PREDICTABLE SYNCHRONIZATION
MECHANISMS FOR MULTIPROCESSOR
REAL-TIME SYSTEMS.

Lory D. Molesky, Chia Shen and Goran Zlokapa
Department of Computer and Information Science

University of Massachusetts
Ambherst, MA 01003

COINS Technical Report 89-106



Predictable Synchronization Mechanisms for
Multiprocessor Real-Time Systems.

Lory D. Molesky
Chia Shen
Goran Zlokapa

November 13, 1989
ABSTRACT

Predictability is of paramount concern for hard real-time systems. Every aspect of
a real-time system and every primitive provided by the underlying operating system
must be bounded and predictable in order to achieve overall predictability. In this
paper, we describe a concurrency control synchronization mechanism developed for a
next generation multiprocessor real-time kernel, the Spring Kernel. The important
features of this mechanism include mutual exclusion with linear waiting and bounded
resource usage. A hardware solution is presented for this problem, which is applicable
for not only real-time systems, but also general computing systems. This hardware
solution is based on a new synchronization instruction for multiprocessors similar to
test-and-set, called test-and-set-or-branch.

This work is part of the Spring Project directed by Prof. Krithi Ramamritham and Prof. John A.
Stankovic at the University of Massachusetts and is funded in part by the Office of Naval Research
under contract N00014-85-K-0398 and by the National Science Foundation under grant DCR-8500332.



1. Introduction

Predictability is of paramount concern for hard real-time systems. The system
components that are potentially the most elusive to guarantee predictability are those
low level components which are shared by the multiple processors. On a multiproces-
sor, both shared memory and a shared bus fall into this category. In this paper, we
describe the foundations for multiprocessor operating systems support of predictabil-
1ty. We investigate the problems inherent in constructing predictable operating system
primitives. In particular, we focus on solutions to the mutual exclusion problem in the

domain of real-time systems.

Although the mutual exclusion problem has been extensively studied in a non-
real-time context, and many hardware and software solutions exist, real-time systems
offer new challenges in dealing with the mutual exclusion issue. In a real-time sys-
tem, it 1s not sufficient to ensure only the logical correctness of a task, the timing
correctness is equally important. In order to meet the timing constraints of tasks in
a real-time system, we must be able to bound the timing of the primitive operations
of the operating system. Among the most difficult operating systems primitives to
construct with the aim of achieving predictability are those which involve concurrent
access to shared data. For example, concurrent interaction between a single scheduler
and multiple dispatchers on a multiprocessor may require mutual exclusive access to
shared data. Operations for enforcing mutual exclusion operations such as P() and
V(), if constructed in a bounded fashion, can provide the framework for other, higher
level, bounded operating systems primitives. This boundedness forms a basis for the

predictability of the entire system.

The development of solutions for mutual exclusion in real-time multiprocessor op-
erating systems is presented in this paper. We present a solution which improves
the bounded waiting solution given in [2]. We also provide a hardware solution to it.
Current architectures, such as the Motorola 68020, do not provide a single hardware in-
struction which supports mutual exclusion with bounded waiting. We also discuss the
problem of resource usage efficiency in our solution and provide a worst case analysis

for both preemptive and non-preemptive real-time runtime environments.

The work presented in this paper is part of the on-going research of the Spring
Project. The Spring Kernel [15] is currently being built on a VME based 68020 [9]

[11] shared memory multiprocessor. Each multiprocessor is composed of up to eight



MVMEI136A boards. These of the MVME136A boards support features which are
typical of shared bus multiprocessors - an asynchronous bus interface, architectural
support for test-and-set like operations, and a local memory. This memory can either be
accessed remotely over the VME bus by (typically) another processor, or locally by the
processor which has mapped this local memory. Additional support for multiprocessing
is provided through the use of the MPCSR (MultiProcessor Control/Status Registers).
One important feature of the MPCSR provides the ability to generate virtual interrupts

a selected board, and/or a simultaneous interrupt to multiple boards.

The remainder of this paper is organized as follows. Section 2 discusses background
information on multiprocessor synchronization. Existing implementations using test-
and-set which provide bounded waiting are discussed in section 3. Section 4 proposes
a new, more efficient bounded waiting solution using test-and-set. Section 5 presents a
more elaborate mechanism for the implementation of semaphores which reduces shared
bus and CPU wastage. Section 6 discusses the use of semaphores supporting bounded
waiting in the Spring multiprocessor system. Section 7 concludes the paper.

