining the
'best' of the imperfect matches. Hence matching is naturally posed in terms of optimization
over the possible matches. By establishing an objective measure of match quality, the
problem becomes one of determining the correspondence between model elements and data
line segments for which the measure is optimal. The correspondence problem is
combinatorial, and generally involves mapping one model line to many data lines. A second
optimization problem is implicit in the correspondence problem. In order to measure the
quality of a given model-data line correspondence, the best 2D position of the model with
respect to the data must be determined, and the extent to which they do not spatially
coincide must be measured. This we call the fitting problem. Hence, a match involves both
model-data correspondence and an associated best-fit position.

The following is a sketch of the basic steps used to obtain a good model match:

*Determine the search space of correspondences. Lacking constraints on model
position, all data lines segments possibly correspond to every model line segment. If
constraints are available, only pairs of model and data lines satisfying these
constraints need be considered.

*Determine promising model positions if the search space is large. Use these positions
to determine constrained search subspaces made up of only correspondences
consistent with the estimated position. A promising model position may be found
cither through a generalized hough transform or by identifying prominent features.
The generalized hough technique involves an analysis of the space of possible two-
dimensional spatial transforms to bring the model and data into alignment.
Identifying a prominent fcature may involve finding a distinctive part of a model,
such as a comer and then using that to position the model as a whole.

«For ecach of the constrained search spaces obtained above, use iterative refinement to
determine a best match. Upon each iteration perturb the correspondence, adding or
deleting one or several data lines, and then determine the new best-fit model position
and related match error. If the match error is reduced adopt the improved match. Stop
when the match can no longer be improved. The best of the resulting matches is
taken as the final match.

Results are presented for 2D model matching in Beveridge (Beveridge, Weiss et al. 1989b)
using both synthetic data and images obtained from the robot vehicle. Sample results from
this paper for one frame of a six frame image sequence is shown in Figures 5 and 6. The
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output f{om the 2D model matching system provide the input for the 3D pose refinement
computation presented in the next section.

[ S
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Figure 5 2D Modeling Matching Results. Figure 6. 2D Model Matching Results. Matches of

Projections of the six 3D navigation landmark model line segments with image line segments; the

models onto the 2D image plane using the current dark lines represent the matches. These matches are

position of the robot. used by the 3D pose refinement module described in
Section V.2

V.2 3D Pose Refinement

Kumar (Kumar 1989) develops a solution to and mathematical analysis of the problem of
estimating camera location and orientation from a set of recognized landmarks appearing
in the image. Given correspondences between the 3D landmark model lines and 2D image
lines, the goal is to find the camera (or robot) rotation and translation which map the world
coordinate system to the camera coordinate system under perspective projection. Because
of the difficulties encountered in trying to establish accurate endpoint positions for lines
(Kumar 1989; Lowe 1985; Williams and Hanson 1988), we assume that correspondences
established between model and data are line correspondences and not endpoint
correspondences.  In addition, intrinsic camera parameters, such as focal length, field of
view, center of the image, size of image, etc. are assumed to be known (Hom 1986; Kumar
1989; Lenz and Tsai 1988).

This problem, under various names and guises, has been addressed by several researchers,
e.g. see (Ganapathy 1984; Horn 1987; Linnainmaa, D. et al. 1988; Wolf 1974).; most gf.t-he
techniques assume line endpoint data, are iterative in nature, and require an initial
estimate. Liu, Huang, and Faugeras (Liu, Huang et al. 1988) present a solution to the "camera
location determination” problem which works for both point and line data. Kumar's
approach is based on their constraints, derived from the observation that the 3D lines in the
camera coordinate system must lie on the projection plane formed by the correspondmg
image line and the optical center. Using this fact, Liu et. al. separated the constraints for
rotation from those of translation, leading to a solution in which rotation is solved for first
and then translation is obtained, using the rotation results.
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The technique developed by Kumar to solve for the rotation and translation parameters
differs from that of Liu et al in two significant ways. First, rotation and translation are
solved for simultaneously, which makes more effective use o the constraints and is more
robust in the presence of noise. Second, the nonlinear technique used to solve for rotation
and translation is adapted from Horn (Horn 1987) Kumar's version of this optimization
technique provides much better convergence properties than does Liu et al's solution
method based on Euler angles.