2. Background on Multiprocessor Synchronization

In this paper, we consider issues of mutual exclusion and synchronization on shared
memory multiprocessors. Since the notion of semaphores [3] suffices to provide the
underlying support for both mutual exclusion and synchronization, semaphores will be
the focus of our discussion. '

We are concerned with both efficient solutions for mutual exclusion and those so-
lutions which provide bounded waiting. Atomic operations, such as tesi-and-set, are
commonly supported on conventional shared memory multiprocessors. This additional
hardware support provides for cleaner, more efficient solutions of synchronization prim-
itives [13]. Although pure software solutions for the support of mutual exclusion exist,
these solutions achieve correctness at the cost of additional resource usage (memory
and bus bandwidth) and therefore are not considered in this paper.

Although the recent technique of wait-free synchronization [7] has potential appli-
cability for real time systems, it is only a weak form of synchronization. Wait-free
synchronization is weak because it cannot support inter-object dependencies. Inter-
object dependencies are those which require objects to be ordered based on attributes
of these objects. For example, a sorted list is a data structure which contains inter-



object dependencies. Since, for efficiency reasons, the design of the Spring kernel relies
heavily on sorted lists, thus wait-free synchronization is not sufficient for our pur-
poses. This is unfortunate, since the worst case analysis of wait-free synchronization

techniques is straight forward compared to other synchronization techniques.

Throughout this paper, binary semaphores are used to illustrate access to a critical
section. The P() operation acquires the semaphore by atomically setting a shared
variable, LOCK. The V() operation releases the semaphore by atomically clearing the
lock. C code is used to describe the high level source code, while both pseudo-assembly
code and 68020 assembly code is used to describe the low level code.

2.1 Potential Problems with Current Hardware Support

Mutual exclusion in the context of asynchronous parallel processors provides a foun-
dation for many contemporary concurrent computations. Conventional shared memory
multiprocessors often support mutual exclusion in the form of atomic read-modify-write
(RMW) instructions. Systems such as the Motorola MVME136-a, Sequent Symmetry,
and the Ultracomputer [11] [12] [6] fall into this category. This support of an atomic
RMW instruction is often also referred to as support for test-and-set.

Straightforward use of these hardware implementations however does not meet the
requirements of real-time systems because they do not facilitate synchronization with
bounded waiting. As will be described in detail in the following section, the test-
and-set operation is not sufficient to ensure that one processor will not encounter
starvation when contending for a semaphore. Since hard real-time systems must ensure
the predictability of every operation, systems which require concurrent access to shared
data must obtain this access in a bounded fashion. This requirement is notably evident
in the interaction between multiple dispatchers and the scheduler in the implementation
of the Spring Kernel[15].

Today’s shared memory multiprocessors’ semaphore implementations also suffer
from resource wastage [5]. The ubiquitous busy wait loop generates both bus traffic
and consumes CPU resources. The bus traffic generated by the busy-wait can be
mitigated by a scheme which busy-waits on a cache memory address [12]. Sequent’s
approach allows each processor only one attempt to acquire the semaphore. If this
fails, the processor will spin on the cache memory location. In [1], it was noted that

this scheme can cause a cascading of cache invalidations, thus causing additional bus



traffic.

2.2 Bounded Bus Access - a Necessary Condition for Bounded Waiting

Hard real-time systems need solutions to the mutual exclusion problem which pro-
vide bounded waiting. In a multiprocessor system, unless bus access is bounded, no
solution can provide a bounded mutual exclusion primitive. Bounded access o a shared
bus can, of course, be achieved with the use of a synchronous bus protocol. Synchronous
busses are not considered in this paper for a number of reasons, but primarily because
their throughput is significantly lower than that of asynchronous busses.

One specific asynchronous bus, the VME bus [11], offers two modes of access,
positional (i.e. a daisy-chain) and round robin. The positional scheme favors processors
which are electrically closest to the bus arbitration logic. In a positional scheme, the
nearest processors can conceivably “hog” the bus while others starve (receive no bus
access). When attempting to provide a solution to the mutual exclusion problem
which ensures bounded waiting, we cannot configure the bus in a positional mode.
The protocol assumed in this paper is thus the round robin protocol.

2.3 Round Robin Mode is not a Sufficient Condition for Bounded
Waiting

Round robin mode alone with processors busy-waiting on the semaphore (usually
implemented with test-and-set) is however not sufficient to provide bounded waiting.
It can be shown that one or more processors can starve when two or more ProCessors
contend for a semaphore. It is possible for a subset of the processors to perpetually

exchange the lock, starving one or more processors waiting for the lock.

A key issue in the analysis described in this section as well as in other parts of
this paper is distinguishing instructions which access the shared bus from instructions
which do not access the bus. If all processors involved in contending for a semaphore
simultaneously issue an instruction which requires access to the shared bus, these
processors can only execute in a round robin fashion. However, a processor in its P()
operation can “miss its turn” in the round if it happens to be executing a non-bus

master instruction at an inopportune moment in time.

The following example demonstrates the insufficiency of round robin mode alone.



Three processors are perpetually contending for the lock, one of them can starve.
‘Specifically, when all three processors (p;, p;, and p3) are perpetually contending for
the lock, a pattern of bus acquisition in the form of p;, ps, p1, ps... occurs, thus starving
p2.

Suppose three processors, p;, ps, and ps, are involved in the lock acquisition/release
sequence. The shared bus is configured in round robin mode such that processors
follow each other in a cyclically numerical order (p;, precedes p,, p; precedes ps, and ps
precedes p;). Further suppose that initially p; has the lock (is in its critical section),
and p, and ps are trying to acquire the lock (in P()). Also assume that contention
for the resource is sufficiently high such that as soon as a processor performs a V(), it
performs another P(). Process p, can starve (never get access to the resource) under

the following scenario:

P, releases the lock by executing a V(). Since, in order to release the lock, p,
performs a bus operation, it will be p,’s turn to access the bus next. However, if p,
happens to be executing the branch instruction (refer to the code for P() and V() in
figure 2 in section 4.1) when its turn for the bus comes along, p, will miss its chance to
acquire the lock. Further assume that p; does acquire the lock, and after ps releases,
P1 acquires the lock. Repeating this sequence, p, never acquires the resource, even
though it is in P(). This is clearly not a bounded solution.

A similar construction could be presented using only two processors, but the con-

struction with three processors is easier to understand.

We have shown that the round robin bus access mode is a necessary but not a
sufficient condition to achieve bounded waiting. The following two sections describe
an existing and a new solution, respectively, for semaphore implementations which

achieve bounded waiting.

3. A Bounded Implementation Using Test-and-set

The mutual exclusion problem has been studied for a long time, resulting in stan-
dard criteria for a correct solution. Any solution to the mutual exclusion problem must
meet the correctness criteria relating to symmetry, process and processor speeds, mu-
tual ezclusion, and progress, as noted in [4] and [5]. The symmetry condition disallows

the use of a static priority. Assumptions about the process and processors speeds are



boolean LOCK;

P() v()
{ {

while !(test-and-set(LOCK)) ; LOCK = false;
} }

Figure 1: The Basic Busy-wait Loop

not allowed. The mutual exclusion condition allows only one process to be executing
in its critical section at any point in time. The progress condition ensures that, if a
process requests to enter a critical section which is not in use, it will be allowed to
eventually enter the critical section. In the context of operating systems for real-time
systems, this eventuality does not suffice. What is needed is the guarantee of bounded

waiting. Bounded waiting and lknear waiting are defined as follows [2]:

e Definition:
Bounded waziting is achieved if there is a constant k such that if a process is
in its busy-wait loop, then that process will enter its critical region before any
other process has entered its critical region more than k times. When k=1, this
property 1s called linear waiting.

The simplest form of acquisition and release procedures for a semaphore, P() and
V(), is shown in figure 1. It is well known that this simple implementation with
test-and-set satisfies the symmetry, processor speeds, mutual ezclusion, and progress
conditions. This implementation of P() and V() does not however satisfy the bounded
waiting condition. The problem, as mentioned in the previous section, arises when one

process can starve when two or more processes are involved in the contention.

In [2], Burns presents a mutual exclusion solution for shared memory multipro-
cessors which does achieve bounded waiting. This solution augments the test-and-set
instruction and the single shared memory lock address with N additional binary shared
variables. N corresponds to the maximum number of processors involved in contention
for the critical section. Once a processor fails on the test-and-set in its P() region,
it asserts the appropriate flag in the waiting array. When a release of the semaphore
occurs in the V() section, the next processor (in some predefined cyclic order) with its
flag set in the waiting array is allowed to acquire the semaphore.



To prove that an implementation achieves linear waiting, all that is necessary is to
demonstrate a cyclic ordering of waiting processes. Since the waiting array is scanned
in cyclic order, (e.g. from 0, 1 ... N -1 back to 0), if processor p is waiting (e.g., has
entered P()), it will enter its critical section within N - 1 turns.