Kumar also develops uncertainty measures for the rotation and translation parameters.
Noise in the data is assumed to be only in the image. The 3D model data is assumed accurate.
The data for each image line can be specified by two parameters 6; and p; (a polar coordinate
representation of lines). For the analysis, the noise for both 6 and pj is assumed to be
Gaussian distributed with zero mean and
known wvariances.  Furthermore, the noise
is assumed to be uncorrelated for different
lines. Closed form expressions are
developed for the wvariance of the error in
the output parameters (rotation and
translation) as a function of the input data
and output translation and rotation wvalues.
Kumar shows that the error in the output
parameters is linearly related to the noise
in the input data. The reader can refer to
Kumar's paper in these proceedings for
more details.

Figure 7 shows the results for one frame
(the same frame shown in Figures 5 and 6)
of the six frame sequence used in one of
the experiments. The figure shows the 3D
model lines after projection back into the
image plane wusing the vehicle "pose"
computed by the 3D pose refinement
algorithm which solves simultaneously
for the rotation and translation
parameters.  For this particular frame, the

errors  (in feet) for the position o.f. the Figure 7. Results from 3D Pose Computation. The
robot (x.y,z) are (.1, 06, .03); addmongl white lines are the 3D landmark segments reprojected
results for the other frames of this ;4 e image plane after 3D pose refinement using

sequence. Ao given in Kumar's paper in jhe model line-data line matches shown in Figure 6.
these proceedings (Kumar 1989).

VI LUST

The work presented here represents the current status of a long term research effort
leading to the development of perceptually-based navigation systems for autonomous
robots. The focus of the research is on environmental modeling, planning, plan
monitoring, and vision. These four components are tightly co.upled in a system which
provide the flexibility and extensibility required for an experimental testbed for robot

navigation.

Because the vagaries of the physical world affect plan execution in unknown ways, plans,
no matter how carefully constructed, cannot simply be blindly executed. Each step of_ the
plan must be carefully monitored and compared to expectations. The system accomplishes
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this by defining milestones associated with each planned action. The milestones act as
preconditions for subsequent plan steps; the next step cannot be executed unless the
milestone is satisfied. This assures a correspondence between the environmental model and
the assumed position of the robot relative to the model and the actual position of the robot in
the physical world. Failure to satisfy a milestone causes replanning to take place.
Interweaving perception, planning, and action in this way makes specific what task is
exp?cted of perception and provides a means for focusing available knowledge on local
goals. :

Experimental results from the system thus far are encouraging, although a number of
issues remain to be explored. Harvey's world is completely known, which is perhaps an
unrealistic assumption for an autonomous robot. The perceptual servoing mechanisms
assume that 3D landmarks can be accurately extracted from the geometric model of the
environment. It remains to be seen how the requirement of complete knowledge can be
relaxed yet still maintain the idea of perceptual servoing. Incorporating the type of
reasoning demonstrated by the schema system (Draper, Brolio et al. 1989) might allow
Harvey to respond to instructions like "...continue down North Pleasant street past the
Graduate Research Center, then turn left and..."

A unique feature of the model matching component is the separation of the process of
positional updating into two steps: 2D matching followed by 3D pose refinement. The
robustness of this technique must be determined and its computational efficacy over many
experiments in multiple domains must be explored.

Finally, navigation is an extremely computationally demanding task, yet real-time
performance is crucial for a mobile automaton whose survival may depend upon reaching
critical decisions in a short period of time. An ongoing aspect of the work reported here is
the exploration of means by which the navigation task may be distributed over suitably
configured parallel architectures. Two complementary lines of research are currently
underway, utilizing a Sequent Symmetry multiprocessor system and the University of
Massachusetts Image Understanding Architecture.(Weems, Levitan et al. 1989).
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