4. Efficient Bounded Semaphores

This section offers a more efficient solution to the bounded mutual exclusion prob-
lem than the one presented by Burns [2]. In real-time systems, more often than not,
scheduling decisions are made based on execution times of tasks. This demands knowl-
edge about instruction timing properties. Our solution exploits this knowledge to
obtain an upper bound on the wait for the P() operation. Unlike the solution provided
by Burns, the new solution needs no additional shared memory locations (i.e. the wait-
ing array can be dispensed with). This solution is based on test-and-set, and strongly
resembles the non-bounded solution in terms of efficiency of code and space. Using this
bounded busy-wait construct, more elaborate bounded mutual exclusion solutions are
constructed in section 5 which provide predictability, and minimize both CPU wastage
and bus wastage.

It should be noted that even though we reason about the instruction timing prop-
erties in our solution presented below, this does not violate the process and processor
speeds condition in the correctness criteria for mutual exclusion. The instruction tim-
ing properties concern the absolute time some instruction takes, not the speed of the
processor or the pace of some process.

4.1 Our Solution

In section 3 it was shown that a round robin bus protocol alone was not sufficient
for a bounded mutual exclusion protocol. If it can be demonstrated that a particular
semaphore implementation enforces a cyclic ordering of the waiting processors, then
the implementation is bounded. Moreover, as Burns illustrated, this implementation
is inear. In order to prove this cyclic ordering of waiting processors, we reason about
the possible events after the processor which holds the lock releases it. In the following
discussion, it is assumed that the round robin protocol grants bus access to processors

in numerical order (that is p;;; follows p;).



A few details pertaining to the general shared bus arbitration are necessary before

the new protocol can be presented.

¢ Definition:
Only one processor is allowed to control the shared bus at any point in time, this

processor is called the bus master; other processors are called non-bus masters.

¢ Definition:
If a processor p; initiates a bus request which cannot be satisfied because an-
other processor is the bus master, then the bus instruction issued by p; becomes
pending. In the context of bus operation in a round robin mode, a pending
bus instruction is essentially queued by the hardware; the enqueueing order is

predetermined, as defined by the round robin protocol.

The basic approach in the construction of an implementation which achieves linear
waiting is to design the V() operation such that the release of the semaphore holds
the bus long enough to ensure that the closest processor in the round robin cycle
waiting (i.e. in its P() section) will be guaranteed to execute its test-and-set operation
when its “round” is active. Thus, by ensuring that the non-bus master component of
the acquisition loop of P() is as small as the bus master time of the atomic release
instruction in V(), the cyclic waiting order can be ensured.

For the purposes of this discussion, we assume that processes waiting in the P()
operation are non-preemptable. In a preemptable environment, one could argue that
starvation could occur under degenerate conditions by an inopportune preemption
of a particular process immediately prior to the acquisition of the semaphore. In
other words, using an adversary argument, a process p; will starve if, each time the
bus mastership is about to be granted to the processor executing p;, p; is preempted.
Additionally, we assume that a process cannot be preempted while in its critical section.
If this were to occur, all other processes could wait indefinitely. An extended discussion

of issues involved in preemptive scheduling follows in section 5.

A generalized form of a the P() and V() operations is presented in figure 2. When
the semaphore is in use, the semaphore’s state will be set. Otherwise the semaphore
is available for acquisition, and is referred to as clear. The P() operation consists of
both instructions which access the shared bus, and which do not access the shared

bus. We assume that at least one instruction in the busy-wait loop of P() is a bus



P() V0O

* *
* Address of lock is in AO * Address of lock is in AO
* *
SPIN:
test-and-set (40) clear (A0)

conditional-branch SPIN

Figure 2: Generalized P() and V() Routines

master instruction. The V() operation consists of at least one instruction which is a
bus master instruction. This instruction, clear, performs the actual “clearing” of
the semaphore. In the following theorem, the event termed releasing the semaphore
refers to the point in time when the processor executing the clear instruction (in V())
transfers its state from being the bus master to non-bus master. At release time, it is

known that the semaphore is cleared.

Deferred Bus Theorem:

If the total worst case non-bus master time of the busy-wait loop (in P())
is less than the best case bus master time of the release instruction, and
if processor p; is the closest processor (in the round robin ordering) busy-
waiting for semaphore s when processor p; releases s (in V()), then p; will

be the next processor to acquire s.

Proof:

To prove the theorem, the two possible circumstances which occur when p; re-
leases the semaphore are enumerated. These correspond to the two instructions of
the busy-wait loop of the P() operation of p;. Either p; is executing the bus master
instruction test-and-set (case 1), or it is executing the non-bus master instruction

conditional-branch (case 2).

1. A test-and-set was pending on p; when a clear by p; was executed. Since
the test-and-set is pending and p; is the next processor waiting, p; acquires

the semaphore next.



2. A test-and-set was not pending on p; when a clear by p; was executed.
Since the worst case duration of the non-bus master time of the busy-wait ac-
quisition loop is less than the bus master time of the release instruction, the
test-and-set issued by p; will be invoked before the clear by p; is completed.
Thus the test-and-set of p; will become pending before the clear by p; com-
pletes. By case 1, this implies that p; acquires the semaphore next.

Since in either case, p; acquires the semaphore next, the proof is complete.

Q.E.D.

4.2 A Hardware Solution

This section presents a hardware solution for a semaphore which provides bounded
waiting. In addition to being applicable to real-time computing systems, this hardware
solution is also applicable to general computing systems. This general applicability is
achieved by eliminating the need to know instruction execution times of the P() and
V() operations.

Recall that the basic problem in achieving predictability in the P() and V() rou-
tines is that the next processor waiting in the round robin ordering could be executing
its conditional-branch instruction when its “turn” for the bus arrives. The De-
ferred Bus theorem ascertained that the turn would not actually be missed under
certain instruction execution assumptions. The underlying problem here is that the

conditional-branch is a non-bus master instruction.

¢ Definition:
The test-and-set-or-branch instruction first locks the bus, then tests the
operand specified by the effective address. The remaining steps are conditional
on the value of the operand. If the operand is:

— zero:
The operand is set to one, the bus is released, and control is returned.

- non-zero:
Simultaneously, the bus is first released, then a new bus request is initiated
in order to reexecute the test-and-set-or-branch.

By combining the conditional-branch instruction with the test-and-set in-

10



P() V()

* *
* Address of lock is in AO. * Address of lock is in AO.
* * clear is a
* * bus-master instruction.
%*
SPIN:

test-and-set-or-branch (40) clear (40)

Figure 3: Generalized
P() and V() Routines using test-and-set-or-branch

struction into one bus master instruction (test-and-set-or-branch), we can elimi-
nate all assumptions about instruction execution time and still support a semaphore
which provides bounded waiting. test-and-set-or-branch, like test-and-set, is a
bus master instruction, locking the bus until the entire instruction has completed. Note
that, after an unsuccessful test-and-set~or-branch (the operand was non-zero), con-
trol of the bus is released. The round robin bus grant mode will prevent the releasing
processor from hogging the bus - the releasing processor will only acquire the bus two

or more successive times if no other processor is waiting.

The non-bus master time of the busy-wait loop will be zero if a careful implemen-
tation of the release/request sequence of the test-and-set-or-branch is constructed.
Whenever the test portion of the test-and-set-or-branch of processor p; fails, bus
arbitration is initiated while still keeping a request for p; pending.

The implementation of test-and-set-or-branch can be efficient. Depending on the
hardware/firmware implementation, this combined instruction may not necessarily hold
the bus longer than the standard test-and-set instruction.

The new specialized P() and V() operations are shown in figure 3. This imple-
mentation meets the requirements of the Deferred Bus theorem. i.e. the worst case
non-bus master time of the instructions in P() is zero, thus it provides bounded (linear)
waiting. Since the worst case non-bus master time is zero, there is no need to compare
instruction execution times between the P() and V() operations - as long as the clear

instruction in V() is a bus master operation, the Deferred Bus theorem is true.

1



4.3 Extending Current Architectures

Current architectures, such as the Motorola 68020/68851 CPU and paged memory
management chip set, do not provide support for the Deferred Bus theorem. It is not
possible to construct P() and V() operations such that the total worst case non-bus
master time of the busy-wait loop in P() is less then the best case bus master time of
the release instruction of V(). This will be demonstrated primarily by examining the
timing properties of the RMW type instructions available for this chip set. Extensions
specific to this chip set which support the Deferred Bus theorem are presented in the

following discussion.

In the 68020/68851 architecture, the maximum time the shared bus is locked during
a RMW operation is 8 cycles [10]. The worst case execution time of a conditional branch
instruction is 9 cycles. These figures alone are enough to demonstrate that the Deferred
Bus theorem cannot hold for this architecture - the release instruction can hold the bus
for at most 8 cycles, which cannot be guaranteed to be longer than the non-bus master
time of the busy-wait loop (since the busy-wait loop contains a conditional branch).

A slight divergence into the policies and mechanisms adopted in the Motorola
68020/68851 architecture is necessary before specific recommendations are made for
extending this architecture. In the Motorola 68020/68851 architecture, the 68851 (the
PMMU) not only handles address translations (from virtual to physical memory), but
also performs bus requestmg The CPU (68020) supplies the PMMU with instructions
and operand addresses over dedicated bus lines.

The support for limiting the maximum time that the shared bus is locked during
a RMW to a small number of cycles is rather interesting, involving interaction with
another functional unit of the PMMU, the ATC (Address Translation Cache). When
a TAS (test-and-set) operation is detected by the PMMU, the first step taken by
the PMMU is to become bus master and try to assert the RMC signal (Read Modify
Cycle) on the shared bus. The next step is to translate the virtual address to a physical
address. If an ATC miss occurs on this address, both the RMC and the TAS operation
are aborted. The PMMU instructs the CPU to reexecute the TAS instruction. This
policy is used to reduce the maximum amount of time that the shared bus is locked by
a processor — address translations are very expensive (40 - 68) cycles.

Extending the 68020/68851 architecture to support a test-and-set-or-branch
(TASOB) instruction will require similar interaction between the CPU and PMMU.

12



Once the CPU has communicated the TASOB instruction and appropriate operands
to the PMMU and the physical address has been cached, the PMMU need not return
control to the CPU until the semaphore has been acquired. We effectively implement
a busy-wait loop inside the PMMU. Until a successful acquisition of the semaphore,
the PMMU successively contends for the shared bus, locks the shared bus, attempts
acquisition of the semaphore, then unlocks the bus.

The non-bus master time of the TASOB will be limited to the time required to
communicate the opcode and operands from the CPU to the PMMU, plus the potential
cost of performing an address translation. Moreover, since these costs occur only once
per P() operation, they can be easily accounted for by adding a constant to the overhead
of the P() operation. Since these non-bus master times occur at the beginning of the
busy-wait loop, they are not part of the busy-wait loop and thus are discounted from
violating the Deferred Bus theorem. As discussed in the previous subsection, the

implementor of V() must use a bus-master instruction to release the semaphore.

4.4 Bound on Bus Usage

Although our solution is more efficient than that of Burns, it nevertheless wastes
bus and CPU resources. An upper bound on the shared bus wastage is presented in
this section, while solutions which mitigate the CPU and bus wastage are presented
in the next section. The notation T() indicates the exact number of steps required to

execute a program fragment.

We have shown that linear bounded access to the critical section will be granted
in a cyclic fashion. Thus, any processor performing the P() operation will wait for at
most N — 1 other processors before being granted access to the critical section. Each of
the N — 1 other processors will cause a delay of T'(P()) + T'(criticalsection) + T(V()).
During this cumulative delay ((N — 1) * (T(P()) 4+ T(criticalsection) + T(V())), the
acquiring processor will be performing bus requests. For long critical sections, this
bus resource wastage should be avoided. The next section discusses solutions which

minimize this bus wastage.

13



5. Reducing Bus Traffic with Queued Semaphores

Section 4 presented an efficient implementation of linearly bounded semaphores.
In this section, we extend the busy-wait implementation to minimize bus traffic and
CPU wastage. The linearly bounded semaphores are used as a basis for the extension
presented in this section. Bus traffic is minimized by enqueuing any waiting process in
a shared queue. This technique is similar to one used by monitors [8], but is instead
applied to semaphores.

The queue is FIFO, constructed by allocating a contiguous area of memory and
maintaining a pointer to the current free slot. Enough slots must be allocated to
a.ccommodate the number of processors (for non-preemptive scheduling) or the number
“of processes (for preemptive scheduling).

A queued semaphore s, is defined as a semaphore which serializes access to the
queue. Once the semaphore has been acquired by process (processor) p, p may perform
the enqueue of its identifier. The technique described in section 4 is used to bound
the P() operation, thus bounding the enqueue operation by bounding the time from
the initial request to enqueue until the actual start of the enqueue. The V() operation
performs a dequeue of the p identifier. As in the P() operation, the semaphore s,
must be acquired in order to perform the dequeue operation. As noted, the semaphore
acquisition is bounded.

The method of waiting to be dequeued and being dequeued is different in the
preemptive and non-preemptive runtime environments. The distinction and motivation
of the alternatives are discussed in the following subsections.

5.1 Non-Preemptive Runtime Environment

Ina non-preemptive runtime environment, no attempt is made to utilize the CPU
cycles of a processor waiting for a semaphore. Thus, eliminating CPU wastage during
the P() operation on a semaphore is of little concern. This fact is exploited in the
non-preemptive solution with a busy-wait on a local memory address.

After the first attempt to acquire the semaphore fails, instead of continuing to busy-
wait on a shared memory location, the acquiring processor first enqueues itself on a
shared queue, then spins on a local memory location. This action eliminates VME bus
traffic (there is a separate bus from the CPU to local memory). When the processor

14



which is currently using the resource releases it (the V() operation), it wakes up the

next waiting process in the queue by clearing the appropriate memory loca.tlon (local
to the waiting processor).

In the solution for non- -preemptive runtime env1ronment the strong semaphore
implementation requires at most one VME bus cycle to fail to acquire the lock and
will wait at most N - 1 cycles to enqueue itself. An additional VME bus cycle is
required to release the semaphore to a waiting processor. Thus we have achieved an

T(N) bound on the number of VME bus requests per semaphore request This is
a significant improvement on the bound for the busy-waiting technique which was a
function of the size of the critical section.

5.2 Preemptive Runtime Environment

In a preemptive runtime environment, a processor may preempt a process which
has failed to acquire the semaphore on the first try. 'The entire scenario is ‘similar
to that of a non-preemptive environment, except that after the enqueue operations,
the current process will preempt itself and another process may continue to use the
CPU. The notification process occurring during the dequeue is more complicated in the
preemptive runtime environment, and requires interaction with the operating system.
Explicit notification of the preempted process will minimally require the processor

identifier and the process identifier for naming purposes.

In order to preserve the bounded nature of accessing a resource, a couple of as-
sumptions were stated earlier about where preemption could (not) occur. A process is
not allowed to be preempted while in its critical section, or while in its P() operation.

6. Use of Bounded Waiting Semaphores

In this section, areas of hard real-time systems which can exploit bounded waiting
semaphores are discussed. The discussion focuses on ‘the design of the Spring kernel
[15] which supports the notion of an on-line guarantee for dynamic task arrivals. The
Spring architecture is composed of a collection of multiprocessors on a distributed
network. In the following discussion, we focus on concurrency involved on a single

multiprocessor.

In the Spring approach, application tasks are scheduled such that resource conflicts

15



are avoided [14]. However, a multiprocessor operating system supporting concurrent
execution of tasks does require support for mutual exclusion. Since, to achieve pre-
dictability, the overhead of the operating system must be accounted for in the worst
case computation time of application tasks, all operating systems operations must also
be bounded. For example, since an application task’s worst case computation time
must also include its dispatch time, the dispatch time (an operating system primitive)
must be bounded.

Generally, one Spring node has one system processor and multiple application pro-
cessors. The scheduler is located on the system processor, while a dispatcher runs on
each application processor. Efficient system support for the on-line guarantee routine
centers around concurrent activity of the scheduler and the multiple dispatchers. The
primary data structure shared by the scheduler and multiple dispatchers is the system
task table (STT). In order to facilitate concurrent access to the STT by the dispatch-
ers, the STT is partitioned (with linked lists) based on the application processor to
which each task is assigned. Concurrent access to the STT by the scheduler and dis-
patcher processes is required under many circumstances. Since concurrent access to
shared data is required by the scheduler and dispatcher, and these costs contribute to

an application task’s worst case computation time, this concurrent access must also be
bounded.

Another area where bounded semaphores are useful in a predictable hard real-time
system is for enforcing mutual exclusive access to resources for certain kinds of ap-
plication tasks. If a tasks’ access patterns to a resource are of long duration and/or
are not very frequent, techniques avoiding resource conflicts (e.g., via resource segmen-
tation and partitioning with an integrated CPU scheduling with resource allocation
algorithm) can be used. However, an alternative approach can be taken in cases where
access to resources is frequent and/or of very short duration. In particular, consider a
pair of application processes which require exclusive access to a shared data area fre-
quently, and access to this shared data is of limited duration. Segmenting these tasks
into one task per resource request is not practical, especially if the duration of the
task is less than the overhead of the scheduler. In these situations of small granularity
resource access, the technique of using a bounded semaphore is much more realistic. If
the interleaved access to shared data is included in the worst case computation time of

each task, tasks requiring exclusive access to identical resources may thus be scheduled
to execute concurrently.

16



7. Conclusion

Techniques for avoiding shared bus contention in the solution to mutual exclusion
problems have been discussed in this paper. A queued semaphore technique for hard
real-time systems has been presented which requires at most a linear number of bus

cycles to acquire the semaphore. This implementation is based on an efficient imple-
mentation of semaphores with linear waiting.

The efficient implementation of semaphores with linear waiting is achieved by rea-
soning about the class of machine instruction timing properties. Specifically, assuming
a round robin bus protocol, it was shown that if the bus-master time of the release
instruction of V() is at least as long as the worst case non bus-master components of
the busy-wait loop of P(), then the semaphore implementation provides linear waiting.
Conversely, if one is not careful and uses an implementation where this 1s not true,
then unbounded waiting can occur. Bounded access to concurrent data is one essential
component in providing predictability for hard real-time systems such as the Spring

kernel.

A hardware solution for semaphores providing linear waiting was presented which
is superior to the solution of Burns in both space and time. Burns’ solution re-
quires an extra boolean variable per processor. His solution has more instructions
in both the P() and V() operations. In particular, our busy wait loop is tighter (less
instructions) and is thus more responsive. Our hardware solution, based on a new
test-and-set-or-branch instruction, is applicable to general computing systems, in-

cluding real-time systems.

Extensions to this work involve a further reduction of bus traffic. Although the
queued semaphore solution presented in this paper effectively reduces the shared bus
traffic on a multiprocessor, the amount of bus traffic it requires is not minimum. We
have defined an asymmetric protocol for implementing semaphores which in fact mini-

mizes bus access. This work will be the subject of a future paper.

8. Acknowledgements

The authors of this paper wish to thank Professor Krithi Ramamritham, Professor
John A. Stankovic, and Victor Yodaiken for their insightful discussion of some of the

ideas presented in this paper.

17



References

[1] T.E. Anderson, E. D. Lazowska, and H. M. Levy. The Performance Implications of
" Thread Management Alternatives for Shared-Memory Multiprocessors. Technical
Report 88-09-04, University of Washington, September 1988.

[2] J. E. Burns. Mutual Exclusion with Linear Waiting using Binary Shared Variables.
SIGACT News, 10(2), Summer 1978.

[3] E. W. Dijkstra. The Structure of the “THE”-Multiprogramming System. Com-
 munications of the ACM, 11(5), May 1968.

[4] E. W. Dijkstra. Hierarchical Ordering of Sequential Processes. Acta Informatica,
1, 1971,

[5] A. Dinning. A Survey of Synchronization Methods for Parallel Computers. Com-
puter, 22(7), July 1989.

[6] A Gottlieb et. al. The NYU Ultracomputer - Designing an MIMD Shared Memory
Parallel Computer. IEEE Transactions on Computers, c-32(2), February 1983.

[7) M. P. Herlihy. Impossibility and Universality Results for Wait-Free Synchroniza-
tion. Technical Report 88-140, Carnegie Mellon, May 1988.

[8] C. Hoare. Monitors: An Operating System Structuring Concept. CACM, 17(10),
October 1974.

[9] Motorola Inc. MC68020 32-Bit Microprocessor User’s Manual. Prentice-hall,
Englewood Cliffs, N.J., 1985.

[10] Motorola Inc. MC68851 Paged Memory Management Unit User’s Manual.
Prentice-hall, Englewood Cliffs, N.J., 1986.

[11) Motorola Inc. MVME1385, MVME135-1, MVME135A, MVME136, and
MVME136A 32-Bit Microcomputers User’s Manual. Motorola Inc., 1989.

[12] Sequent Computer Systems Inc. Sequent Symmetry Technical Summary. Sequent
Computer Systems, Inc., 1988.

[13] J. L. Peterson and A. Silberschatz. Operating System Concepts. Addison-Wesley,
" Reading, Massachusetts, 1985.

[14] K. Ramamritham, J. A. Stankovic, and P. Shiah. O(n) Scheduling Algorithms
for Real-Time Multiprocessor Systems. In the 9th International Conference on
Parallel Processing, June 1989.

18



[15] J. A. Stankovic and K. Ramamritham. The Spring Kernel: A New Paradigm for
Real-time Operating Systems. Operating Systems Review, 23(3), July 1989.

19



